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Federated Learning
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Challenges

e models are deployed on clients with heterogeneous data

12



The Washington Post

Democracy Dies in Darkness

THE ACCENT GAP

We tested Amazon’s Alexa and Google's Home to see how people with accents
are getting left behind in the smart-speaker revolution.

GOOGLE HOME AMAZON ECHO
Overall accuracy Overall accuracy
83% 86%

Western U.S. Southern U.S. @31
Midwest U.S.

lawes Eastern U.S. @27
Eastern U.S. @ 05 Western U.S. @ +2.0

Southern U.S. @ +0.1 Midwest U.S ®+10
‘0.3 © | Indian langs. =~ |
-18@ Indian langs.

Chinese

Spanish Chinese

Spanish

By Drew Harwell July 19, 2018



Challenges

e models are deployed on clients with heterogeneous data

e training is not robust to potentially malicious clients
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Ehe New HJork imes

Alexa and Siri Can Hear
This Hidden Command.
You Cant.

Researchers can now send secret audio instructions
undetectable to the human ear to Apple’s Siri, Amazon’s
Alexa and Google’s Assistant.

By Craig S. Smith May 10, 2018

15



Accuracy

64.3%

Clean

60.1%

10%
Corrupt

¥ 5

2

3

16



Challenges

e models are deployed on clients with heterogeneous data

e training is not robust to potentially malicious clients

e solutions to both these problems are conflicting
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This talk

1. Heterogeneity-aware objectives for federated learning
[CISS ‘21, SVAA 21, Under Review "21]
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This talk

1. Heterogeneity-aware objectives for federated learning
[CISS 21, SVAA ‘21, Under Review ‘21]

Our approach

Directly minimize
the tail error
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This talk

1. Heterogeneity-aware objectives for federated learning
[CISS 21, SVAA ‘21, Under Review "21]

2. Robust aggregation for federated learning
[TSP "22]

Data Model
poisoning poisoning
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This talk

1. Heterogeneity-aware objectives for federated learning
[CISS ‘21, SVAA 21, Under Review "21]

2. Robust aggregation for federated learning
[TSP "22]

3. Model personalization for federated learning
[ICML 22, TSP 22]
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This talk

1. Heterogeneity-aware objectives for federated learning
[CISS ‘21, SVAA 21, Under Review 21}

2. Robust aggregation for federated learning
[TSP "22]

3. Model personalization for federated learning
[ICML 22, TSP "22]
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Part 1: Heterogeneity-aware objectives for
federated learning

[CISS 21, SVAA ‘21, Under Review ‘21]

Count

Error
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Clients

Data
Distribution

Usual
Learning
Objective

Data
\ \ heterogeneity
P1 %) Pn
. 1 %
vggﬂ% o Z Fi(w) where Fw) =E,, [f(w; Z)]

loss on client i

[McMahan et al. AISTATS (2017), Kairouz et al. (2021)]
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Our goal

Count

Error

Reduce tail error

Count

Error
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Our goal

Mean
Error

Count

Error

Reduce tail error without sacrificing the mean error

Mean

Count

Error
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Simplicial federated learning

Simplicial-FL Objective:

Our Approach: minimize the tail error directly! min89< (Fi(w), -, F,(w)) )

w

Superquantile | Conditional Value at Risk

o Z]

Count

S Z | Z > Qo(Z)]

fer - e e e e e e e w— —

1
Error Q

[Rockafellar & Uryasev (2002)]
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Dual expression = continuous knapsack problem

Sy(xq, =++,x,) = max Z mx; . m >0, 2 r.=1, m, < (nd)™!

