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Abstract—Gauss-Newton methods and their stochastic version
have been widely used in machine learning and signal pro-
cessing. Their nonsmooth counterparts, modified Gauss-Newton
or prox-linear algorithms, can lead to contrasting outcomes
when compared to gradient descent in large-scale statistical
settings. We explore the contrasting performance of these two
classes of algorithms in theory on a stylized statistical example,
and experimentally on learning problems including structured
prediction. In theory, we delineate the regime where the quadratic
convergence of the modified Gauss-Newton method is active under
statistical noise. In the experiments, we underline the versatility
of stochastic (sub)-gradient descent to minimize such nonsmooth
composite objectives.

Index Terms—Gauss-Newton, Nonsmooth, Composite problems

I. INTRODUCTION

Arising from the literature on non-linear least squares [1],
[2], the Gauss-Newton method was proposed to tackle generic
compositional problems of the form minw∈Rd f(ϕ(w)) by
linearizing the inner function ϕ around the current iterate and
solving the resulting subproblem [3].

The Gauss-Newton method and its variants such as the
Levenberg-Marquardt method [4], [5] have been applied
successfully in phase retrieval [6], [7], [8], nonlinear control [9],
[10], and non-negative matrix factorization [11]. Modern
machine learning problems such as deep learning possess a
similar compositional structure, which makes Gauss-Newton-
like algorithms potential good candidates [12], [13], [14].
However, in such problems, we are often interested in the
generalization performance on unseen data. It is unclear whether
the additional cost of solving the subproblems can be amortized
by the superior efficiency of Gauss-Newton-like algorithms.

In this paper, we investigate whether modified Gauss-
Newton methods or prox-linear algorithms with incremental
gradient inner loops are superior to direct stochastic subgradient
algorithms for nonsmooth problems with a compositional
objective and a finite-sum structure. We present a statistical
example and quantify when the quadratic convergence of
the exact prox-linear method is not active before hitting the
noise level of the problem. We present synthetic experiments
that delineate the regimes where the stochastic subgradient
methods outperform the prox-linear method. We also compare
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Fig. 1: The modified Gauss-Newton (a.k.a. the prox-linear) method
builds a convex model of the objective F (w) around wt and finds
wt+1 by minimizing this model.

these algorithms on a structured prediction problem with
a convolutional neural network (end-to-end path planning).
Experimental results suggest that modified Gauss-Newton
methods or prox-linear algorithms offer marginal gains in
some settings, and confirm the versatility of direct stochastic
subgradient algorithms to tackle complex learning problems.
All the proofs are given in the appendix.

II. PROBLEM SETTING AND OPTIMIZATION ALGORITHMS

Given ϕi : Rd → Rk smooth, and f : Rk → R convex and
Lipschitz, we consider finite-sum compositional minimization
problems of the form

F (w) :=
1

n

n∑
i=1

f(ϕi(w)) (1)

For multi-output regression of input xi ∈ Rp to output
yi ∈ Rk, we take ϕi(w) = φ(xi;w)− yi as the residual of a
predictor φ(· ;w). We take a nonsmooth loss function such as
f(u) = ∥u∥2 (ℓ2 loss without the square), which is applicable
in robust regression problems. A more sophisticated example is
structured prediction, the prediction of a combinatorial object
such as a sequence. Here, ϕi(w) is a score for each structured
output, and f is the structural hinge loss [15], [16], [17],
computed efficiently using dynamic programming [18]. For
applications, see e.g. [19], [20], [21].

