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Models leak information
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Models leak information about their training data reliably
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Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)

‘b _ N
E Randomized

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)
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A randomized algorithm is e-differentially private if the addition of one user’s data

does not alter its output distribution by more than ¢



Differential privacy eliminates memorization

Test Loss Memorization
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Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. USENIX Security 2019.



How do we train models with DP?

Loss
function
. - \/
parl\;%deetlers grno}n [F(e) — thNP [f(e’ m)]]

Data
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DP-SGD: How do we train models with DP?

Independent

Gradient clipped Gaussian noise

toligll < G

Learning
rate

Google Research
Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



Recall: o-Zero-Concentrated DP (o-zCDP)

For all 0 < o < o0, we have

' I afa
D, A EE Al BB < po

Rényi a-divergence

Google Research
Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016



DP-SGD: How do we train models with DP?

For 0-zCDP, take Independent

noise variance = ﬁz Gaussian noise

2p
(G = gradient clip norm)

01-+1 =9t—77(9t +Zt)

Google Research
Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016



DP-FTRL: DP Training with Correlated Noise

Correlated
Gaussian noise
(z, i.i.d. Gaussian)

‘
b1 = 60, — n | o + Z,Bt,TZt—T
=0

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on
Adaptive Streams. NeurIPS 2022.



DP-FTRL: DP Training with Correlated Noise

Correlated
Gaussian noise
(z, i.i.d. Gaussian)

For ¢o-zCDP, take o
noise variance = 7 max | [B-Y.¢|’
2p 2

foo O 0 -
B= Bip Big 0O -
bro Py Prp

sensitivity

‘
b1 = 60, — n | o + Z,Bt,rzt—T
=0

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on
Adaptive Streams. NeurIPS 2022.



roduction Training

“the first production neural

network trained directly on

user data announced with a
formal DP guarantee.”

- Google Al Blog post, Feb 2022

Google Al Blog

The latest from Google Research

tesed
ol

Federated Learning with Formal Differential Privacy

Guarantees
Monday, February 28, 2022

Posted by Brendan McMahan and Abhradeep Thakurta, Research Scientists, Google Research

In 2017, Google introduced federated learning (FL), an approach that enables mobile devices to
collaboratively train machine learning (ML) models while keeping the raw training data on each
user's device, decoupling the ability to do ML from the need to store the data in the cloud. Since its
introduction, Google has continued to actively engage in FL research and deployed FL to power
many features in Gboard, including next word prediction, emoji suggestion and out-of-vocabulary
word discovery. Federated learning is improving the “Hey Google” detection models in Assistant,
suggesting replies in Google Messages, predicting text selections, and more.

While FL allows ML without raw data collection, differential privacy (DP) provides a quantifiable
measure of data anonymization, and when applied to ML can address concerns about models
memorizing sensitive user data. This too has been a top research priority, and has yielded one of
the first production uses of DP for analytics with RAPPOR in 2014, our open-source DP library,
Pipeline DP, and TensorFlow Privacy.

EEm True gradients BN DP FTRL Estimates WM DP SGD Estimates

The DP-FTRL
model M stays

B ,/\ 7 _— - X !
\_‘/.!r . \""";/' \W/'\\}/ \ closer to

unnoised training.
Randomly
initialized i ~
model [7 v -u
Arrows represent model updates in parameter space.

Data Minimization and ization in F d Learning
Along with fundamentals like transparency and consent, the privacy principles of data minimization
and anonymization are important in ML applications that involve sensitive data.



https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html

Do we use independent or correlated noise?

