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Abstract

We present a framework to train a structured prediction model by performing
smoothing on the inference algorithm it builds upon. Smoothing overcomes the
non-smoothness inherent to the maximum margin structured prediction objective,
and paves the way for the use of fast primal gradient-based optimization algorithms.
We illustrate the proposed framework by developing a novel primal incremental
optimization algorithm for the structural support vector machine. The proposed
algorithm blends an extrapolation scheme for acceleration and an adaptive smooth-
ing scheme and builds upon the stochastic variance-reduced gradient algorithm.
We establish its worst-case global complexity bound and study several practical
variants. We present experimental results on two real-world problems, namely
named entity recognition and visual object localization. The experimental results
show that the proposed framework allows us to build upon efficient inference
algorithms to develop large-scale optimization algorithms for structured prediction
which can achieve competitive performance on the two real-world problems.

1 Introduction

Consider the optimization problem arising when training structural support vector machines:

min
w∈Rd

[
F (w) :=

1

n

n∑
i=1

f (i)(w) +
λ

2
‖w‖22

]
, (1)

where each f (i) is the structural hinge loss. Structural support vector machines were designed for
prediction problems where outputs are discrete data structures such as sequences or trees [56, 62].

Batch nonsmooth optimization algorithms such as cutting plane methods are appropriate for problems
with small or moderate sample sizes [62, 18]. Stochastic nonsmooth optimization algorithms such as
stochastic subgradient methods can tackle problems with large sample sizes [46, 54]. However both
families of methods achieve the typical worst-case complexity bounds of nonsmooth optimization
algorithms and cannot easily leverage a possible hidden smoothness of the objective.

Furthermore, as significant progress is being made on incremental smooth optimization algorithms
for training unstructured prediction models [33], we would like to transfer such advances and design
faster optimization algorithms to train structured prediction models. Indeed if each term in the
finite-sum were L-smooth 1, incremental optimization algorithms such as MISO [34], SAG [30, 50],
SAGA [7], SDCA [52], and SVRG [20] could leverage the finite-sum structure of the objective (1)
and achieve faster convergence than batch algorithms on large-scale problems.

1We say f is L-smooth with respect to ‖·‖ when∇f exists everywhere and is L-Lipschitz with respect to
‖·‖. Smoothness and strong convexity are taken to be with respect to ‖ · ‖2 unless stated otherwise.
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Incremental optimization algorithms can be further accelerated, either on a case-by-case basis [53,
11, 1, 6] or using the Catalyst acceleration scheme [32, 33], to achieve near-optimal convergence
rates [64]. Accelerated incremental optimization algorithms demonstrate stable and fast convergence
behavior on a wide range of problems, in particular for ill-conditioned ones.

We introduce a general framework that allows us to bring the power of accelerated incremental
optimization algorithms to the realm of structured prediction problems. To illustrate our framework,
we focus on the problem of training a structural support vector machine (SSVM). The same ideas can
be applied to other structured prediction models to obtain faster training algorithms.

We seek primal optimization algorithms, as opposed to saddle-point or primal-dual optimization
algorithms, in order to be able to tackle structured prediction models with affine mappings such as
SSVM as well as deep structured prediction models with nonlinear mappings. We show how to shade
off the inherent non-smoothness of the objective while still being able to rely on efficient inference
algorithms.

Smooth inference oracles. We introduce a notion of smooth inference oracles that gracefully fits
the framework of black-box first-order optimization. While the exp inference oracle reveals the
relationship between max-margin and probabilistic structured prediction models, the top-K inference
oracle can be efficiently computed using simple modifications of efficient inference algorithms in
many cases of interest.

Incremental optimization algorithms. We present a new algorithm built on top of SVRG, blending
an extrapolation scheme for acceleration and an adaptive smoothing scheme. We establish the worst-
case complexity bounds of the proposed algorithm and demonstrate its effectiveness compared to
competing algorithms on two tasks, namely named entity recognition and visual object localization.