We compare two families of optimization algorithms, which
are stochastic and nonsmooth versions of gradient descent
and the Gauss-Newton algorithm. The stochastic subgradient
method (abbreviated SGD) is the nonsmooth and stochastic
analogue of gradient descent. In each iteration t, SGD samples
an element it from the available n uniformly at random and
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Fig. 2: A numerical comparison of gradient descent and the exact prox-
linear method on a nonsmooth and nonconvex function F : R2 → R.
The prox-linear method builds a more accurate model of the objective
function, especially around points of nonsmoothness.

takes a step in the direction of its subgradient vt ∈ ∂(f ◦
ϕit)(wt):

wt+1 = wt − γvt , (2)

where γ is the learning rate and ∂(f ◦ ϕi) denotes the regular
(or Fréchet) subdifferential. For (1), it takes a simple form
∂(f ◦ ϕi)(w) = ∇ϕi(w)⊤∂f

(
ϕi(w)

)
, where ∂f refers to the

convex subdifferential of f and ∇ϕi refers to the Jacobian
of ϕi [22, Theorem 10.6]. In deep learning, the subgradient
v ∈ ∂(f ◦ ϕi(w)) requires the computation of the vector-
Jacobian product, readily given by reverse-mode automatic
differentiation implemented in software such as PyTorch.

The modified Gauss-Newton method [5], also known as
the prox-linear method [3], [23], [12], applied to (1) proceeds
by finding approximate solutions of a partially linearized
approximation of the objective with an additional regularization
term. It computes iterates of the form

wt+1 = argmin
w∈Rd

{
1

n

n∑
i=1

f(ϕi(wt) +∇ϕi(wt)
⊤(w − wt))

+
κ

2
∥w − wt∥22

}
(3)

As explained in Fig. 1, the prox-linear method creates a
convex model of F around wt by linearizing the inner function
as ϕi(w) ≈ ϕi(wt) + ∇ϕi(wt)

⊤(w − wt). The next iterate
(3) is the minimizer of the model plus a proximal term.
Compare this with the subgradient method, where the model is
F (wt) + v⊤(w − wt), where v ∈ ∂F (wt); see also Fig. 2. In
practice, it might not be possible to solve the subproblem (3)
exactly. We consider using accelerated incremental algorithms
such as Casimir-SVRG [24]. Computationally, each iteration
of the inner loop requires having access to Jacobian-vector
product ∇ϕi(w)v for some vector v which are most efficiently
computed via forward-mode automatic differentiation.

III. TRADEOFFS OF THE PROX-LINEAR METHOD IN
STATISTICAL SETTINGS

Gauss-Newton methods and their variants are known to
enjoy quadratic local convergence, provided the subproblems
are solved exactly. In statistical learning problems, it is not
meaningful to optimize beyond the noise level of the problem.
If the noise level of the problem is large, the quadratic
convergence may not be useful. We formalize this in a stylized
example.

We start with a typical quadratic local convergence result
of the prox-linear method in the overparameterized regime
d > nk. In particular, we assume that the minimal sin-
gular value σmin(∇ϕ(w)⊤) of the transposed Jacobian of
ϕ = (ϕ1; · · · ;ϕn) is strictly positive, or that the Jacobian
∇ϕ is surjective.

Proposition 1. Consider problem (1) where f is ℓ-Lipschitz,
convex, and µ-sharp for some µ > 0 (see long version
for a precise definition). Suppose the function ϕ(w) =
(ϕ1(w); . . . ;ϕn(w)) ∈ Rnk is L-smooth and satisfies
σmin(∇ϕ(w)⊤) ≥ ν > 0 for any w ∈ Rd. Then, the sequence
(wt)

∞
t=0 produced by the exact prox-linear algorithm (3) with

κ = Lℓ starting from arbitrary w0 ∈ Rd converges globally to
its minimum value F (wt) → F ∗ := minF . Further, as soon
as an iterate wj satisfies F (wj)− F ∗ ≤ (µν)2/(Lℓn3/2), the
subsequence (wt)

∞
t=j converges quadratically as

F (wt+1)− F ∗ ≤ Lℓn3/2

2(µν)2
(
F (wt)− F ∗)2 . (4)

Statistical Setting. Suppose we are given n input-output pairs
(xi, yi) where yi = φ(xi;w)+ξi is given from a parameterized
nonlinear function φ( · ;w) : Rp → Rk with parameters w ∈
Rd, and ξi ∼ N (0, σ2Ik) is i.i.d. Gaussian noise. We wish
to recover the true signal w’s predictions, i.e. find ŵ such
that φ(xi; ŵ) ≈ φ(xi;w) for each i. We instantiate (1) with
ϕi(w) = φ(xi;w) − yi and f = ∥ · ∥2 in order to solve this
problem. This is different from the related choice of f = ∥·∥22,
which corresponds to non-linear least squares regression in the
fixed design setting.

