UNIVERSITY of WASHINGTON

- Training structured prediction models is a **non-smooth optimization** problem involving inference oracles.
- We break the non-smoothness barrier for fast optimization with smooth inference oracles and accelerated incremental algorithms

Structured prediction

Overview

Structured outputs: such as chain of tags in named entity recognition Spain's Nadal tops ATP ranking after French Open victory.

LOC PER \times ORG \times \times MISC MISC \times **Score function**: $\phi(\cdot, \cdot; w)$ measures compatibility of output y for input x through

$$\phi(x,y;w) = \begin{cases} \text{high if } y \text{ is a good labeling for } x \\ \text{low if } y \text{ is a poor labeling for } x \end{cases}$$

Inference: finding best output

$$y^*(x;w) \in \operatorname*{argmax}_{y \in \mathcal{Y}} \phi(x,y;w)$$

Given by combinatorial algorithms, e.g., dynamic programming, graph cut/matching

Training: Find optimal w for $\phi(\cdot, \cdot; w)$, s.t. inference $y^*(x; w)$ is correct Given a loss ℓ , use surrogate max-margin loss defined for input-output (x_i, y_i) as

$$f_i(w) = \max_{y' \in \mathcal{Y}} \psi_i(y'; w)$$

where $\psi_i(y'; w) = \phi(x_i, y'; w) + \ell(y_i, y') - \phi(x_i, y_i; w)$

Optimization problem is

$$\min_{w \in \mathbb{R}^d} \left[F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w) + \frac{\lambda}{2} \|w\|_2^2 \right]$$

where one obtains $v \in \partial f_i(w)$ by calling inference oracle

 $\operatorname{argmax} \psi_i(y',w)$

Smoothing

Composite objective: Rewrite $f_i = h \circ g_i$ where

$$h(z) = \max_{j \in \{1, \dots, |\mathcal{Y}|\}} z_j, \quad \text{and} \quad g_i(w) = \left(\psi_i(y', w)\right)_{y' \in \mathcal{Y}}$$

Smoothing: Smooth max function
$$h(z) = \max_{\Delta^{|\mathcal{Y}|}} \langle u, z
angle$$
 as

$$n_{\mu\omega}(z) = \max_{u \in \Delta^{|\mathcal{Y}|}} \left\{ \langle z, u \rangle - \mu \omega(u) \right\}$$

where $\Delta^{|\mathcal{Y}|}$ is the simplex, $\mu > 0$, and ω is strongly convex

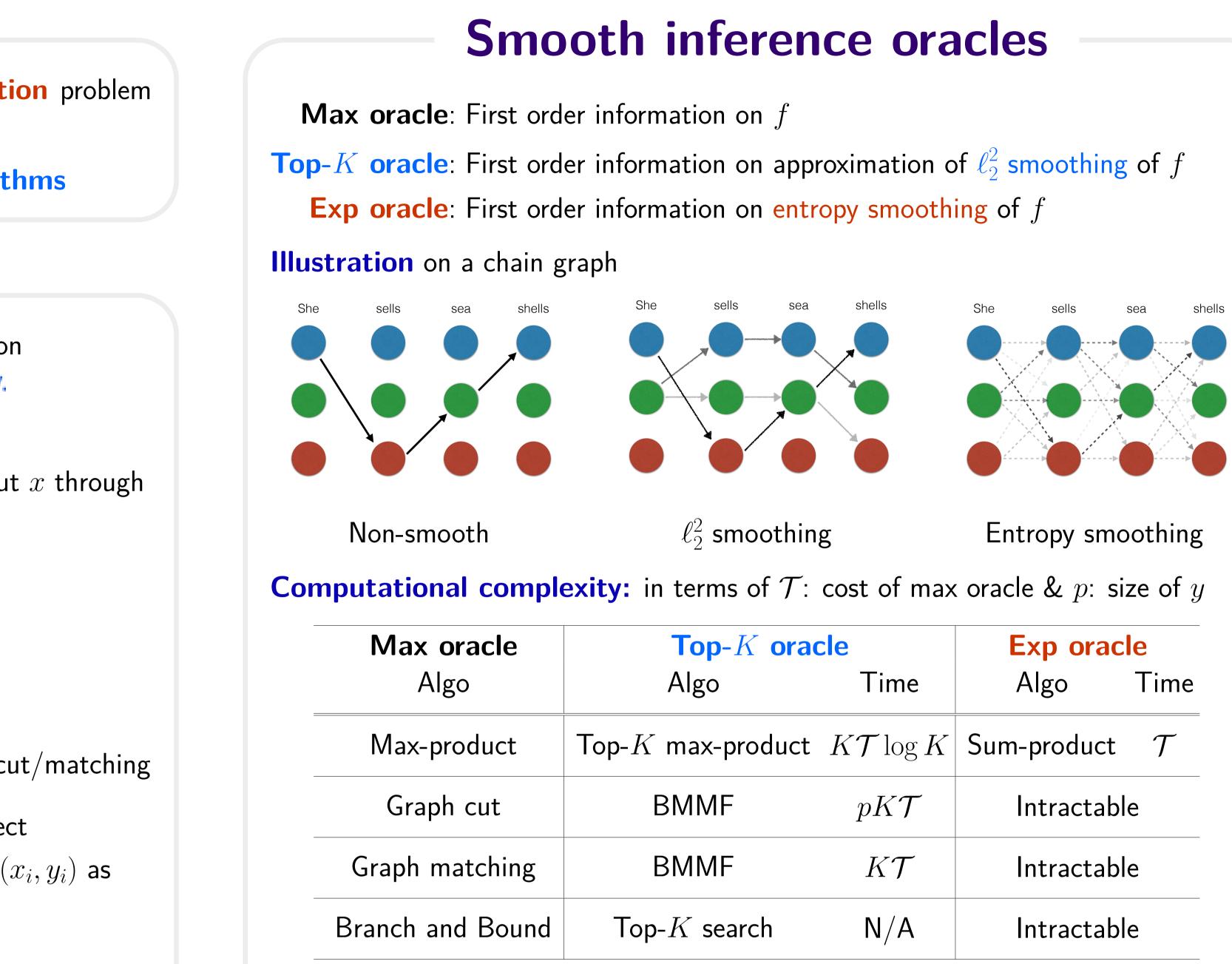
Smoothing type	$ $ $\omega(u)$	Smoothing computa
entropy	$H(u) = \langle u, \log u \rangle$	log-sum-exp
ℓ_2^2	$\ell_2^2(u) = \frac{1}{2} \ u\ _2^2$	projection on simple