[Dantzig (1957), Ben-Tal & Teboulle (1987), Follmer & Schied (2002)]
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Dual expression = continuous knapsack problem

[Dantzig (1957), Ben-Tal & Teboulle (1987), Follmer & Schied (2002)]

Assuming a new test client with mixture distribution Pr = Zﬂipu

l

==

Simplicial-FL objective is equivalent to:
nivmﬂ: ;235;)_1 = [f(W;Z)] @

— Distributionally robust learning

31



Optimization




Communication primitive: secure sum

Only reveal x, + x, to the server without revealing x, or x,

Client 1

Client 2

[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]
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Client 1

Client 2

Perform all operations modulo M

[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]

Server

34



Client 1

Client 2

o
<§~Un|f

[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]
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Client 1

Client 2

Server only sees x;j, x; ~ Unif(Q) but calculates the correct sum

x1=x1+§ / ,
X1+ X =X+ X

Server

E ~ Unlf

[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]
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Client 1

Client 2

Server only sees x;j, x; ~ Unif<Q> but calculates the correct sum

~~

/ —
Xl—xl‘l‘& / ,
X1+ X =X+ X

E ~ Unif(Q)

Server
Xy =Xy — &
X5

Total communication for m vectors in R = O(mlogm + md) numbers

36



Real-world communication constraint;
All client-to-server communication must go through secure summation

37



ERM Algorithm (FedAvg):

1 n
min — F.(w
i nz} (w)

FedAvg [MacMahan et al. AISTATS (2017)]

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
[terative Parameter Mixing [McDonald et al. ACL (2009)]
BMUF [Chen & Huo. ICASSP (2016)]

Local SGD [Stich. ICLR (2019)]

Simplicial-FL Algorithm:

min S( (F,(w), -+, F,w)) )

w
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ERM Algorithm (FedAvq):

1 n
min — F.(w
i nz} (w)

Simplicial-FL Algorithm:

min S( (F,0w), -+, F,w)) )

w

Step 1 of 3: Server samples m clients
and broadcasts global model

39



ERM Algorithm (FedAvq): Simplicial-FL Algorithm:

w

mvin %l:zl Fi(w) min §9< (Fi(w), -, F,(w)) )

Step 2 of 3: Clients perform = local
SGD steps on their local data

40



ERM Algorithm (FedAvqg):
1 n
. Vg
nﬁgl n'gg; (W)

Step 3 of 3: Aggregate updates
contributed by all clients

\ N
\x P

s,
L Server )
K\,
W J,
A e T A
I - —

Count

Simplicial-FL Algorithm:

min S( (F,w), -, F,(w)) )

w

Step 3 of 3: Aggregate updates
contributed by tail clients only

(1 — 0)-Quantile
o"‘v

\‘
: 1.
R,
.af"’( sl
& Server
\‘ y 4 ’
W
N /
N > T
AN o S Py
S e e e, — - -~

LossS
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Count

Loss

(1 — 0)-Quantile

41



Count

LossS

(1 — 0)-Quantile
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Per-client loss

Histogram

(1 — 0)-Quantile
o”‘v

Count

LossS
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Count

Per-client loss

(1 — 0)-Quantile
o”‘v

LossS

—_—

Noisy client loss histogram

s
I

e b
R R
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Per-client loss Noisy client loss histogram
% Noisy

~ (1 - 6)- Quantlle histogram

e

Histogram

(1 — 0)-Quantile
o"‘v

Count
Count

~Tail

LossS Loss 42



Per-client loss Noisy client loss histogram

o Lu.;L e

Histogram Noisy

(1 — 0)-Quantile ~ (1 —9)—Q}uanti|e hist()g ram

0"
.

