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' Auditing DP: Standard Approach

JE19,
Auditing: Empirically test whether the JUO20,
claimed DP guarantee is correct or tight NST+21,

Step 1: DP definition

For all neighboring datasets D,, D, and outcomes R:

P(A(Dy) € R) L e*P(A(Dy) € R)+ 0 (1)
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Step 2: Binary hypothesis tests

Take D, = dataset, D, = D,u {canary} and
the test statistic as R = {0 : Loss(canary ;) < r}
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Step 3: Bernoulli confidence intervals

Run » trials (each trial = one model training run)
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Problem: the 1/4/n term requires n large

How do we solve this? Add multiple canaries
Key: Avoid group privacy with randomization
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Auditing Lifted DP

Step 1: Lifted DP (LiDP) definition

Def: &/ is (¢,6)-LiDP if for all random (D,,D,,R) ~ &
independent of & s.t. D,, D, are neighboring, we have

P(A(D,) € R) < e P(ADy) € R) + 6 (3)

Theorem: « is (¢,6)-DP < & is (¢,6)-LIiDP

Consequence: We can have random canaries!

Step 2: Randomized hypothesis tests

Test for k vs. k— 1 canaries that are drawn i.i.d. from P
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ci,...,c;, are i.i.d. test canaries

Consequence: Get k statistics from each trial

Step 3: Adaptive higher-order confidence

Challenge: the statistics are correlated (not i.i.d.)

We derive novel CIs using empirical correlations!

s®

“‘
®

TPR - TPR ;| < l(corr. | :\/4th moment) (4)
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Experiments

Auditing a Gaussian mechanism
e=20, k=+/n, d=10°
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Setup.:
® Sum query

® Canaries: uniform
over unit sphere

® Test: inner product

Result:

4-16 x gain in
sample complexity
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e =20, n =409, d =10

Analysis:

Empirical canary correlations 10 1
are small, so LiDP auditing | ’ rate
gives large wins.
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Practical Guidance: { Empirical

Multiple canaries should be | Correlation
“orthogonal” 10"
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Bias-Variance Tradeoff of LIDP:
e = 4.0, n =4096, d = 10*
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Experiments: FashionMNIST + MLP model

Gain in sample complexity from LiDP auditing

Train ~200 models
instead of 1000

Data poison [JUO20]
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