We consider early stopping of the optimization once we
reach the noise level. That is, we stop the optimization once
the objective value F (wt) in iteration t falls below F (w). In
this setting, we now show that the prox-linear method can
enjoy quadratic local convergence only when the noise level σ
of the problem is small enough. To this end, we make a general
assumption on the radius R of local quadratic convergence;
Prop. 1 provides a concrete lower bound on R.

Proposition 2. Fix some δ ∈ (0, 1) and consider problem (1)
with ϕi and f as defined above with the output dimension
k ≥ 4 log(2n/δ). Suppose that (i) w 7→ φ(xi;w) is L-smooth
for each i ∈ [n], and, (ii) φ can interpolate the data so that
φ(xi;w

∗) = yi for each i ∈ [n] for some w∗ ∈ Rd. Suppose
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Fig. 3: Synthetic multi-output regression: stochastic subgradient
method (SGD) vs. the prox-linear with incremental gradient inner-loop
(PLI) while varying the number of samples n and the signal-to-noise
ratio (SNR). We highlight the method which finds the smallest test
ℓ2 loss.

there exists a scalar R > 0 and an integer j such that for all
integers t ≥ j, we have

F (wt)−minF ≤ R , and

F (wt+1)−minF ≤ 1

2R

(
F (wt)−minF

)2
.

(5)

Then, we have the following with probability at least 1 − δ.
If the noise level satisfies σ > Õ

(
R/(k1/2 − k1/4)

)
, then the

first iterate wt enjoying quadratic convergence (5) satisfies
F (wt) < F (w). Conversely, if the noise level satisfies σ <
Õ
(
R/(k1/2+k1/4)

)
, then the first iterate wt enjoying quadratic

convergence (5) satisfies F (wt) > F (w).

Prop. 2 shows that the potential advantages of the prox-linear
method in terms of local quadratic convergence may not be
relevant in some statistical problems with high noise.

IV. EXPERIMENTS

We consider 3 setups: multi-output regression, structured pre-
diction, and solving non-linear equations. All hyper-parameters
are tuned by grid search.

Synthetic Multi-output Regression. We consider a regression
task of predicting output y ∈ Rk from input x ∈ Rp, given a
synthetic dataset {(xi, yi)}ni=1 of input-output pairs of varying
size n where p = 128 and k = 10. We sample each input as
xi ∼ N (0,Σ), where the covariance Σ exhibits a 1/j2 spectral
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Fig. 4: Planning example. Left: a map and its best path in (solid)
white. Right: corresponding rewards.

decay. The output is generated as yi = φ⋆(xi;w
⋆)+σξi, where

φ⋆(· ;w⋆) is a multilayer perceptron (MLP) with one hidden
layer of width 256, and standard normal weights w⋆, while ξi is
sampled from a standard Laplace distribution in Rk and σ is the
noise scale, which we vary. We define the signal-to-noise ratio
(SNR) of a problem instance as SNR = ∥w⋆∥2/σ2. Finally,
the loss and evaluation measure we use is the nonsmooth ℓ2
loss.

We vary the number of samples n and the SNR (equivalently,
σ) and compare the two methods introduced in Sec. II: the
stochastic subgradient method (SGD) and prox-linear with
incremental gradient inner loop (PLI). We tune hyperparameters
to achieve the smallest loss on a held-out validation dataset
in 100 epochs and report the test loss. We run the experiment
in two regimes: (a) under-parameterized, where the model
is a MLP with 64 hidden units, and, (b) over-parameterized,
where the MLP has 512 hidden units, compared to the 256
hidden units of φ⋆(· ;w⋆). We see in Fig. 3 that SGD tends to
outperform PLI overall, especially in the high SNR regime.
In the low SNR regime, PLI and SGD are mostly tied in their
performance, exhibiting very similar test errors.