The code is publicly available on the authors’ websites. All the proofs are provided in [45].

2 Smoothing Inference for Structured Prediction

Given an input x ∈ X of arbitrary structure, e.g. a sentence, a structured prediction model outputs its
prediction as a structured object y ∈ Y , such as a parse tree, where the set of all outputs Y may be
finite yet often large. The score function φ, parameterized by w ∈ Rd, quantifies the compatibility
of an input x and an output y as φ(x,y;w). It is assumed to decompose onto the structure at hand
such that the inference problem y∗(x;w) ∈ argmaxy∈Y φ(x,y;w) can be solved efficiently by a
combinatorial optimization algorithm. Training a structured prediction model then amounts to finding
the best score function such that the inference procedure provides correct predictions.

Structural hinge loss. The standard formulation uses a feature map Φ : X ×Y → Rd such that score
functions are linear in w, i.e. φ(x,y;w) = Φ(x,y)>w. The structural hinge loss, an extension of
binary and multi-class hinge losses, considers a majorizing surrogate of a given loss function ` such
as the Hamming loss, that measures the error incurred by predicting y∗(x;w) on a sample (x,y) as
`(y,y∗(x;w)). For an input-output pair (xi,yi), the structural hinge loss is defined as

f (i)(w) = max
y′∈Y

{φ(xi,y
′;w) + `(yi,y

′)} − φ(xi,yi;w) = max
y′∈Y

ψi(y
′;w) , (2)

where ψi(y′;w) := φ(xi,y
′;w) + `(yi,y

′) − φ(xi,yi;w) = a>i,y′w + bi,y′ is the augmented
score function, an affine function of w. The loss ` is also assumed to decompose onto the structure so
that the maximization in (2), also known as loss augmented inference, is no harder than the inference
problem consisting in computing y∗(x;w). The learning problem (1) is the minimization of the
structural hinge losses on the training data (xi,yi)

n
i=1 with a regularization penalty. We shall refer to

a generic term f(w) = maxy′∈Y ψ(y′;w) in the finite-sum from now on.

Smoothing strategy. To smooth the structural hinge loss, we decompose it as the composition of
the max function with a linear mapping. The former can then be easily smoothed through its dual
formulation to obtain a smooth surrogate of (2). Formally, define the mapping g and the max function
h respectively as

g :

{
Rd → Rm

w 7→ (ψ(y′;w))y′∈Y = Aw + b
, h :

{
Rm → R
z 7→ maxi∈[m] zi

, (3)

where m = |Y|. The structural hinge loss can now be expressed as f = h ◦ g.
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She sells sea shells

(a) Non-smooth.

She sells sea shells

(b) `22 smoothing.

She sells sea shells

(c) Entropy smoothing.

Figure 1: Viterbi trellis for a chain graph with four nodes and three labels.

The max function can be written as h(z) = maxi∈[m] zi = maxu∈∆m−1 z>u where ∆m−1 is the
probability simplex in Rm. Its simplicity allows us to analytically compute its infimal convolution
with a smooth function [2]. The smoothing hµω of h by a strongly convex function ω with smoothing
coefficient µ > 0 is defined as

hµω(z) := maxu∈∆m−1

{
z>u− µω(u)

}
,

whose gradient is the maximizer of the above expression. The smooth approximation of the structural
hinge loss is then given by fµω := hµω◦g. This smoothing technique was introduced by Nesterov [40]
who showed that if ω is 1-strongly convex with respect to ‖ · ‖α, then fµω is (‖A‖22,α/µ)-smooth2,
and approximates f for any w as

µ minu∈∆m−1 ω(u) ≤ f(w)− fµω(w) ≤ µ maxu∈∆m−1 ω(u) .

Smoothing variants. We focus on the negative entropy and the squared Euclidean norm as choices
for ω, denoted respectively

−H(u) :=
∑m
i=1 ui log ui and `22(u) := 1

2 (‖u‖22 − 1) .