Distributed
discrete Gaussian
mechanism

[Kairouz, Liu, Steinke. ICML (2021)]
Loss Loss 42
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Proposition [P., Laguel, Malick, Harchaoui]

Fix parameters ¢,6 > 0 and M > m??. If we choose noise scale

1 1 m #clients per round
O~ \/log — M modular ring size
ex/m 0 b #bins in the histogram
(e,6) differential privacy parameters

then

e the noisy histogram (and hence all quantiles) are (e, §)-differentially private

e W.h.p., the estimated (1 — §)-quantile is actually the (1 — #)-quantile, with

bo? 1 1
10" — 0| 5\/— = —\/blog—
m EM 0

Total communication cost ~ bmlog?m
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Proposition [P., Laguel, Malick, Harchaoui]

Fix parameters ¢,6 > 0 and M > m??. If we choose noise scale

1 1 m #clients per round
c~ log — M modular ring size
ex/m 0 b #bins in the histogram

(e,6) differential privacy parameters

then

!/
e,
...
...
Ny
...
....
...
Ny

e W.h.p., the estimated (1 — §)-quantile is actually the (1 — #)-quantile, with

bo? 1 1
10" — 0| 5\/— = —\/blog—
m EM 0

Total communication cost ~ bmlog?m
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Proposition [P., Laguel, Malick, Harchaoui]

Fix parameters ¢,6 > 0 and M > m??. If we choose noise scale

1 1 m #clients per round
O~ \/log — M modular ring size
ex/m 0 b #bins in the histogram
(e,6) differential privacy parameters

then

e the noisy histogram (and hence all quantiles) are (e, §)-differentially private

e W.h.p., the estimated (1 — §)-quantile is actually the (1 — #)-quantile, with

bo? 1 1
10— 0| S1/— =~ —/blog—
m EM 0

Total communication cost ~ bmlog?m
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Summary:

Simplicial-FL algorithm requires 2 secure summations per update

46



Convergence analysis (non-convex)
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Challenge #1.

The superquantile is nhon-smooth

plot of h(u;,uy) = Sy ( uy, 1y, 0,0 )

48



Nonsmooth: The subdifferential has a tractable form

oF y(w) > Z Jri*VFl-(w) where T o H(Fi(w) > Qp(Fi(w), ---,Fn(w))>
=1

assuming on
IS an integer

49



Nonsmooth: The subdifferential has a tractable form

aFQ(W) > Z ]z'i* VFZ(W) where Jz'l.* X ”(Fi(w) > Q9<F1(W)a 9Fn(W))> assuming 6n

IS an integer
=1

\
Proof Chain rule = subdifferential holds with \ ,,

Alternate form of z* comes from the continuous knapsack problem

[Dantzig. ORIJ (1957)]
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Nonsmooth: The subdifferential has a tractable form

aFQ(W) > Z ]z'i* VFZ(W) where Jz'l.* X ﬂ(Fi(W) > Q9<F1(W)a 9Fn(W))> assuming 6n

IS an integer
=1

Other option: Use smoothing

[Nesterov. Math. Prog. (2005),

TT: Beck & Teboulle. SIAM J. Optim. (2012),

P., Roulet, Kakade, Harchaoui. NeurIPS (2018),
Laguel, P., Malick, Harchaoui. SVAA (2021)]

Loss @ Rank i

Smoothed z* Original z*

50



Challenge #2

The superquantile is nonlinear
—> unbiased stochastic gradients not possible

E

B Z | Z > Qo(Z2)]

= [E[Z] but

SQ(ZD R Zm)

‘*

7 Sy¢(£)

51



Nonlinear: We minimize a close surrogate

Fyw) = Eg. 151 ge( (Fw) : i€ S))

52



Nonlinear: We minimize a close surrogate

Fy(w) = Eg. 5100 [ge( (F(w) : i €S) )]

The surrogate is uniformly close for bounded losses:

For i.i.d. copies 7,,---,Z of Z with |Z| < B a.s., we have

= (Se(Zy, . Z,) | — Se2) | < Var_SH(Zl,---, Zm)- B

- Vom

[Levy et al. NeurIPS (2020)]



Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<

53



Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F. is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<

54



Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) F(l —17) ; | A,: initial error

- || V D2L(y,)

[

(Dg(w) = Inf {179(2) + %Hz — WHZ} — Moreau envelope of F, | well defined for u > L
<
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Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ; (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<
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®(w,, ) = min {Fg(z) + Lz — wt+1H2}

<

Il 2
< Fy(z) + L”Zt — Wt+1”

Definition of the Moreau
envelope

Plug in a particular choice of
z, to be determined later

57



®(w,, ) = min {Fg(z) + Lz — wt+1H2}

<

IN

FH(Zt) + L||z, — Wt+1”2

< Fy(z) + Lz, - thZ —y L(w, — Zt)Tgt + O0(r?)

