Federated Learning with Partial Model Personalization

ICML 2022

Krishna Pillutla
Kshitiz Malik
Abdelrahman Mohamed
Mike Rabbat
Maziar Sanjabi
Lin Xiao
Personalized federated learning

Server

\[\sum \]

Model on client \(i = (u, v_i) \)

Objective:

\[
\min_{u, v_1, \ldots, v_n} \frac{1}{n} \sum_{i=1}^{n} F_i(u, v_i)
\]

\(u \): shared parameters

\(v_i \): personal parameters
Our contributions

1. **Theory**: Analysis of 2 popular optimization algs

2. **Extensive experiments**: text, vision, and speech settings

Objective: \[
\min_{u,v_1,\ldots,v_n} \frac{1}{n} \sum_{i=1}^{n} F_i(u,v_i)
\]

\(u\): shared parameters

\(v_i\): personal parameters

Code:
Personalization architectures

Personalization architectures

![Diagram of personalization architectures]

- **Personalized output layer**
 - Pred.
 - Personal
 - Shared
 - Input

- **Personalized input layer**
 - Pred.
 - Shared
 - Personal
 - Input

- **Combined predictions**
 - Pred.
 - Shared
 - Personal
 - Input

- **Personalized adapters**
 - Pred.
 - Output
 - Adapter
 - Norm+MLP
 - Adapter
 - Norm+Attn
 - Embed
 -

Arivazhagan et al. (2019)
Collins et al. ICML (2021)

Liang et al. (2019)

Agarwal et al. (2020)

Personalization architectures

- **Personalized output layer**
- **Personalized input layer**
- **Combined predictions**
- **Personalized adapters**

$$F(u, v_i) = E_{i(X,Y) - p} \left(\phi_k(X; u) + \phi_l(X; v) - Y \right)^2$$

Liang et al. (2019)

Arivazhagan et al. (2019)

Collins et al. ICML (2021)

Agarwal et al. (2020)
Personalization architectures

Personalized output layer
- Output
- Personal
- Shared
- Input

Arivazhagan et al. (2019)
Collins et al. ICML (2021)

Personalized input layer
- Input
- Pred.
- Personal
- Shared

Liang et al. (2019)

Combined predictions
- Input
- Pred.
- Personal
- Shared

F(u, v_i) = E_{i;X,Y \sim p}(\phi_g(X; u) + \phi_l(X; v_i) - Y)^2

Agarwal et al. (2020)

Personalized adapters
- Input
- Output
- Adapter
- Norm+MLP
- Adapter
- Norm+Attn
- Embed
- × N

Optimization

- Server samples m clients and broadcast global model u

- **Local updates** on client i:
 $(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)$

- Aggregate updates to global part of the model:

 $u^+ = \frac{1}{m} \sum_i u_i^+$

Alternating update

\[
\begin{align*}
v_i^+ &= v_i - \gamma \nabla_v F_i(u, v_i) \\
u_i^+ &= u - \gamma \nabla_u F_i(u, v_i^+)
\end{align*}
\]

Simultaneous update

\[
\begin{align*}
v_i^+ &= v_i - \gamma \nabla_v F_i(u, v_i) \\
u_i^+ &= u - \gamma \nabla_u F_i(u, v_i)
\end{align*}
\]

Liang et al. (2019)
Arivazhagan et al. (2019)
Collins et al. ICML (2021)
Singhal et al. NeurIPS (2021)
Optimization

- Server samples m clients and broadcast global model u

- **Local updates** on client i: $(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)$

- Aggregate updates to global part of the model:
 \[
 u^+ = \frac{1}{m} \sum_i u_i^+
 \]

Alternating update

- $v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$
- $u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$

Simultaneous update

- $v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$
- $u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$

Liang et al. (2019)
Arivazhagan et al. (2019)
Collins et al. ICML (2021)
Singhal et al. NeurIPS (2021)
Optimization

- Server samples m clients and broadcast global model u

- **Local updates** on client i:
 \[(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)\]

- Aggregate updates to global part of the model:
 \[u^+ = \frac{1}{m} \sum_i u_i^+\]

Alternating update

- \[v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)\]
- \[u_i^+ = u - \gamma \nabla_u F_i(u, v_i^+)\]

Simultaneous update

- \[v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)\]
- \[u_i^+ = u - \gamma \nabla_u F_i(u, v_i)\]

References:
- Liang et al. (2019)
- Arivazhagan et al. (2019)
- Collins et al. ICML (2021)
- Singhal et al. NeurIPS (2021)
Contribution 1: Theory

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

For smooth, nonconvex functions and client sampling, we have the rates:

Alternating update: \(\frac{\sigma^2}{\sqrt{t}} \)

Simultaneous update: \(\frac{\sigma^2}{\sqrt{t}} \)

where \(\sigma^2_1 < \sigma^2_2 \) under typical scenarios

Experimentally, small but consistent trend of alternating > simultaneous

Alternating update

\[v_i^+ = v_i - \gamma \nabla v F_i(u, v_i) \]

\[u_i^+ = u_i - \gamma \nabla u F_i(u, v_i^+) \]

Simultaneous update

\[v_i^+ = v_i - \gamma \nabla v F_i(u, v_i) \]

\[u_i^+ = u_i - \gamma \nabla u F_i(u, v_i) \]
Contribution 1: Theory

Key technical challenge: Dependent random variables in alternating update algorithm due to random sampling of clients

Methodology: Developed technique of virtual full participation
Contribution 2: Experiments

Next word prediction

Speech recognition

Landmark detection

y-axis shows error: lower is better
Contribution 2: Experiments

Next word prediction

Speech recognition

Landmark detection

\[\text{y-axis shows error: lower is better} \]
Contribution 2: Experiments

Next word prediction

Speech recognition

Landmark detection

y-axis shows error: lower is better
Contribution 2: Experiments

Takeaway: Best personalization architecture depends on the task’s statistical heterogeneity

y-axis shows error: lower is better
Federated Learning with Partial Model Personalization

Code: https://github.com/krishnap25/FL_partial_personalization