The gradient of their corresponding smooth counterparts can be computed respectively by the softmax
and the orthogonal projection onto the simplex, i.e.

∇h−µH(z) =
[

exp(zi/µ)∑m
j=1 exp(zj/µ)

]
i=1,...,m

and ∇hµ`22(z) = proj∆m−1(z/µ) .

The gradient of the smooth surrogate fµω can be written using the chain rule. This involves computing
∇g along all m = |Y| of its components, which may be intractable. However, for the `22 smoothing,
the gradient ∇hµ`22(z) is given by the projection of z/µ onto the simplex, which selects a small
number, denoted Kz/µ, of its largest coordinates. We shall approximate this projection by fixing K
independently of z/µ and defining

hµ,K(z) = max
u∈∆K−1

{
z>[K]u− µ`

2
2(u)

}
,

as an approximation of hµ`22(z), where z[K] ∈ RK denote the K largest components of z. If
Kz/µ < K this approximation is exact and for fixed z, this holds for small enough µ, as shown
in [45]. The resulting surrogate is denoted fµ,K = hµ,K ◦ g.

Smooth inference oracles. We define a smooth inference oracle as a first-order oracle for a smooth
counterpart of the structural hinge loss. Recall that a first-order oracle for a function f is a numerical
routine which, given a point w ∈ dom(f), returns the function value f(w) and a (sub)gradient
v ∈ ∂f(w). We define three variants of a smooth inference oracle: i) the max oracle; ii) the exp
oracle; iii) the top-K oracle. The max oracle corresponds to the usual inference oracle in maximum
margin structured prediction, while the exp oracle and the the top-K oracle correspond resp. to the
entropy-based and `22-based smoothing.

Figure 1 illustrates the notion on a chain structured output. The inference problem is non-smooth
and a small change in w might lead to a radical change in the best scoring path as shown in Fig. 1a.
The `22-based smooth inference amounts to picking some number of the top scoring paths. Notice the
sparsity pattern in Fig. 1b. The entropy-based smooth inference amounts to weighting all paths, with
a higher weight for top scoring paths as shown in Fig. 1c.

2 ‖A‖β,α := max{u>Aw | ‖u‖α ≤ 1 , ‖w‖β ≤ 1}.
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Table 1: Smooth inference oracles, algorithms and complexity. Here, p is the size of each y ∈ Y .
The time complexity is phrased in terms of the time complexity T of the max oracle.

Max oracle Top-K oracle Exp oracle
Algo Algo Time Algo Time

Dynamic
Programming Top-K DP O(KT logK) Sum-Product O(T )

Graph cut BMMF O(pKT ) Intractable

Graph matching BMMF O(KT ) Intractable
Branch and

Bound search Top-K search N/A Intractable

Definition 1. Consider f(w) = maxy′∈Y ψ(y′;w) and w ∈ Rd,

• the max oracle returns f(w) and ∇ψ(y∗;w) ∈ ∂f(w), where y∗ ∈ argmaxy′∈Y ψ(y′;w);

• the exp oracle returns f−µH(w) and ∇f−µH(w) = Ey′∼pµ [∇ψ(y′;w)], where pµ(y′) ∝
exp(ψ(y′;w)/µ);

• the top-K oracle computes the K best outputs {y(i)}Ki=1 = YK satisfying

ψ(y(1);w) ≥ · · · ≥ ψ(y(K);w) ≥ max
y′∈Y\YK

ψ(y′;w)

to return fµ,K(w) and ∇fµ,K(w) as surrogates for fµ`22(w) and∇fµ`22(w).

On the one hand, the entropy-based smoothing of a structural support vector machine somewhat
interpolates between a regular structural support vector machine and a conditional random field [28]
through the smoothing parameter µ. On the other hand, the `22-based smoothing only requires a top-K
oracle, making it a more practical option, as illustrated in Table 1.