Definition of the Moreau
envelope

Plug in a particular choice of
z, to be determined later

Expand update

Wil = W — V8;

57



®(w,, ) = min {Fg(z) + Lz — wt+1H2}

<

IN

FH(Zt) + L||z, — Wt+1”2

< _H(Zt) T LHZt — W;HZ — yL(Wt o Zt)Tgt + 0(7/2)

= ®(w,) —yV®(w) g + OF?

Definition of the Moreau
envelope

Plug in a particular choice of
z, to be determined later

Expand update

Wil = W — V8;

Choose
z = arg min {FQ(Z) + Lz - wt||2}

<

so that Vo(w,) = L(w, — z)

57



®(w,, ) = min {Fg(z) + Lz — wt+1H2}

IN

< FH(Zt) + L||z, — WtH2 — vy L(w, — Zt)Tgt T 0(7/2)

<

FH(Zt) + L||z, — Wt+1”2

= ®(w,) —yV®(w) g + OF?

If

- [g] ~ V®(w,), proof is complete

Definition of the Moreau
envelope

Plug in a particular choice of
z, to be determined later

Expand update

Wil = W — V8;

Choose
z = arg min {FQ(Z) + Lz - wt||2}

<

so that Vo(w,) = L(w, — z)

57



D(w,, ) < Pw,) —y V(W) g, + Oy

g, comes from 7 local gradient steps
of step size y

g/ comes from one local gradient
steps of step size ry

58



D(w,, ) < Pw,) —y V(W) g, + Oy

D(w,, ;) < P(w,) — 77y VOW,) g/ + O(r?)

g, comes from 7 local gradient steps
of step size y

g/ comes from one local gradient
steps of step size ry

=811 € OF y(w)
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D(w,, ;) < P(w,) —yVOWw) g, + O

D(w,, ;) < P(w,) — 77y VOW,) g/ + O(r?)

V CID(Wt)T

qoo
=gl > SIVeW)||*

g, comes from 7 local gradient steps
of step size y

g/ comes from one local gradient
steps of step size ry

=811 € OF y(w)

Prox-gradient and subgradient are closely aligned

[Davis & Drusvyatskiy. SIAM J. Optim. (2019)]
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EMNIST

Experiments
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Histogram of per-client errors
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Misclassification Error
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Histogram of per-client errors

0.14 -

0.12 -

0.10 A

0.08 -

0.06 -

0.04 -

0.02 -

0.00 -

0.0

Usual

0.1 0.2 0.3 0.4 0.5

Misclassification Error

® Simplicial-FL has the smallest 9

Oth

Misclassif. Error

30.00 ‘
3.3 pp

15.00

7.50

90th Percentile Mean

B Ours B FedAvg
. FedProx [ q-FFL

percentile error

e Simplicial-FL is competitive on the mean error
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Distributionally robust learning with
1 additional line of code

import torch.nn.functional as F
from sqwash import reduce superquantile

for x, y 1in dataloader:
y_hat = model(x)

batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set reduction='none'"

loss = reduce_superquantile(batch_losses, superquantile _tail fraction=0.5) # Additional Lline
loss.backward() # Proceed as usual from here

Install: pip install sgwash

Documentation: krishnap25.github.io/sqwash/

SCAN ME

62


https://krishnap25.github.io/sqwash/

Part 2: Robust aggregation for federated learning

[TSP 22]

poisoning poisoning

63



20 -

'Y

10 - "

» O
e,
0 O
Y
_10_
_20_
2 1 0 1

64



20 -

10 -

_10_

_20 .