Approximates f_i to $O(\mu)$ by smooth max-margin loss

$$f_{i,\mu\omega} = h_{\mu\omega} \circ g_i$$

A Smoother Way To Train Structured Prediction Models

Krishna Pillutla, Vincent Roulet, Sham Kakade, Zaid Harchaoui University of Washington



Here, BMMF is the Best Max-Marginal First algorithm (Yanover & Weiss 2003)

Convex structured prediction

Suppose score given by a predefined feature mapping $\Phi(x, y)$, such that

$$\phi(x,y;w) = \Phi(x,y)^\top$$

is linear in w and the training problem is convex Idea: Consider smoothed, regularized objectives

$$F_{\mu,\kappa}(w;z) = \frac{1}{n} \sum_{i=1}^{n} f_{i,\mu\omega}(w) + \frac{\lambda}{2} ||w|$$

centered on given z, solved by linearly convergent incremental method \mathcal{M} **Algorithm:** Starting from $w_0 = z_0$, at each step k, • Solve approximately using \mathcal{M}

$$w_{k+1} \approx \operatorname*{argmin}_{w} F_{\mu_k,\kappa_k}(u)$$

Acceleration by extrapolation

$$z_{k+1} = w_k + \beta_k (w_{k+1} -$$

Convergence: Guaranteed to get approximate solution $F(w_k) - F^* \leq \epsilon$ after

$$\mathbb{E}(N) = \begin{cases} O\left(n + \sqrt{\frac{n}{\lambda\epsilon}}\right), & \text{if fixed smooth} \\ O\left(n + \frac{1}{\lambda\epsilon}\right), & \text{if adaptive smooth} \end{cases}$$

ation

ex

	Exp oracle		
ime	Algo	Time	
$\log K$	Sum-product	\mathcal{T}	
$K\mathcal{T}$	Intractable		
$K\mathcal{T}$	Intractable		
N/A	Intractabl	e	

$\|w\|_2^2 + rac{\kappa}{2} \|w - z\|_2^2$

 $w; z_k)$

 $-w_k$)

othing iterations oothing

Deep structured prediction

Suppose score given by a learned feature mapping $\Phi(x, y; w_0)$, such that

is non-linear in $w = (w_0, w_1)$ and the training problem is non-convex Idea: Consider linear approximation of ψ_i around z as