Smooth inference algorithms. The implementation of inference oracles depends on the structure of
the output, given by a probabilistic graphical model [45]. When the latter is a tree, exact procedures
are available, otherwise some algorithms may not be practical. See Table 1 for a summary3. The
formal description, algorithms and proofs of correctness are provided in [45].

Dynamic Programming. For graphs with a tree structure or bounded tree-width, the max oracle is
implemented by dynamic programming (DP) algorithms such as the popular Viterbi algorithm. The
exp-oracle can be achieved by replacing the max in DP with log-sum-exp and using back-propagation
at O(1) times the cost of the max oracle. The top-K oracle is implemented by the top-K DP
algorithm which keeps track of the K largest intermediate scores and the back-pointers at O(K)
times the cost of the max oracle; see [45] for details.

Graph cut and matching. For specific probabilistic graphical models, exact inference is possible in
loopy graphs by the use of graph cuts [24] or perfect matchings in bipartite graphs [57]. In this case,
a top-K oracle can be implemented by the best max marginal first (BMMF) algorithm [65] at 2K
computations of max-marginals, which can be efficiently computed for graph cuts [23] and matchings
[9]. The exp oracle is intractable (in fact, it is #P-complete) [17].

Branch and bound search. In special cases, branch and bound search allows exact inference in loopy
graphs by partitioning Y and exploring promising parts first using a heuristic. Examples include the
celebrated efficient subwindow search [29] in computer vision or A? algorithm in natural language
processing [31, 15]. Here, the top-K oracle can be implemented by letting the search run until K
outputs are found while the exp oracle is intractable. The running time of both the max and top-K
oracles depends on the heuristic used and might be exponential in the worst case.

3 The notation O(·) may hide constants and factors logarithmic in problem parameters. See [45] for detailed
complexities.
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Algorithm 1 Catalyst with smoothing

1: Input: Objective F in (1), linearly convergent methodM, initial w0, α0 ∈ (0, 1).
Smoothing (µk)k≥1 and regularization (κk)k≥1 parameters, relative accuracies (δk)k≥1.

2: Initialize: z0 = w0.
3: for k = 1 to T do
4: UsingM with zk−1 as the starting point, find

wk ≈ argmin
w∈Rd

[
Fµkω,κk(w; zk−1) :=

1

n

n∑
i=1

f (i)
µkω

(w) +
λ

2
‖w‖22 +

κk
2
‖w − zk−1‖22

]
,

(5)
such that Fµkω,κk(wk; zk−1)−minw Fµkω,κk(w; zk−1) ≤ δkκk

2 ‖wk − zk−1‖22.
5: Compute αk and βk such that

α2
k(κk+1 + λ) = (1− αk)α2

k−1(κk + λ) + αkλ , βk = αk−1(1−αk−1)(κk+λ)
α2
k−1(κk+λ)+αk(κk+1+λ)

.

6: Set zk = wk + βk(wk −wk−1).
7: end for
8: return wT .

3 Catalyst with smoothing

For a single input-output pair (n = 1), the problem (1) is minw∈Rd h(Aw + b) + λ
2 ‖w‖

2
2, where

h is a simple non-smooth convex function. The Nesterov smoothing technique overcomes the non-
smoothness of the objective by considering a smooth surrogate instead [40, 39]. We combine this
with the Catalyst scheme to accelerate a linearly-convergent smooth optimization algorithm [33].

Catalyst with smoothing. The Catalyst approach considers at each outer iteration a regularized
objective centered around the current iterate [33]. The algorithm proceeds by performing approximate
proximal point steps, that is from a point z and for a step-size 1/κ one computes the minimizer
of minw∈Rm F (w) + κ

2 ‖w − z‖22. We only need an approximate solution returned by a given
optimization methodM that enjoys a linear convergence guarantee.