Path Planning as Structured Prediction. Among all mono-
tonic paths from the top left corner to the bottom right corner
of a grid, our task is to find the path that maximizes the
rewards collected on each tile it passes through. Specifically,
we consider images generated in the game Warcraft II [25];
see Fig. 4. Each tile corresponds to some terrain such as water,
desert, grass, or rock with a fixed reward (grass > desert
> water > rock). As long as the rewards can directly be
observed, this task can be solved by dynamic programming. In
this experiment, the rewards are not directly observed; they are
computed as the transformation of the raw pixels of each tile by
a convolutional neural network. Our goal is to learn the reward
function from a dataset of random maps with their associated
optimal path. Given a map x with associated best path y, denote
by ψ(x, y, y′;w) the score of a path y′ parameterized by w.
Our objective is

min
w∈Rd

1

n

n∑
i=1

max
y′∈Y

ψ(xi, yi, y
′;w) +

µ

2
∥w∥22, (6)

where (xi)
n
i=1 are the maps, (yi)ni=1 are their best paths, and

µ ≥ 0 is a regularization parameter.
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Fig. 5: Planning as a structured prediction problem. We plot the
Hamming loss, which measures how good the predicted path is to
the actual shortest path on unseen grids. From left to right: µ =
1/n, 10−2/n, 10−4/n
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Fig. 6: Solving stochastic nonlinear equations. We plot the
“test loss”, which is the objective value on a separate testing
set. Left: ijccn1 dataset. Right: covtype dataset

The methods we consider are (i) stochastic subgradient
methods [26], denoted SGD, with various learning rates
strategies γt = γ0, γt = γ0/

√
t and γt = γ0/t, (ii) a variance-

reduced stochastic sub-gradient method, denoted SVRG [27],
(iii) an accelerated algorithm on the Moreau-envelope of the
objective as described in [24], denoted Casimir-SVRG, (iv) a
prox-linear algorithm with incremental inner loop as described
in (3), denoted PLI. For SGD, subgradients of (6) can be
computed by estimating the highest reward path y′ associated
with a given sample (xi, yi) for a feature map parameterized by
the current parameters w. Both Casimir-SVRG and PL require
smoothing the objective (6). We take inf-convolution of the max
by a squared ℓ2 norm, which can be approximated by returning
the top-K shortest paths for the given score function [24].

In Fig. 5, we observe that SGD with constant step-size
carefully tuned can perform as well as more sophisticated
methods such as the modified Gauss-Newton method. Most
importantly, for a small regularization parameter (µ = 10−4/n),
SGD yields the best test Hamming loss, which in this task
is the target metric.

Solving Non-linear Equations. Gauss-Newton-type methods
can be applied to stochastic non-linear equations of the form

min
w∈Rd

f

(
1

n

n∑
i=1

ϕi(w)

)
(7)

where f is a convex, possibly nonsmooth, Lipschitz function
such as ∥ · ∥1 and the inner mappings are smooth and typically

of the form ϕi(w) = ϕ(xi, w) − yi [13], [14]. Problem (7)
can be interpreted as ensuring that, on average, the non-linear
mapping ϕ(·, w) maps the inputs xi to the targets yi.
Algorithms. Denoting ϕ(w) = 1

n

∑n
i=1 ϕi(w), a natural base-

line algorithm is to compute iterates as

wt+1 = wt − γ∇̂ϕ(wt)
⊤∇f(ϕ̂(wt))), (8)

where ∇̂ϕ(w) and ϕ̂(w) are approximations of ∇ϕ(w) and
ϕ(w) respectively that can be approximated from a mini-
batch [28]; we call this “SGD”. Note that the minibatch
subgradient estimates can be biased since the outer function
f can be non-linear. A modified Gauss-Newton or prox-linear
method adapted to the inner finite-sum performs the iterations

wt+1 = argmin
w∈Rd

{
f
(
ϕ̂(wt) + ∇̂ϕ(wt)(w − wt)

