
Krishna Pillutla,

Yassine Laguel, Jérôme Malick, Zaid Harchaoui

March 14 @ INFORMS

Federated Learning with Heterogeneous Users:
A Superquantile Optimization Approach

IEEE CISS 2021. Long version under review.

Image Credit: Business Wire

Image Credit: Business Wire

Image Credit: Business Wire

Machine learning has moved from
the data centers to edge devices

Federated Learning
Challenges:

Communication efficiency

Privacy of user data

Statistical heterogeneity

Machine learning has moved from
the data centers to edge devices

Federated Learning
Challenges:

Communication efficiency

Privacy of user data

Statistical heterogeneity

Outline

•Background

• Distributional Robustness with Simplicial-FL

• Algorithm & Convergence Guarantees

• Numerical Results

Usual Approach to Federated Learning

min
w∈ℝd

1
n

n

∑
i=1

Fi(w)Objective

Clients

Data
Distribution

Fi(w) = #z∼pi [f(w; z)]where

loss on client i

1 2

⋯

n

p1 p2 pn

Statistical
heterogeneity

[McMahan et al. AISTATS (2017), Kairouz et al. (2021)]

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts
global model to sampled clients

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)]
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts
global model to sampled clients

Step 2 of 3: Clients perform some
local SGD steps on their local data

Server

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)]
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts
global model to sampled clients

Step 2 of 3: Clients perform some
local SGD steps on their local data

Server

Step 3 of 3: Aggregate client
updates securely

Server

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)]
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts
global model to sampled clients

Step 2 of 3: Clients perform some
local SGD steps on their local data

Server

Step 3 of 3: Aggregate client
updates securely

Server

Communication | Privacy

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)]
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

Outline

• Background

•Distributional Robustness with Simplicial-FL

• Algorithm & Convergence Guarantees

• Numerical Results

Global model is trained on average distribution
across clients (ERM)

Server

Server

Global model is deployed on individual clients

Server
Train-test
mismatch!

Global model is deployed on individual clients

Server

Error

C
ou

nt

Error

High
Error

Low
Error

Train-test
mismatch!

Global model is deployed on individual clients

Simplicial-FL

Error

C
ou

nt

Error

{

Our Approach: minimize the tail error directly!

Simplicial-FL
Simplicial-FL Objective:

min
w

&θ((F1(w), ⋯, Fn(w)))
Superquantile | Conditional Value at Risk

Trajectories of model parameters over time

Iteration !

M
od

el
pa

ra
m

.!

✓1 ✓2 ✓3 ✓4

w✓1

w✓2

w✓3

w✓4

w0

In iteration t of training

Server

+
Sec.Agg.

selected
devices

At test time

Server

test devices select their level of conformity ✓

Figure 5: Schematic summary of the �-FL framework. Left: The server maintains multiple models w✓j , one for each level of
conformity ✓j . Middle: During training, selected devices participate in training each model w✓j . Individual updates are securely
aggregated to update the server model. Right: Each test user is allowed to select their level of conformity ✓, and are served the
corresponding model w✓ .

4.1 �-FL: Framework, Optimization, and Convergence
The �-FL framework aims to supply each test device with a model appropriate to its conformity. Given a discretization
{✓1, . . . , ✓r} of (0, 1], �-FL maintains r models, one for each conformity level ✓j . The local data is not allowed to
leave a device due to privacy restrictions; hence, the conformity of a test device cannot be measured. Instead, we allow
each test device to tune their conformity. See the schematic in Figure 5 for an illustration.

To train a model for a conformity level ✓, we aim to do well on all distributions p⇡ with conf(p⇡) � ✓:

min
w2Rd


F✓(w) := max

⇡2P✓

F (w; p⇡) +
�

2
kwk2

�
,where, P✓ :=

�
⇡ 2 �n�1 : conf(p⇡) � ✓

. (5)

In contrast, the vanilla FL objective optimizes F (w; p↵), which is defined on the basis of the training distribution p↵. We
observe that �-FL is designed to be robust on all test devices with conformity ✓.