We extend the Catalyst approach to non-smooth optimization problems by performing adaptive
smoothing in the outer-loop and adjusting the level of accuracy accordingly in the inner-loop. We
define

Fµω,κ(w; z) :=
1

n

n∑
i=1

f (i)
µkω

(w) +
λ

2
‖w‖22 +

κ

2
‖w − z‖22 (4)

as a smooth surrogate to the objective centered around a given point z ∈ Rd. Note that the original
Catalyst considered a fixed regularization term κ [33], while we vary κ and µ. Doing so enables us to
get adaptive smoothing strategies.

The proposed inner-outer scheme is presented in Algorithm 1. In view of the strong convexity of
Fµkω,κk(· ; zk−1), the stopping criterion for the subproblem (5) can be checked by looking at the
gradient of Fµkω,κk(· ; zk−1). As it is smooth and strongly convex, the maximal number of iterations
to satisfy the stopping criterion can also be derived. In practice, however, we recommend a practical
variant similar in spirit to the one proposed by [33] that letsM run for a fixed budget of iterations in
each inner loop. Below, we denote w∗ ∈ argminw∈Rd F (w) and F ∗ = F (w∗).
Theorem 1. Consider problem (1) and a smoothing function ω s.t. −D ≤ ω(u) ≤ 0 for all u ∈ ∆.
Assume parameters (µk)k≥1, (κk)k≥1, (δk)k≥1 of Algorithm 1 are non-negative with (µk)k≥1

non-increasing, δk ∈ [0, 1), and αk ∈ (0, 1) for all k. Then, Algorithm 1 generates (wk)k≥0 such
that

F (wk)− F ∗ ≤ A
k−1
0

Bk1
∆0 + µkD +

k∑
j=1

Ak−1
j

Bkj
(µj−1 − (1− δj)µj)D , (6)

whereAkj =
∏k
i=j(1−αi), Bkj =

∏k
i=j(1− δi), ∆0 = F (w0)−F ∗+

(κ1+λ)α2
0−λα0

2(1−α0) ‖w0−w∗‖22 ,
and µ0 = 2µ1.
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Table 2: Summary of global complexity of SC-SVRG, i.e., Algorithm 1 with SVRG as the inner solver for
various parameter settings. We show E[N ], the expected total number of SVRG iterations required to obtain an
accuracy ε, up to constants and factors logarithmic in problem parameters. We denote ∆F0 := F (w0)− F ∗
and ∆0 = ‖w0 −w∗‖2. Constants a and D are defined so that −D ≤ ω(u) ≤ 0 for all u ∈ ∆ and each f (i)

µω

is a/µ-smooth for i ∈ [n].

Scheme λ > 0 µk κk δk E[N ] Remark

1 Yes ε
D

aD
εn − λ

√
λεn
aD n+

√
aDn
λε fix ε in advance

2 Yes µck λ c′ n+ a
λε

∆F0+µD
µ c, c′ < 1 are universal constants

3 No ε/D aD/εn 1/k2 n
√

∆F0

ε +
√
aDn∆0

ε fix ε in advance

4 No µ/k κ0 k 1/k2 ∆̂0

ε

(
n+ a

µκ0

)
∆̂0 = ∆F0 + κ0

2 ∆2
0 + µD

Theorem 1 establishes the complexity of the Catalyst smoothing scheme for a general smoothing
function and a general linearly-convergent smooth optimization algorithmM.

Using Theorem 1, we can derive strategies for strongly or non-strongly convex objectives (λ > 0 or
not) with adaptive smoothing that vanishes over time to get progressively better surrogates of the
original objective.

The global complexity of the algorithm depends then on the choice ofM. We present in Table 2 the
total complexity for different strategies when SVRG [20] is used asM, resulting in an algorithm
called SC-SVRG in the remainder of the paper. Note that the adaptive smoothing schemes (2, 4) do
not match the rate obtained by a fixed smoothing (1, 3). A standard doubling trick can easily fix this.
Yet we choose to use an adaptive smoothing scheme, easier to use and working well in practice (see
Sec. 4). All proofs are given in [45].