)
(9)

+
M

2
∥w − wt∥22

}
where each sub-problem can be solved by incremental al-
gorithms such as the accelerated dual proximal gradient
ascent [13], [14].
Experiment. We consider the experimental setting of [13]. The
objective is to solve (7) where f is the Huber loss, a smooth
surrogate of the nonsmooth ℓ1 norm, and inner mappings ϕ
are the concatenation of four different losses, i.e., ϕi(w) =
(ℓ1(x

⊤
i w, yi), . . . , ℓ4(x

⊤
i w, yi)), where the formulations of the

losses can be found in [13]. The samples (xi, yi) are drawn
from the datasets ijcnn1 or covtype from the LIBSVM
repository [29].

We consider (i) a gradient descent denoted GD, (ii) a
modified Gauss-Newton or prox-linear method denoted PL, (iii)
a baseline of the form (8), denoted SGD, (iv) an incremental
Gauss-Newton or prox-linear method as described in (9),
denoted PLI for consistency. In Fig. 6, we observe that PL
outperforms GD as expected in the batch setting. However, this
advantage is longer present in the incremental setting. Here,
we find that the SGD baseline (8) performs on par with the
Gauss-Newton variant PLI.
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APPENDIX

A. Proof of Quadratic Convergence (Prop. 1)

Here, we give the full statement and a simple proof of Prop. 1, following standard techniques [5, Theorem 3]. We prove the
proposition for the case n = 1 first by considering the problem minw∈Rd f ◦ ϕ(w). We then generalize to n > 1 for a proof of
Prop. 1 in full generality.

We are interested primarily in the overparameterized case where k ≤ d. Below, we denote ∇ϕ(w) ∈ Rk×d as the Jacobian
of ϕ at w. We impose the assumption that its minimal singular value is bounded away from 0 as σmin(∇ϕ(w)⊤) ≥ ν > 0
for any w ∈ Rd, This assumption implies the surjectivity of the Jacobian at each w. That is, for every u ∈ Rk, there exists a
v ∈ Rd such that ∇ϕ(w)v = u.

We also assume that the following minimum values are bounded from below:

f∗ = min
u∈Rk

f(u), and, (f ◦ ϕ)∗ = min
w∈Rd

f
(
ϕ(w)

)
.

We have the following statement.

Proposition 3. Consider the compositional problem minw∈Rd f ◦ ϕ(w) with following assumptions:
(a) f is ℓ-Lipschitz continuous, convex and µ-sharp, i.e., f(u)−f∗ ≥ µdist(u, U∗) for any u ∈ Rk with µ > 0 and dist(u, U∗)

the Euclidean distance of u to U∗ = argminu∈Rk f(u) ̸= ∅.
(b) ϕ is L-smooth and satisfies σmin(∇ϕ(w)⊤) ≥ ν > 0 for any w ∈ Rd.
The sequence (wt)

∞
t=0 produced by the prox-linear algorithm (3) with M = Lℓ starting from arbitrary w0 ∈ Rd converges

globally as (f ◦ ϕ)(wt) → (f ◦ ϕ)∗ = f∗. Furthermore, as soon as an iterate wj satisfies f(ϕ(wt))− (f ◦ ϕ)∗ ≤ (µν)2/(Lℓ),
the subsequence (wt)

∞
t=j convergences quadratically as

f(ϕ(wt+1))− (f ◦ ϕ)∗ ≤ Lℓ

2(µν)2
(f(ϕ(wt))− (f ◦ ϕ)∗)2 ≤ 1

2
(f(ϕ(wt))− (f ◦ ϕ)∗).

