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•Training structured prediction models is a non-smooth optimization problem
involving inference oracles.
•We break the non-smoothness barrier for fast optimization with

smooth inference oracles and accelerated incremental algorithms

Overview

Structured outputs: such as chain of tags in named entity recognition

Score function: φ(·, · ;w) measures compatibility of output y for input x through

φ(x, y;w) =

{
high if y is a good labeling for x
low if y is a poor labeling for x

Inference: finding best output

y∗(x;w) ∈ argmax
y∈Y

φ(x, y;w)

Given by combinatorial algorithms, e.g., dynamic programming, graph cut/matching

Training: Find optimal w for φ(·, · ;w), s.t. inference y∗(x;w) is correct
Given a loss `, use surrogate max-margin loss defined for input-output (xi, yi) as

fi(w) = max
y′∈Y

ψi(y
′;w)

where ψi(y
′;w) = φ(xi, y

′;w) + `(yi, y
′)− φ(xi, yi;w)

Optimization problem is

min
w∈Rd

[
F (w) =

1

n

n∑
i=1

fi(w) +
λ

2
‖w‖2

2

]
where one obtains v ∈ ∂fi(w) by calling inference oracle

argmax
y′∈Y

ψi(y
′, w)

Structured prediction

Composite objective: Rewrite fi = h ◦ gi where

h(z) = max
j∈{1,...,|Y|}

zj, and gi(w) =
(
ψi(y

′, w)
)
y′∈Y

Smoothing: Smooth max function h(z) = max∆|Y|〈u, z〉 as

hµω(z) = max
u∈∆|Y|

{〈z, u〉 − µω(u)}

where ∆|Y| is the simplex, µ > 0, and ω is strongly convex

Smoothing type ω(u) Smoothing computation
entropy H(u) = 〈u, log u〉 log-sum-exp
`2

2 `2
2(u) = 1

2‖u‖
2
2 projection on simplex

Approximates fi to O(µ) by smooth max-margin loss

fi,µω = hµω ◦ gi

Smoothing

Max oracle: First order information on f
Top-K oracle: First order information on approximation of `2

2 smoothing of f
Exp oracle: First order information on entropy smoothing of f

Illustration on a chain graph
She sells sea shells

Non-smooth

She sells sea shells

`2
2 smoothing

She sells sea shells

Entropy smoothing

Computational complexity: in terms of T : cost of max oracle & p: size of y

Max oracle Top-K oracle Exp oracle
Algo Algo Time Algo Time

Max-product Top-K max-product KT logK Sum-product T

Graph cut BMMF pKT Intractable

Graph matching BMMF KT Intractable

Branch and Bound Top-K search N/A Intractable

Here, BMMF is the Best Max-Marginal First algorithm (Yanover & Weiss 2003)

Smooth inference oracles

Suppose score given by a predefined feature mapping Φ(x, y), such that

φ(x, y;w) = Φ(x, y)>w

is linear in w and the training problem is convex
Idea: Consider smoothed, regularized objectives

Fµ,κ(w; z) =
1

n

n∑
i=1

fi,µω(w) +
λ

2
‖w‖2

2 +
κ

2
‖w − z‖2

2

centered on given z, solved by linearly convergent incremental method M
Algorithm: Starting from w0 = z0, at each step k,
• Solve approximately using M

wk+1 ≈ argmin
w

Fµk,κk(w; zk)

•Acceleration by extrapolation

zk+1 = wk + βk(wk+1 − wk)
Convergence: Guaranteed to get approximate solution F (wk)− F ∗ ≤ ε after

E(N) =

{
O
(
n +

√
n
λε

)
, if fixed smoothing

O
(
n + 1

λε

)
, if adaptive smoothing iterations

Convex structured prediction

Suppose score given by a learned feature mapping Φ(x, y;w0), such that

φ(x, y;w) = Φ(x, y;w0)
>w1

is non-linear in w = (w0, w1) and the training problem is non-convex
Idea: Consider linear approximation of ψi around z as

ψi(y;w; z) = ψi(y; z) +∇zψi(y; z)(w − z) and fi(w; z) = max
y∈Y

ψi(y;w; z)

to get a regularized convex model

Fγ(w; z) =
1

n

n∑
i=1

fi(w; z) +
λ

2
‖w‖2

2 +
1

2γ
‖w − z‖2

2

Algorithm: At each step k use convex solver to approximately solve at εk accuracy

wk+1 ≈ argmin
w

Fγ(w;wk)

Convergence: Guaranteed to get a ε-near stationary point after

E(N) = O

(
n

ε2
+

√
n

ε3

)
iterations

Deep structured prediction

Pre-defined feature map: convex problem, using structural SVMs
Named entity recognition on CoNLL-2003
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Visual object localization on PASCAL VOC
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Learned feature map: non-convex problem, using convolutional neural networks
Visual object localization on PASCAL VOC

0 20 40 60 80 100
#(oracle calls)/n

10 1

100

lo
ss

Train loss (cat)

0 20 40 60 80 100
#(oracle calls)/n

0.33

0.36

0.39

0.42

0.45

AP

Val. AP (cat)

0 20 40 60 80 100
#(oracle calls)/n

10 1

100

lo
ss

Train loss (dog)

0 20 40 60 80 100
#(oracle calls)/n

0.20

0.24

0.28

0.32

AP

Val. AP (dog)

PL-Casimir-SVRG SGD-const SGD-t 1/2 SGD-t 1

Casimir: github.com/krishnap25/casimir

Numerical Experiments
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