Extension to nonlinear mappings. When the score function is not linear in w, the overall problem
is not convex in general. However, if the score function is smooth, then one could take advantage
of the composite structure of the structural hinge loss f = h ◦ g by using the prox-linear algorithm
[3, 8]. At each step, the latter linearizes the mapping g around the current iterate wk, resulting in a
convex model w 7→ h(wk +∇g(wk)>(w −wk)) of h ◦ g around wk. The overall convex model
of the objective F with an additional proximal term is then minimized. The next iterate is given by

wk+1 = argmin
w∈Rd

1

n

n∑
i=1

h(g(i)(w) +∇g(i)(wk)>(w −wk)) +
λ

2
‖w‖22 +

1

2γ
‖w −wk‖2 (7)

where g(i) is the mapping associated with the ith sample and γ > 0 is the parameter of the proximal
term. This subproblem reduces to training a structured prediction model with an affine augmented
score function. Therefore we can solve it with the SC-SVRG algorithm introduced earlier. Note that
only approximate solutions are required to get a global convergence to a stationary point [8]. The
theoretical analysis and numerical experiments showing the potential of this approach compared to
subgradient methods can be found in [45].

4 Experiments

We compare the proposed algorithm and several competing algorithms to train a structural support
vector machine on the tasks of named entity recognition and visual object localization. Additional
details on the datasets, algorithms, parameters as well as an extensive evaluation in different settings
can be found in [45]. We use the `22-based smoothing in all experiments as explained in Sec. 2.

Named entity Recognition. The task consists in predicting the tagging of a sequence into named
entities. We consider the CoNLL 2003 dataset with n = 14987 [60]. The Viterbi algorithm provides
an efficient max oracle and the top-K oracle is obtained following the discussion in Sec. 2. The loss
` is the Hamming loss here. The features Φ(x,y) are obtained from the local context around each
word [61]. We use the F1 score as the performance metric for evaluation.

6



0 20 40 60 80 100
#(oracle calls)/n

100

1.1 × 100

lo
ss

Train loss, = 0.01/n

0 20 40 60 80 100
#(oracle calls)/n

0.75

0.76

0.77

0.78

0.79

F 1

Val. F1, = 0.01/n

0 20 40 60 80 100
#(oracle calls)/n

100

1.2 × 100

lo
ss

Train loss, = 0.1/n

0 20 40 60 80 100
#(oracle calls)/n

0.760

0.765

0.770

0.775

0.780

0.785

0.790

F 1

Val. F1, = 0.1/n

SC-SVRG-const SC-SVRG-adapt SVRG BCFW SGD (1/t)

(a) Performance on CoNLL-2003 for named entity recognition.
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(b) Sample performance on PASCAL VOC 2007 for visual object localization for λ = 10/n.

Figure 2: Experimental comparison of proposed methods for the tasks of named entity recognition (Fig. 2a)
and visual object localization (Fig. 2b). All shaded areas represent one standard deviation over ten random runs.
See [45] for all plots.

Visual object localization. The task consists in predicting the spatial location of the visual object
in an image. We consider the PASCAL VOC 2007 [10] dataset and focus on the “cat” and “dog”
categories. Additional experimental results for other categories can be found in [45]. We train
an independent classifier for each class. We follow the methodology outlined in [12] to construct
Φ(x,y). We crop image x to the bounding box y, resize the resulting patch and pass it through
a convolutional network pre-trained on a different dataset. We use here AlexNet [25] pre-trained
on ImageNet [47] and take as Φ(x,y) the output of the layer conv4. We use selective search to
restrict |Y| to 1000 [63]. The max and top-K oracles are implemented as exhaustive searches over
this reduced set. We use 1− IoU as the task loss where IoU(y,y′) = Area(y ∩ y′)/Area(y ∪ y′).
Moreover, the ground truth label y is replaced by argmaxy′∈Y IoU(y,y′). We use the average
precision (AP) as the performance metric for evaluation [10] .

