Unleashing the Power of Randomization in Auditing Differentially Private ML

Krishna Pillutla, Galen Andrew, Peter Kairouz, H. Brendan McMahan, Alina Oprea, Sewoong Oh

Auditing DP: Standard Approach

Auditing: Empirically test whether the claimed DP guarantee is correct or tight

JE19, JUO20, NST+21,

Step 1: DP definition

For all neighboring datasets \(D_0, D_1 \) and outcomes \(R \):

\[
\mathbb{P}(\mathcal{A}(D_1) \in R) \leq e^\varepsilon \mathbb{P}(\mathcal{A}(D_0) \in R) + \delta
\]

\((1) \)

True positive rate False positive rate

Step 2: Binary hypothesis tests

Take \(D_0 = \) dataset, \(D_1 = D_0 \cup \{ \text{canary} \} \) and the test statistic as \(R = \{ \theta : \text{Loss(canary}; \theta) \leq \varepsilon \} \)

Take \(D_1 = \) dataset, \(D_0 = D_1 \cup \{ \text{canary} \} \) and the test statistic as \(R = \{ \theta : \text{Loss(canary}; \theta) \leq \varepsilon \} \)

Step 3: Bernoulli confidence intervals

Run \(n \) trials (each trial = one model training run)

\[
\text{TPR} \approx \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(D_i) \leq \varepsilon \Rightarrow \mathbb{V}_{\text{variance}}(\text{TPR}) \approx \frac{\text{variance}}{n} \leq \frac{\varepsilon}{\sqrt{n}} \]

\((2) \)

Experiments

Auditing a Gaussian mechanism

Setup:
- Sum query
- Canaries: uniform over unit sphere
- Test: inner product

Result:
- 4-16 \(\times \) gain in sample complexity

Analysis:
- Empirical canary correlations are small, so LiDP auditing gives large wins.

Practical Guidance:
- Multiple canaries should be "orthogonal"

Bias-Variance Tradeoff of LiDP:

Variance reduction of LiDP (width of the confidence interval)
Net benefit of LiDP (balancing bias and variance)
Bias of LiDP (no higher-order estimators)

Experiments: FashionMNIST + MLP model

Gain in sample complexity from LiDP auditing

Training ~200 models instead of 1000

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>Data poison (JUO20)</th>
<th>Gradient poison (SKG+23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>