DP-SGD

DP-FTRL

Google Research



Prior work: [choquette-Choo et al. (NeurIPS "23)] Experiment:

e (Empirically) correlated noise outperforms DP learning with
independent noise CIFAR-10
65
= o DP-FTRL (+ amplification)
O uniformly beats DP-SGD
©
5
§ 55
o pavd Mechanism
K 4 @  DP-SGD + Amplification
50 7 p L
£ =®= DP-FTRL (no amplification)
y 4 —8— DP-FTRL + Amplification
1 2 3 4 5 Google Research

Privacy budget € at §=107°



Our contributions

Theory
e correlated noise is provably better

Google Research



Our contributions

What we show: For linear regression (without clipping) and
learning rate <1, the expected final error as T—oo scales as

Independent noise 10)
Correlated noise O(det)
Q(detr)

Lower bound

dimension d

_ effective dimension d_
n: learning rate

o: privacy level Google Research



Our contributions

Informal Theorem: For linear regression (without clipping) and
learning rate <1, the expected final error as T—oo is

Independent noise (DP-SGD without clipping) O(d P_l n)
O(dest p™" 0°)>.

Q(degs p' 1)

Correlated noise (DP-FTRL without clipping)
Lower bound for any algorithm

Matches lower bound
(upto polylog factors)

n: learning rate
o: privacy level Google Research



Prior work: [Choquette-Choo et al. (NeurIPS '23)]
e Solve a semi-definite program (SDP) to find these correlations
e Cubic complexity O(T?) in the number of iterations T

: 1 ATY . g _
min {Tr(AX'A") : diag(X) =1}

(1
1 1

\1 Lo Vs Google Research



Our contributions

Empirical.
e computationally much more efficient:
cubic O(T?) — linear O(T)

Google Research



Our contributions

Empirical.
e computationally much more efficient:
cubic O(T?) — linear O(T)

Set Bo=1, Br=—-1321—-v)
t

Update 6;,; = 6; — (gt + Z,B’rth>
=0

The hyper-parameter v is tuned

Google Research



Empirical results for private deep learning

26-

¢=o00, Nonprivate Baseline ours
matches
SoTAl
>
O
o
>
®)
®)
f, + Mechanism
D 5o —e— (v=1.6x10"?)-DP-FTRL (Ours)
—#— Online Honaker x10
- —4— DP-SGD + Amplification
- .4 ME(k=20) Non-Toeplitz
20_ I I I I

25 50 7.5 100 125 15.0 17.5 20.0
Privacy Budget, ¢ Google Research



Outline

e Background
e Theoretical Results ‘

e Empirical Results

Google Research ‘ ‘ ‘




Outline

e Background
e Theoretical Results ‘

e Empirical Results

Google Research . ‘ ‘




DP-SGD’s primitive: private mean estimation of
minibatch (clipped) gradients in each iteration

VF;(w)

Google Research



DP-SGD adds independent noise in each iteration

Gradient Mech.

(clipped Output
per-example)

Data

P Gaussian i _|_zi
E@VA I1T

|

i (5

=

o s

Abadi et. al., Deep Learning with Differential Privacy, CCS 2016.



Why DP-FTRL?

DP-SGD requires privacy amplification by random
sampling for good practical performance

Google Research



Why DP-FTRL?

DP-SGD requires privacy amplification by random
sampling for good practical performance

(Provable) Random sampling not possible in applications
such as federated learning

Charging/WiFi required for
federated learning
(usually at night)

Google Research




DP-FTRL: privatize prefix sums of gradients

t—1
ot — 00 — E gr
7=0

SGD update (without noise)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu.
Practical and Private (Deep) Learning without
Sampling or Shuffling. ICML 2021.

Google Research



DP-FTRL: privatize prefix sums of gradients

t—1
et — 90 — = Z gr
=0

SGD update (without noise)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu.
Practical and Private (Deep) Learning without
Sampling or Shuffling. ICML 2021.
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DP-FTRL: privatize prefix sums of gradients

Empirically, DP-FTRL (without amplification)
is competitive with DP-SGD + amplification

HEl True gradients BN DP FTRL Estimates B DP SGD Estimates

e P The DP-FTRL

g - model & stays
\ e 2l _ closer to
unnoised training.
Randomly
initialized
model [/
Arrows represent model updates in parameter space.