65



20 -

@
10 - et .
0 &
Gy ©
O - o -
—10 -
*
—20 -
2 1 0 1

66



Training Deployment
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Data Model
poisoning poisoning

Arithmetic mean aggregation is not robust to corruptions =— Poor predictions!



Data
poisoning

Our goal

Model
poisoning

Design a robust aggregation algorithm
for federated learning which is

)>> Communication efficient

O(1) times the communication
cost as non-robust aggregation

Secure aggregation

Client-server communication via
secure summation only

Note: not DP

68



Heterogeneity vs. Robustness

Consider mean estimation in Huber’s contamination model:

Wi, soos W, ~ (1 _p) '/’/(//ta 62]) +10Q

inliers outliers 01
o
.
Any mean estimate w, must satisfy -2 '
.
1w, — ull* 2 6 <P2+£> g
n 0 -
.
[Chen, Gao, Ren. Annals of Stat. (2018)] Py
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For general federated learning, fix a set D of “inlier” distributions

1 2 n
p; &€ D Iis considered an
Data _ _ | ‘ outlier even without
. . . adversarial corruption
Distribution
P1 1 %) Pn
Learning mind Z F(w) where  Fi(w) = = [f(w;z)]
Objective WeRT i pep

loss on client i

d
Convergence only possible up to size of inlier set D due to IIw, —ull* 2 o° (p2+;)

Algorithm is agnostic to D — only appears in analysis



Federated learning with robust aggregation

poisoning poisoning

/1



)=

- ) feeee

Fermat & Torricelli (~1600s), Weber (1909)
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Fermat & Torricelli (~1600s), Weber (1909)

Geometric Median

m
GM(w,, ---, w,,) = argmin_ 2 1z — will,
i=1

72



Robustness: Breakdown point of GM = 1/2

C
O

outliers

QQQ

Nemirovski & Yudin (1983) | Jerrum, Valiant & Vazirani (1986) | Lopuhaa & Rousseeuw (1991)
Hsu & Sabata (2013) | Minsker (2015) | Lugosi, Gabor & Mendelson (2019) | Lecué & Lerasle (2020)
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Weiszfeld’s Algorithm

Start with initial guess z, and iterate:

1
ﬁ't —
" max{||z, — willp, v}
Zi ﬁi,twi
Ll =
zi ﬁi,t

[ Weiszfeld 1937]

Compute new weights

Reweighted average

15 -

10 -

=10 -

—-15 -

Example

-15
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-5 0

10

15
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Proposition [P., Kakade, Harchaoui]

Assume that min ||z* — w)|| > v.
l

* = GM(w,, -
Then, we get an ¢-approximate GM in ‘ (W1 2222 W)

v : smoothing in g-update

1\ . .
O (—) Iterations 5 - 1
ve " max{ ||z, — willp, v}
1E-05
>
X 1E-08
() S E
. Communication efficient! S 1E.11
) S
D 3
Empirically, 3=5 iterations suffice: rapid convergence 1E-14
1 2 3 4 5
Even 1 iteration gives robustness _
Iteration

/5



RFA = FedAvg + GM aggregation

Secure aggregation

Only client-server communication 2 Biw;
IS via secure summation in Ll =
Zi ﬁi,t

/6



Step 1 of 3: Server broadcasts
global model to sampled clients

]
S0

So far, same as FedAvg

Step 2 of 3: Clients perform some
local SGD steps on their local data

5

/77



Step 3 of 3: Aggregate with multiple rounds of secure average
(weights p. from the Weiszfeld Algorithm)

Round 3 of Aggregation

Round 1 of Aggregation Round 2 of Aggregation

\
. " —
X Server }

.