Proof. For an iterate wt of the prox-linear algorithm, denote u∗t = ProjU∗(ϕ(wt)) the Euclidean projection of ϕ(wt) onto the
set of minimizers of f such that dist(ϕ(wt), U

∗) = ∥ϕ(wt)− u∗t ∥2.
Since the Jacobian ∇ϕ(wt)

⊤ is surjective, there exists v∗t be such that ∇ϕ(wt)v
∗
t = u∗t − ϕ(wt). Furthermore, from the

minimum singular value condition, there exists a choice of v∗t such that ∥v∗t ∥ ≤ ∥u∗t − ϕ(w)∥2/ν (see [5, Lemma 6] for a
proof).

If M ≥ Lℓ, then the iterates of the prox-linear algorithm satisfy [12]

f(ϕ(wt+1)) ≤ min
v∈Rd

{
f(ϕ(wt) +∇ϕ(wt)v) +

M

2
∥v∥22

}
(i)
≤ min

s∈[0,1]

{
f(ϕ(wt) + s∇ϕ(wk)v

∗
k) +

Ms2

2
∥v∗t ∥22

}
(ii)
≤ min

s∈[0,1]

{
f(ϕ(wt) + s(u∗t − ϕ(wt)) +

Ms2

2ν2
∥u∗t − ϕ(wt)∥22

}
(iii)
≤ min

s∈[0,1]

{
sf∗ + (1− s)f(ϕ(wt)) +

Ms2

2(νµ)2
(f(ϕ(wt))− f∗)2

}
. (10)

Here, we (i) restricted the domain of the minimization to v = sv∗t with s ∈ [0, 1], (ii) plugged in the definition of v∗t and the
bound on ∥v∗t ∥, and, (iii) used the convexity and sharpness of f . Next, by subtracting f∗ from both sides, we get

f(ϕ(wt+1))− f∗ ≤ min
s∈[0,1]

{
(1− s)(f(ϕ(wt))− f∗) +

s2M

2(νµ)2
(f(ϕ(wt))− f∗)2

}
.

If f(ϕ(wt))− f∗ ≤ (µν)2/M , the minimum in (10) is reached at s = 1 and we get

f(ϕ(wk+1))− f∗ ≤ M

2(νµ)2
(f(ϕ(wt))− f∗)2 ≤ 1

2
(f(ϕ(wt))− f∗).

This is the quadratic convergence phase. On the other hand, if f(ϕ(wt))− f∗ ≥ (µν)2/M , then the minimum in (10) is reached
at s = (νµ)2/ (M (f(ϕ(wt)− f∗)) , and we have the bound

f(ϕ(wt+1))− f∗ ≤ f(ϕ(wt))− f∗ − (µν)2

2M
.

Since f is bounded from below, the sequence f(ϕ(wt)) converges to f∗. Hence, the minimum of the composite objective
matches the minimum of the outer function, i.e., f∗ = (f ◦ ϕ)∗.



We can now prove Prop. 1 as a corollary of Prop. 3.

Proof of Prop. 1. Consider the reduction ϕ : Rd → Rkn and f̄ : Rkn → R given by

ϕ(w) = (ϕ1(w); . . . ;ϕn(w)), and, f̄
(
u1; . . . ;un

)
=

1

n

n∑
i=1

fi(ui) , (11)

where we use semi-colons to denote the concatenation of vectors. The finite-sum problem (1) now reduces to minw f̄ ◦ ϕ(w).
We have by definition that f̄ is convex. Next, f̄ is ℓ̄-Lipschitz with ℓ̄ = ℓ/

√
n since

|f̄(u)− f̄(u′)| ≤ 1

n

n∑
i=1

|f(ui)− f(u′i)| ≤
ℓ

n

n∑
i=1

∥ui − u′i∥2

≤ ℓ√
n

(
n∑

i=1

∥ui − u′i∥
2
2

)1/2

=
ℓ√
n
∥u− u′∥2 .