Figure: Google AI Blog post

Google Research


https://ai.googleblog.com/2022/02/federated-learning-with-formal.html

DP-FTRL in Equations

Google Research



DP-FTRL: Incorporating Correlated Noise

(0t

62 — 61

(90\

\ 6, —Eet_l )

ot

SGD update (without noise)

Google Research



DP-FTRL: Incorporating Correlated Noise

62 — 61

(91—90\ (90\

\ 6 —:9t—1 J \ gt:—1 )

/jl)\

.

DP-SGD update (with independent noise)

Google Research



DP-FTRL: Incorporating Correlated Noise

(0t

62 — 61

(90\

\ 6, —Eet_l )

ot

Npise correlation matrix

+ B

o)

DP-FTRL update (with correlated noise)

bop 0 O
B= Bio Py O
Boo By By -

Google Research

|



DP-FTRL: Incorporating Correlated Noise

=

02 _01

\ 6, —Eot_l )

(zo\

"y

Npise correlation matrix

+ B

o)

DP-FTRL update (with correlated noise)

bop 0 O
B= Bio Py O
Boo By By -

Google Research
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DP-FTRL: Incorporating Correlated Noise

6, — 6
(e |
- . =B| B!

Ké’t —:9t—1 ) \

(90\
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(zo\

oy

Privatize B1G with the Gaussian mechanism

)

Google Research



DP-FTRL.:

Incorporating Correlated Noise

((61=60 ) ([ %)
6> — 01 I
~ . =B|B

Ké’t —:9t—1 ) \ \ gt:—1 )

(zo\

oy

Privatize B1G with the Gaussian mechanism

For 0-zCDP, take Q2

noise variance = - max H[B_l]:,tuz

P

)

Google Research



DP-FTRL vs. DP-SGD: Empirical

Test accuracy (%)

(@)
Ul

(®)]
o

(92
Ul

50

v Mechanism
.l @ DP-SGD + Amplification
] /4 -®- Multi-epoch MF, no ampl.

—8— (Band) MF, w/ ampl. (Ours)

1 2 3 4 5
Privacy budget e at =107

DP-FTRL (+ amplification)
uniformly beats DP-SGD

Google Research




DP-FTRL vs. DP-SGD: Theory

For convex & G-Lipschitz losses

1/4
DP-SGD G’
VpT
Gd'/*
DP-FTRL
VT

Q- prlvacy |€V€| (ZCDP) Kairouz, McMahan, Song, Thakkar, Thakurta, Xu.

d: dimension Practical and Private (Deep) Learning without
T: #iterations Sampling or Shuffling. ICML 2021.



Gradient Descent with Linearly Correlated Noise:
Theory and Applications to Differential Privacy

Anastasia Koloskova* Ryan McKenna Zachary Charles Keith Rush
EPFL, Switzerland Google Research Google Research Google Research
Brendan McMahan

Google Research

Theorem 4.7 (convex). Under Assumptions 4.1, 4.2, and 4.3, if y < Y/aL and T = é(l/'yL), then (7)
produces iterates with average error (T + 1)* Z;‘LO E [f(x¢) — f*] upper bounded by

o Iro=—x1? | o*
~T TLr

2
+ 20 1<i<T ||bt—bt—r||2+“b§y

t=0 mod T

T
% Zt:l Hbt - b[ﬁjf

Improved analysis DP-FTRL
No provable gap between DP-SGD & DP-FTRL (same as previous) Go gle Research



Towards a provable gap between DP-SGD & DP-FTRL

Google Research



Loss

function
7
parl\g(r:ﬂdeetlers gmgin [F(e) — {‘me [f(e’ ZE)]]

Streaming setting: Suppose we draw a fresh data
point x,~P in each iteration t (i.e. only 1 epoch)

Google Research



Toeplitz noise correlations: g, =

i
b1 = 6 — 7 <9t + Zﬂt,thT)
7=0

Boo Bo
B Bo1 B B_ B1 Bo
| Boz P11 Bo - - | B2 Br Bo

Computationally: store O(T) coefficients instead of O(7?)