Methods. The plots compare two non-smooth optimization methods, (a) SGD, which is a primal
stochastic subgradient method with step-sizes chosen as γt = γ0/(1 + t/t0), where γ0, t0 are
parameters to be tuned, and returns the averaged iterate wt = 2/t(t+ 1)

∑t
j=1 jwj [26], and (b)

BCFW, the Block-Coordinate Frank-Wolfe algorithm [27], with the tuning of the parameters proposed
by the authors, and the averaged iterate as above (bcfw-wavg). The methods that use smoothing
are SVRG [20] with constant smoothing and two variants of SC-SVRG, namely SC-SVRG-const,
which uses constant smoothing (Scheme 1 in Table 2) and SC-SVRG-adapt, which uses adaptive
smoothing (Scheme 2 in Table 2). Note that the step-size scheme of SGD does not follow from a
classical theoretical analysis, yet performs better in practice than the one used by Pegasos [54].

Parameters. BCFW requires no tuning, while SGD requires the tuning of γ0 and t0. The SVRG-
based methods require the tuning of a fixed learning rate. Moreover, SVRG and SC-SVRG-const
also require tuning the amount of smoothing µ. The validation F1 score and the train loss are used as
the tuning criteria for named entity recognition and visual object localization respectively. A fixed
budget Tinner = n is used as the stopping criteria in Algorithm 1. This corresponds to the one-pass
heuristic of [33], who found the theoretical stopping criteria to be overly pessimistic. We use the
value κk = λ for SC-SVRG-adapt. All smooth optimization methods turned out to be robust to the
choice of K for the top-K oracle (Fig. 3) - we use K = 5 for named entity recognition and K = 10
for visual object localization.

Experiments. We present in Fig. 2 the convergence behavior of the different methods on the named
entity recognition and visual object localization tasks. We plot the error on the training set vs. the
number of oracle calls and the performance metric on a held-out set vs. the number of oracle calls.
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(a) Effect of smoothing hyperparameter on SC-SVRG-const and SC-SVRG-adapt for CoNLL-2003.
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(b) Effect of hyperparameter K on SC-SVRG-const and SC-SVRG-adapt for CoNLL-2003.

Figure 3: Effect of hyperparameters µ and K on SC-SVRG-const and SC-SVRG-adapt.

As we can see in Fig. 2, the proposed methods converge faster in terms of training error while
achieving a competitive performance in terms of the performance metric on a held-out set. Further-
more, BCFW and SGD make twice as many actual passes as SVRG based algorithms. In Fig. 3, we
explore the effect of the parameters µ and K on the convergence of the different methods. We can
see that SC-SVRG-adapt is rather robust to the choice of µ, while SC-SVRG-const and SVRG are
more sensitive to the choice of µ. Therefore SC-SVRG-adapt seems to appear as the most practical
variant of our approach. We can also notice that SC-SVRG-adapt is rather robust to the choice of K.
Setting K = 5 is sufficient here to obtain competitive results.

5 Related Work

Smooth inference oracles. Smooth inference oracles with `22-smoothing echo older heuristics in
speech and language processing [22]. In the probabilistic graphical models literature, efficient
algorithms to solve the top-K inference combinatorial optimization problems were studied under
the name “M -best MAP” in [51, 42, 65]. See [45] for a longer survey. Previous works considering
smooth inference oracles yet encompassed by our framework can be found in [19, 21, 48, 38].
Instances of smooth inference oracles framed in the context of first-order optimization were studied
in [55, 66] and in [35]. We framed here a general notion of smooth inference oracles in the context of
first-order optimization. The framework not only includes previously proposed inference oracles but
also introduces new ones.