Further, we argue that f̄ is µ̄-sharp with µ̄ = µ/n. Note that (U∗)n is the argmin set of f̄ where U∗ is the argmin set of f .
Further, their minimum values satisfy f̄∗ := min f̄ = min f = f∗. Therefore, we have,

f̄(u)− f̄∗ =
1

n

n∑
i=1

(f(ui)− f∗) ≥ µ

n

n∑
i=1

dist(ui, U
∗) ≥ µ

n
dist(u, (U∗)n),

where we used

dist(u, (U∗)n) =

√√√√ n∑
i=1

dist(ui, U∗)2 ≤
n∑

i=1

dist(ui, U
∗).

All the assumptions of Prop. 3 are met, and invoking it now completes the proof.

B. Proof of the Statistical Setting (Prop. 2)

We give the full statement of Prop. 2 and its proof.

Proposition 4. Fix some δ ∈ (0, 1) and consider problem (1) with gi and f as defined above with the output dimension
k ≥ 4 log(2n/δ). Suppose that (i) w 7→ φ(xi;w) is L-smooth for each i ∈ [n], and, (ii) the function φ can interpolate the data
so that φ(xi;w∗) = yi for each i ∈ [n] for some w∗ ∈ Rd. Suppose there exists a scalar R > 0 and an integer j such that for
all integers t ≥ j, we have

F (wt)−minF ≤ R , and F (wt+1)−minF ≤ 1

2R

(
F (wt)−minF

)2
. (12)

Then, we have the following with probability at least 1− δ:

(a) If the noise level satisfies

σ >
R√
k

(
1−

(
4

k
log(2n/δ)

)1/4
)−1

,

then the first iterate wt enjoying quadratic convergence (12) satisfies F (wt) < F (w).
(b) Conversely, if the noise level satisfies

σ <
R√
k

(
1 +

(
16

k
log(2n/δ)

)1/4
)−1

,

then the first iterate wt enjoying quadratic convergence (12) satisfies F (wt) > F (w).

Proof. First, under the interpolation assumption, we have that 0 ≤ minF ≤ F (w∗) = 0, so minF = 0. Therefore, in this
setting, quadratic convergence holds before the noise level if and only if F (w) ≥ R. To complete the proof, we show below
that with probability at least 1− δ that

σ
√
k

(
1−

(
4

k
log(2n/δ)

)1/4
)

≤ F (w) ≤ σ
√
k

(
1 +

(
16

k
log(2n/δ)

)1/4
)
. (13)



To this end, we simplify

F (w) =
1

n

n∑
i=1

∥φ(xi;w)− yi∥2 =
1

n

n∑
i=1

∥ξi∥2 . (14)

Noting that ∥ξi∥22 follows a χ2 distribution with k degrees of freedom, a standard concentration argument shows that (see
example [30, Lemma 1])

P

(
σ2k

(
1− 2

√
λ

k

)
≤ ∥ξi∥22 ≤ σ2k

(
1 + 2

√
λ

k
+

2λ

k

))
≥ 1− 2 exp(−λ)

for any λ > 0. Next, we plug in λ = log(2n/δ). Noting that λ/k ≤ 1/4, we use the bound λ/k ≤
√
λ/k and

√
1− x ≥ 1−√

x
to get that

σ
√
k
(
1− (4λ/k)1/4

)
≤ ∥ξi∥2 ≤ σ

√
k

√
1 + 4

√
λ/k ≤ σ

√
k
(
1 + (16λ/k)1/4

)
with probability at least 1− δ/n. Invoking the union bound over i = 1, · · · , n, we have with probability at least 1− δ that

σ
√
k

(
1−

(
4

k
log(2n/δ)

)1/4
)

≤ ∥ξi∥2 ≤ σ
√
k

(
1 +

(
16

k
log(2n/δ)

)1/4
)

holds simultaneously for each i ∈ [n]. Plugging this into (14) completes the proof.


