Publications

Working Papers

MAUVE Scores for Generative Models: Theory and Practice.
Krishna Pillutla*, Lang Liu*, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers, Sewoong Oh, Yejin Choi, Zaid Harchaoui.
Manuscript (2023).
PDF   Pip-package   Code  

Modified Gauss-Newton Algorithms under Noise.
Krishna Pillutla, Vincent Roulet, Sham Kakade, Zaid Harchaoui.
Submitted (2022).
PDF  

Conference and Journal Publications

Statistical and Computational Guarantees for Influence Diagnostics.
Jillian Fisher, Lang Liu, Krishna Pillutla, Yejin Choi, Zaid Harchaoui.
AISTATS (2023).
PDF   Code  

Stochastic Optimization for Spectral Risk Measures.
Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaid Harchaoui.
AISTATS (2023).
PDF   Code  

Federated Learning with Superquantile Aggregation for Heterogeneous Data.
Krishna Pillutla*, Yassine Laguel*, Jérôme Malick, Zaid Harchaoui.
Machine Learning Journal (To Appear, 2022).
FL-NeurIPS ‘22, DistShift-NeurIPS ‘22 Spotlight.
PDF   Code   Slides   Poster  

From Enormous Structured Models to On-device Federated Learning: Robustness, Heterogeneity and Optimization.
Krishna Pillutla
PhD Dissertation (2022).
PDF   Slides

Federated Learning with Partial Model Personalization.
Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael Rabbat, Maziar Sanjabi, Lin Xiao.
ICML 2022.
PDF   Code   Slides (ICML Spotlight)   Poster  

Robust Aggregation for Federated Learning.
Krishna Pillutla, Sham Kakade, Zaid Harchaoui.
IEEE Transactions on Signal Processing (2022).
FL-ICML ‘20 Long Presentation.
PDF   Code (TensorFlow)   Code (PyTorch)   Talk video

MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers.
Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, Zaid Harchaoui.
NeurIPS 2021. Outstanding Paper Award (Top 6 out of 9000 submissions).
PDF   Pip-package   Code   Poster   Press

Divergence Frontiers for Generative Models: Sample Complexity, Quantization Level, and Frontier Integral.
Lang Liu, Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi, Zaid Harchaoui.
NeurIPS 2021.
PDF   Code

LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes.
Aditya Kusupati, Matthew Wallingford, Vivek Ramanujan, Raghav Somani, Jae Sung Park, Krishna Pillutla, Prateek Jain, Sham Kakade, Ali Farhadi.
NeurIPS 2021.
PDF

Superquantiles at Work : Machine Learning Applications and Efficient (Sub)gradient Computation.
Yassine Laguel, Krishna Pillutla, Jérôme Malick, Zaid Harchaoui.
Set-Valued and Variational Analysis (2021).
PDF     Publisher’s Page

A Superquantile Approach to Federated Learning with Heterogeneous Devices.
Yassine Laguel*, Krishna Pillutla*, Jérôme Malick, Zaid Harchaoui.
IEEE CISS 2021.
PDF   Code

A Smoother Way to Train Structured Prediction Models.
Krishna Pillutla, Vincent Roulet, Sham Kakade, Zaid Harchaoui.
NeurIPS 2018.
PDF-long   PDF-short   Code   Documentation
Poster   Blog post   Video summary

A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares).
Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, Aaron Sidford.
FSTTCS 2017.
PDF

Data Driven Resource Allocation for Distributed Learning.
Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Maria-Florina Balcan, Alex Smola.
AISTATS 2017.
PDF-long   PDF-short  

On Skewed Multi-dimensional Distributions: the FusionRP Model, Algorithms, and Discoveries.
Venkata Krishna Pillutla*, Zhanpeng Fang*, Christos Faloutsos, Danai Koutra, Jie Tang.
SIAM International Conference on Data Mining (SDM) 2016.
PDF  

Master’s Thesis: Data Driven Resource Allocation For Distributed Machine Learning.
Thesis Committee: Nina Balcan, Alex Smola, Christos Faloutsos
PDF Slides