\

e N
R,

’s:( ‘ S

erver j
N\ TR i

G

Weights
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Convergence analysis (least squares)




Data on client i: (X,Y,) ~ p; satisfies

Y,=X'w*+¢& where & ~ #(0,067%)

4
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Data on client i: (X,Y,) ~ p; satisfies

Y,=X'w*+¢& where & ~ #(0,067%)

L
A

[ R4

20 -

Measure of heterogeneity

> 0
Qy = max Ap, (H ""HH ") > 1 e
l _40 -
inlier *
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|
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. _ |
Fraction of non-corrupted clients = 5 + ¢

1

Number of clients per round = m & holds w.h.p. it m 2 o2

Theorem [P., Kakade, Harchaoui]

Assume that F(w) is strongly convex, ||X.|| <1 and number of local steps « 2'. Let & denote
the event that at least 1/2 + ¢/2 non-corrupted devices are chosen in each round.

Then, RFA with e-approximate GM satisfies

lwo — w*||* 1 t €’
= [”Wr—W*Hz\%] S > | > do>— FQIQ2

Optimization error Heterogeneity Error

Statistical error GM Approx. Error
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Reducing RFA's communication

One round of RFA = 3-5 rounds of communication (Weiszfeld)

Convergence of
Weiszfeld’s algorithm

1E-05
Does 1 round of communication give robustness? .
2 1E-08
(O
£
_ 1 2, Pw, 9 1E-11
ﬁi — { = =
max{ [|w,]],. v} Y B 3
1E-14
1 2 3 4

Iteration
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Does 1 round of communication give robustness? Yes!

EMNIST Linear (Data)
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Fast and differentiable geometric median

import torch
from geom_median.torch import compute_geometric_median # PyTorch API
# from geom_median.numpy import compute_geometric_median # NumPy API

points = [torch.rand(d) for _ in range(n)] # list of n tensors of shape (d,)

# The shape of each tensor is the same and can be arbitrary (not necessarily 1-dimensional)
weights = torch.rand(n) # non-negative weights of shape (n,)

out = compute_geometric_median(points, weights)

# Access the median via "out.median , which has the same shape as the points, i.e., (d,)

Install: pip install geom-median

Documentation: github.com/krishnap25/geom-median

SCAN ME
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http://github.com/krishnap25/geom_median

Part 3: Model personalization for
federated learning

[TSP 22, ICML "22]
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Two regimes

o
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min —ZF-W | — [F [ : ]
veri  n & (W) where F(w) . SW3 2)
]—

loss on client i



Option 1: Train a separate model per client (no collaboration)

Objective: minFy(w,)

W,

Privacy Best possible

Performance | Poor
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Option 2: The model has a global component and a per-client
component

Shared Params u <4 Personal Paramsv. = Full model w, = (u, v;)

. | <
Objective: min —ZFi(u, V)
v, N i1

u,vl,..., .

2
Example: Fiu,v) = Eyy., (¢g(x; 1)+ (X : v;) — Y)
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Option 2: The model has a global component and a per-client
component

Shared Params u <4 Personal Paramsv. = Full model w, = (u, v;)

. | <
Objective: min —ZFi(u, V)
v, N i1

u,vl,..., .

data and personal
Privacy Yes params on client

Performance
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Option 2: The model has a global component and a per-client
component

Shared Params u <4 Personal Paramsv. = Full model w, = (u, v;)

. | <
Objective: min —ZFi(u, V)
v, N i1

u,vl,..., .

data and personal
Privacy Yes params on client

Performance Yes
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Personalization Architectures

Pred.

f
f

()

Input Input

Pred. Pred.

f

2
F(u,v) = Ey vy (gbg(X; 1)+ X v) — Y)

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Personalization Architectures

Pred. Pr d.