E[X]

Q✓(X)

S✓(Z) = E[Z |Z > Q✓(Z)]

Figure 6: (1�✓)-quantile Q✓(Z) and superquantile
S✓(Z) of a continuous r.v. Z.

The objective function of (5) brings the notion of superquantile
into play. For ✓ 2 (0, 1), the (1 � ✓)-superquantile S✓(Z) of a
continuous random variable Z is simply its tail expectation S✓(Z) =
E[Z|Z > Q✓(Z)], where Q✓(Z) is the (1 � ✓)-quantile of Z. The
superquantile, also known as the conditional value at risk (CVaR),
thus quantifies the worst-case or tail behavior of a random variable Z;
see Figure 6. More generally, the following definition is applicable
to both discrete and continuous random variables [120]: S✓(Z) =
min⌘2R

�
⌘ + 1

✓E [max{0, Z � ⌘}]

.
It turns out that the �-FL objective is the superquantile of a

discrete random variable with the per-device losses.

Property 6. Let Z(w) be a discrete random variable which takes the
value Fi(w) with probability ↵i for k = 1, . . . , N . Then, we have
that F✓(w) = S✓(Z(w)) + (�/2)kwk2.

Optimization Algorithm. We now propose a federated optimization algorithm for the �-FL objective (5). While
there could be many approaches to opimizing (5), we consider algorithms similar to FedAvg for their ability to avoid
communication bottlenecks and preserve the user privacy.

A practical federated learning algorithm cannot assume that all the devices are always available; it must be able to
work with a subset of devices in each round. So, we define the counterpart of the constraint set P✓ from (5) defined on a

13

m
ea

n

qu
an

til
e

ta
il m

ea
n

[Rockafellar & Uryasev (2002)]

Error

C
ou

nt

Error

{

Our Approach: minimize the tail error directly!

0

1

1

1Distributional robustness

Assuming a new test client with mixture distribution ,

Simplicial-FL objective is equivalent to:

pπ = ∑
i

πipi

min
w

max
π : πi≤(nθi)−1

#z∼pπ [f(w; z)]

Worst-case over a family of distributions

[Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

&θ(x1, ⋯, xn) = max {∑
i

πixi : πi ≥ 0, ∑
i

π1 = 1, πi ≤ pi/θ}
Dual expression

Outline

• Background

• Distributional Robustness with Simplicial-FL

•Algorithm & Convergence Guarantees

• Numerical Results

Optimization

Simplicial-FL Objective:

Fθ(w) = &θ((F1(w), ⋯, Fn(w)))
• Superquantile is nonsmooth

• Superquantile is nonlinear (unbiased stochastic
gradients not possible)

Challenges:

ServerServer

ERM Algorithm (FedAvg): Simplicial-FL Algorithm:

Step 1 of 3: Server samples clients
and broadcasts global model

m Step 1 of 3: Server samples clients
and broadcasts global model

m

min
w

&θ((F1(w), ⋯, Fn(w)))min
w

1
n

n

∑
i=1

Fi(w)

ERM Algorithm (FedAvg):

Step 2 of 3: Clients perform local
SGD steps on their local data

τ Step 2 of 3: Clients perform local
SGD steps on their local data

τ

Server Server

Simplicial-FL Algorithm:

min
w

&θ((F1(w), ⋯, Fn(w)))min
w

1
n

n

∑
i=1

Fi(w)

Step 3 of 3: Aggregate updates
contributed by tail clients only

Step 3 of 3: Aggregate updates
contributed by all clients

ERM Algorithm (FedAvg):

Server Server

Loss

C
ou

nt
Tail

Simplicial-FL Algorithm:

min
w

&θ((F1(w), ⋯, Fn(w)))min
w

1
n

n

∑
i=1

Fi(w)

π⋆ ∈ arg maxπ∈+θ ∑
i

πiFi(w)

Nonsmooth: Subdifferential from the chain rule

Convergence (Non-convex)

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) where

0

1

1

1

π⋆ ∈ arg maxπ∈+θ ∑
i

πiFi(w)