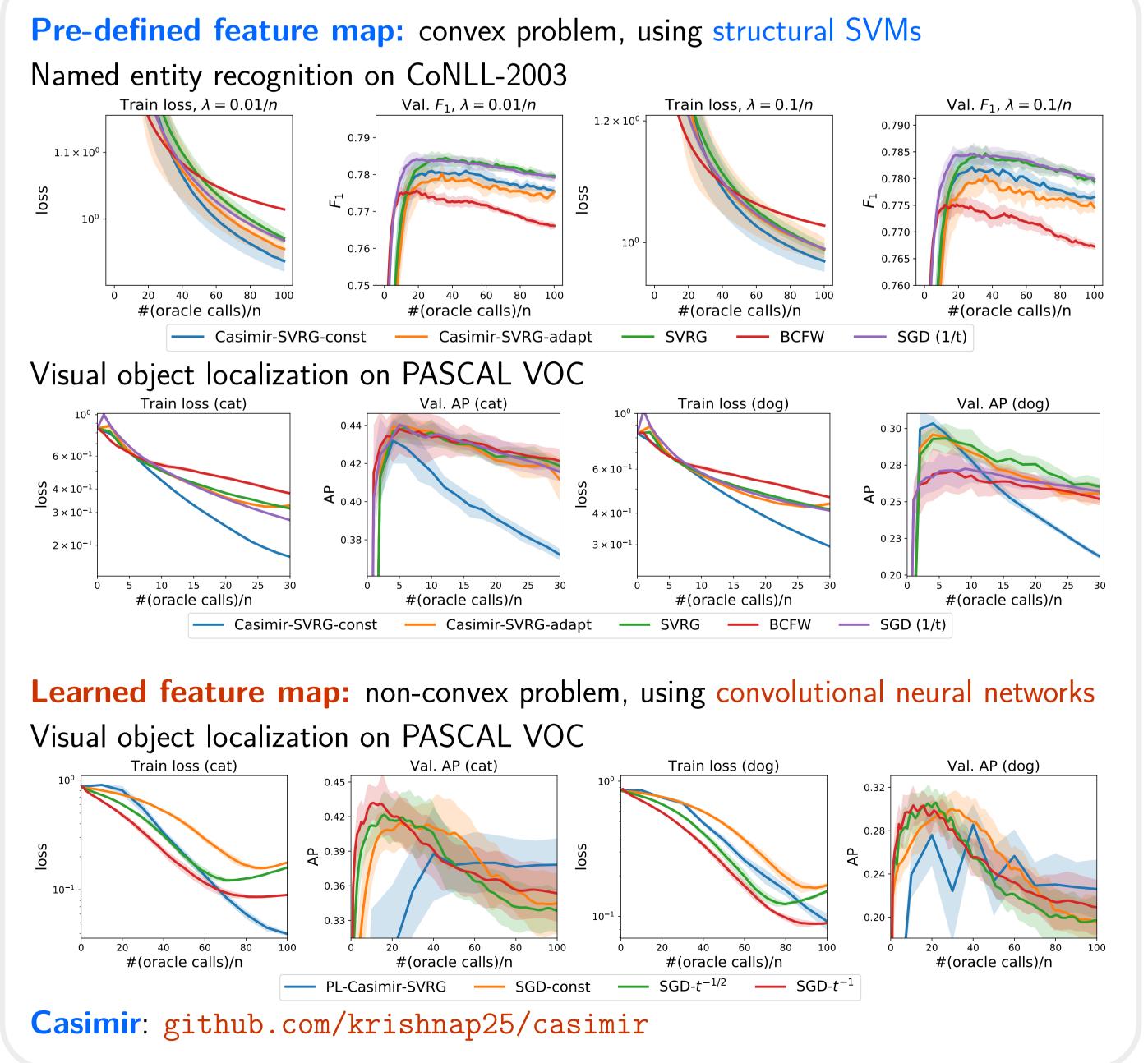
to get a regularized convex model

$$F_{\gamma}(w;z) = \frac{1}{n} \sum_{i=1}^{n} f_i(w;z) + \frac{\lambda}{2} \|w\|_2^2 + \frac{1}{2\gamma} \|w - z\|_2^2$$

Convergence: Guaranteed to get a ϵ -near stationary point after

 $\mathbb{E}(N) = O\left(\frac{n}{\epsilon^2} + \frac{\sqrt{n}}{\epsilon^3}\right)$

Numerical Experiments



References

Optimization **22**(2), 557-580 Theory to Practice', Journal of Machine Learning Research 18(212), 1–54.

- $\phi(x, y; w) = \Phi(x, y; w_0)^\top w_1$
- $\psi_i(y;w;z) = \psi_i(y;z) +
 abla_z \psi_i(y;z)(w-z)$ and $f_i(w;z) = \max_{w \in \mathcal{V}} \psi_i(y;w;z)$
- **Algorithm:** At each step k use convex solver to approximately solve at ϵ_k accuracy $w_{k+1} \approx \operatorname{argmin} F_{\gamma}(w; w_k)$

iterations

- Beck, A. and Teboulle, M. [2012], 'Smoothing and first order methods: A unified framework', SIAM Journal on
- Lin, H., Mairal, J. and Harchaoui, Z. [2018], 'Catalyst Acceleration for First-order Convex Optimization: from