4 1
4 ¢

Arivazhagan et al. (2019) i (201
Collins et al. (2021) lang et al. (2019)

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Personalization Architectures

Input

Personalized
Adapters

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Optimization

Alternating update

e Server samples m clients and

broadcast global model u vim = vy Vil u, v)

ant
al
“““
st
at®

+ — | +
e Local updates on client i: ;= u—yV,biu, v

(u™,v") = LocalUpdate (u, v,

> G
e Aggregate updates to global Simultaneous update

part of the model:

1
u+=—2ul.+
m -

l

Vi+ — Vi~ vaFi(ua Vi)

ul.+ =u—yV, F(u,v)
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Theorem [P., Malik, Mohamed,

Rabbat, Sanjabi, Xiao] Alternating update

For smooth, nonconvex functions, we have v =v, —yV Fu,v))
the rates:

o2 ' =u—yV,Fu,v")

Alternating update: 7
t

o2 Simultaneous update
Simultaneous update: —

t
\/_ Vl-_l_ — Vl — }/VVFI(M’ Vl)

where 67 < ¢; under typical scenarios
" =u—yV,Fu,v)

Experimentally, small but consistent trend of alternating > simultaneous
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Experiments

> Shall we gotothe ® S%S ‘|||‘| hello

N a | ap | Gl O ;o
Next word prediction Speech recognition :%ﬂ tection
75.6 16 48
75.3 15.5 42
75 15 36
74.7 14.5 30 -
Input Output Adapter Input Output Adapter Input Output Adapter

y-axis shows error: lower is better
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Recall: robust aggregation experiments
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Improving robust aggregation with personalization

Personal

Input

0.3pp gap
at zero

corruption

Test Accuracy
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o (baseline)
®
0 0.05 0.1 0.15 0.2

Corruption Level

106



Summary



Count

Part 1. Heterogeneity-aware objectives for federated learning

Heterogeneity —
large tail errors

Error
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Part 1. Heterogeneity-aware objectives for federated learning

min S( (F,w), -, F,(w)) )

w

Se(Z2) = E[Z]Z > Q(Z)]
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Part 1: Heterogeneity-aware objectives for federated learning

Our approach reduces
tail error

ours

(v Usual

Misclassification Error
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Part 2: Robust aggregation for federated learning

Arithmetic mean =
not robust to
poisoned updates

o % -
:’,’,;” f-—-.‘z‘\-
& Server }
§ 5 }
i\ Y .

>
-

Data Model
poisoning poisoning
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Part 2: Robust aggregation for federated learning

GM = arg min Z 1z — wil»
1

<

outliers

QQQ
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Part 2: Robust aggregation for federated learning

Our approach gives
greater robustness

@® Ours Usual

0.65 ;
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Part 3: Model personalization for federated learning

Heterogeneity &
robustness at odds

® Robust Usual

0.65
>0.64
O
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O
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Part 3: Model personalization for federated learning
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Part 3: Model personalization for federated learning

Can tailor to heterogeneity
& retain robustness

@ Robust Usual
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©
5 0.69 \
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Perspectives and conclusion
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The small data problem

Sentl40 dataset statistics

® Per-client evaluations are not reliable

® Personalization can overfit
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%o
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i
Data per client

10°

A Accuracy

Does personalization
improve per-client accuracy?

| Pers. helps|
A

[Pers. hurts}
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Data per client
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Understanding heterogeneity

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning works.
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Understanding heterogeneity

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning works.

Quantify heterogeneity:

Measure gaps between
distributions: MAUVE

[P., Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. NeurIPS (2021),
Liu, P., Welleck, Oh, Choi, Harchaoui. NeurIPS (2021)]
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Understanding heterogeneity

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning works.

Quantify heterogeneity: Statistical assumptions under which
heterogeneity is benign?

Measure gaps between

distributions: MAUVE What measures of heterogeneity impact
optimization?

[P., Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. NeurIPS (2021),
Liu, P., Welleck, Oh, Choi, Harchaoui. NeurIPS (2021)] Tension between heterogeneity and privacy
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