Nonsmooth: Subdifferential from the chain rule

Convergence (Non-convex)

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) where

Fθ(w) = #S : |S|=m [&θ((Fi(w) : i ∈ S))]

Nonlinear: We optimize a surrogate
S

0

1

1

1

Φ2L
θ (wt)

2
≤ Δ0LG2

t
+ (1 − τ)1/3(Δ0LG

t)
2/3

+ Δ0L
t

Suppose each is -smooth and -Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

Fi L G

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds
: #local update steps
: initial error

t
τ
Δ0

Φμ
θ(w) = inf

y {Fθ(y) + μ
2 ∥y − w∥2} Moreau envelope of | well defined for ⟵ Fθ μ > L

0

1

1

1
Nonsmooth: Consider the smoothing

Convergence (strongly convex)

Infimal convolution smoothing [Nesterov. Math. Prog. (2005), Beck & Teboulle. SIOPT (2012)]

Fν
θ(w) = max

π∈+θ {∑
i

πiFi(w) − ν∑
i

πi log πi}

strongly convex
neg. entropy

π⋆
ν = arg maxπ∈+θ {∑

i
πiFi(w) − ν∑

i
πi log πi}

∇Fθ(w) =
n

∑
i=1

[πν]⋆
i ∇Fi(w) where

0

1

1

1
Nonsmooth: Consider the smoothing

Convergence (strongly convex)

Infimal convolution smoothing [Nesterov. Math. Prog. (2005), Beck & Teboulle. SIOPT (2012)]

Fν
θ(w) = max

π∈+θ {∑
i

πiFi(w) − ν∑
i

πi log πi}

strongly convex
neg. entropy

π⋆
ν = arg maxπ∈+θ {∑

i
πiFi(w) − ν∑

i
πi log πi}

π⋆ = arg maxπ∈+θ {∑
i

πiFi(w)}Loss @ Rank i

πi

∇Fθ(w) =
n

∑
i=1

[πν]⋆
i ∇Fi(w) where

[Fθ(wt) − F⋆
θ] ≤ λΔ0 exp (− t

2κ3) + G2

λT
+ G2κ2

λT2

Suppose each is -smooth and -Lipschitz, and add a regularization .

Then, Simplicial-FL satisfies the convergence guarantee:

Fi L G
λ
2 ∥w∥2

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds
: #local update steps
: initial error

t
τ
Δ0

 is the condition numberκ = L/λ

Outline

• Background

• Distributional Robustness with Simplicial-FL

• Algorithm & Convergence Guarantees

•Numerical Results

Experiments on EMNIST

Objective Misclassification Error

Mean

90th
percentile

FedAvg

Simplicial-FL

θ = 0.8

θ = 0.5

θ = 0.1

Experiments on EMNIST
Misclassif. Error

7.50

15.00

22.50

30.00

90th Percentile Mean

Ours FedAvg
FedProx q-FFL

3.3%

• Simplicial-FL has the smallest 90th percentile error

• Simplicial-FL is competitive on the mean error

Histogram of errors

Misclassification Error

ERM

Ours

Distributionally robust learning in PyTorch

Install: pip install sqwash

Documentation: krishnap25.github.io/sqwash/

https://krishnap25.github.io/sqwash/

Papers
Federated Learning with Heterogeneous Devices: A Superquantile Optimization
Approach.
Krishna Pillutla*, Yassine Laguel*, Jérôme Malick, Zaid Harchaoui.
Under Review (arXiv 2112.09429)

A Superquantile Approach to Federated Learning with Heterogeneous Devices.
Yassine Laguel*, Krishna Pillutla*, Jérôme Malick, Zaid Harchaoui.
IEEE CISS (2021).

Superquantiles at Work : Machine Learning Applications and Efficient (Sub)gradient
Computation.
Yassine Laguel, Krishna Pillutla, Jérôme Malick, Zaid Harchaoui.
Set-Valued and Variational Analysis (2021).

Code for experiments: https://github.com/krishnap25/simplicial-fl