Related ideas to ours appear in the independent works [36, 41]. These works partially overlap with
ours, but the papers choose different perspectives, making them complementary to each other. In [36],
the authors proceed differently when, e.g., smoothing inference based on dynamic programming.
Moreover, they do not establish complexity bounds for optimization algorithms making calls to the
resulting smooth inference oracles. We define smooth inference oracles in the context of black-box
first-order optimization and establish worst-case complexity bounds for incremental optimization
algorithms making calls to these oracles. Indeed we relate the amount of smoothing controlled by µ
to the resulting complexity of the optimization algorithms relying on smooth inference oracles.

Batch and incremental optimization algorithms. Several families of optimization algorithms for
structural support vector machines were proposed. Table 3 gives an overview. Early works [56, 62,
18, 59] considered batch dual quadratic optimization (QP) algorithms. The stochastic subgradient
method considered by [46, 54] operated directly on the non-smooth primal formulation [46, 54].
More recently, [27] proposed a block coordinate Frank-Wolfe (BCFW) algorithm to optimize the
dual formulation of structural support vector machines; see also [43] for variants and extensions.
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Table 3: Convergence rates given in the number of calls to various oracles for different optimization algorithms
on the learning problem (1) in case of SSVMs (2). The rates are specified in terms of the target accuracy ε, the
number of training examples n, the regularization λ, the size of the label space |Y|, the feature norm [45]. The
rates are specified up to constants and factors logarithmic in the problem parameters. The dependence on the
initial error is ignored. * denotes algorithms that make O(1) oracle calls per iteration.

Algo. (exp oracle) # Oracle calls

Exponentiated
gradient* [4]

(n+ log |Y|)R2

λε

Excessive gap
reduction [66] nR

√
log |Y|
λε

This work*,
fixed smoothing,
entropy smoother

√
nR2 log|Y|

λε

This work*,
adaptive smoothing,

entropy smoother
n+

R2 log|Y|
λε

Algo. (max oracle) # Oracle calls

BMRM [59]
nR2

λε

QP 1-slack [18]
nR2

λε

Stochastic
subgradient* [54]

R2

λε

Block-Coordinate
Frank-Wolfe* [27] n+

R2

λε

Algo.
(top-K oracle) # Oracle calls

This work*,
fixed smoothing,
`22 smoother

√
nR̃2

λε

This work*,
adaptive smoothing,

`22 smoother
n+

R̃2

λε

Saddle-point or primal-dual optimization algorithms are another family of algorithms, including
the dual extra-gradient algorithm of [58] and the mirror-prox algorithms of [5, 16]. In [44], an
incremental optimization algorithm for saddle-point problems is proposed. However it is unclear
how to extend it to the structured prediction problems we consider here. Incremental optimization
algorithms for conditional random fields were proposed in [49]. We focus here on primal optimization
algorithms in order to be able to train structured prediction models with affine or nonlinear mappings
with a unified approach, and on incremental optimization algorithms in order to be able to scale to
large datasets.

6 Conclusion

We introduced a general notion of smooth inference oracles in the context of black-box first-order
optimization. This allows us to set the scene to extend the scope of fast incremental optimization
algorithms to structured prediction problems owing to a careful blend of a smoothing strategy
and an acceleration scheme. We illustrated the potential of our framework by proposing a new
incremental optimization algorithm to train structural support vector machines both enjoying worst-
case complexity bounds and demonstrating competitive performance on two real-world problems.
This work paves the way to faster incremental primal optimization algorithms for deep structured
prediction models explored in more detail in [45]. There are several potential venues for future work.
When there is no discrete structure that admits efficient inference algorithms, it could be beneficial
to not treat inference as a blackbox numerical procedure [37, 13, 14]. Instance-level improved
algorithms along the lines of [14] could also be interesting to explore.

Acknowledgements This work was supported by NSF Award CCF-1740551, the Washington
Research Foundation for innovation in Data-intensive Discovery, and the program “Learning in
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