Our Contributions

1. **Theory**: Analysis of 2 popular optimization algos

2. **Extensive experiments**: text, vision, and speech settings

Personalized Federated Learning

Model on client $i = (u, v_i)$

$$\text{Objective: } \min_{u, v_1, \ldots, v_n} \frac{1}{n} \sum_{i=1}^{n} F_i(u, v_i)$$

- u: shared parameters
- v_i: personal parameters

Optimization Algorithms

1. Client sampling + model broadcast
2. Local updates
3. Aggregate updates

Theorem

For smooth, nonconvex functions and client sampling, we have the rates:

- **Alternating update**: $\frac{\sigma^2_{v_i}}{\sqrt{t}}$
- **Simultaneous update**: $\frac{\sigma^2_{u}}{\sqrt{t}}$

where $\sigma^2_{v_i} < \sigma^2_{u}$ under typical scenarios

Key technical challenge: Dependent random variables due to random sampling of clients

Methodology: virtual full participation

Experimentally, small but consistent trend of alternating > simultaneous

Best personalization architecture depends on nature of data heterogeneity

Personalization Architectures

- **Personalized output layer**
- **Personalized input layer**
- **Personalized adapters**

2. Experiments

- **Top-1 Error**
- **Word Error Rate**
- **Misclassification Error**

Choose your personalization architecture wisely!

Code

krishnap25
KrishnaPillutla
krishnap25.github.io

References

- Collins et al. ICML (2021)
- Singhal et al. NeurIPS (2021)
- Arivazhagan et al. (2019)
- Liang et al. (2019)