Google Research



Asymptotics: Iterates converge to a stationary distribution as t — oo

True Density Empirical Density

Image credit:
Abdul Fatir Ansari

Google Research


https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/

Asymptotics: Iterates converge to a stationary distribution as t — oo

True Density Empirical Density

Image credit:
Abdul Fatir Ansari

Asymptotic R 0 2 4 -4 -2 0 2 1

F(B) = lim E[F(6)—-F© )]

[— 00

Google Research


https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/

Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

tlIvL|

clipped

C

| VL]
0 C >

Lets us study the noise dynamics of the algorithms
(do not satisfy DP guarantees)

Google Research



Outline

e Background
e Theoretical Results ‘

e Empirical Results

Google Research . ‘ ‘




Mean estimation in 1 dimension

min [F(6) = Eo-p (6 2)’]

Data distribution
s.t. || £ 1

Solve with stochastic optimization problem
with DP-SGD/DP-FTRL

Google Research



Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a ¢o-zCDP sequence is

sgdy — ,—1
Independent noise (DP-SGD) F () =pn

Correlated noise (DP-FTRL) infF_(B) = F_(f*) = p~1n? logZ%
p

n: learning rate
o: privacy level Google Research



Ratio of DP-FTRL to DP-SGD

10°

Suboptimality ratio for mean estimation

e -

y = 0.54 P \

o 1

4 -

/‘/ :

"‘ l

- .

o :

A I
o, =
: 0
P =
. 1
O, -
7’ (]

1079 1077 107° 1073 107!

]

DP-FTRL is always
better than DP-SGD

I

Learning Rate n

DP-FTRL is
significantly better at
n—->0orn—1

Google Research



Closed form correlations for mean estimation

Proposition: The correlations g =1, gf = —t"%%(1—n)t
attain the optimal error

inf Fo(§) = Fos(p*) = p™'nlog?

Google Research



Closed form correlations for mean estimation

Proposition: The correlations g =1, gf = —t"%%(1—n)t
attain the optimal error

inf Fo(§) = Fos(p*) = p™'nlog?

»~DP-FTRL

For general problems, use fy =1, B;=—t"%?2(1—v)t

and tune the parameter v Google Research




Linear regression

min [F(6) = E(y - (6,3))’]

objective

H is also the
where T ~ _/\/’(0, H) Hessian of the

Google Research



Linear regression

min [F(6) = E(y — (6, z))’]

where  z ~ N(0, H)

Well-specified \ leB ~ N(:BTH*, 0'2)

linear model ‘

Google Research



Informal Theorem: The asymptotic error for linear regression

with i (H)=1and 0 <7y <1

Independent noise (Noisy-SGD)
Correlated noise (v-Noisy-FTRL)

Lower bound for any algorithm

1
< degp tn? log’ ()

> detp ' n?

dimension d

effective dimension d_

Nk

Google Research



Effective dimension dett = Tr(H)/||Hl||2 < d

Low effective dimension High effective dimension
A1:1,A2:"':Ad:1/d )\12/\22"'2)\(1:1

& B

-

Closely connected to numerical/stable rank

Google Research



SAMPLING FROM LARGE MATRICES: AN APPROACH
THROUGH GEOMETRIC FUNCTIONAL ANALYSIS

MARK RUDELSON AND ROMAN VERSHYNIN

Remark 1.3 (Numerical rank). The numerical rank r = r(A) = ||A||§,/ ||A||§ in
Theorem 1.1 is a relaxation of the exact notion of rank. Indeed, one always has
r(A) < rank(A). But as opposed to the exact rank, the numerical rank is stable
under small perturbations of the matrix A. In particular, the numerical rank of A
tends to be low when A is close to a low rank matrix, or when A is sufficiently sparse.

desr = srank(H1/?)

Google Research
[Rudelson & Vershynin (J. ACM 2007)]



The stable rank appears in:
e Numerical linear algebra (e.g. randomized matrix
multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]

e Matrix concentration [Hsu-Kakade-zZhang (2012), Minsker (2017)]

Google Research



Informal Theorem: The asymptotic error for linear regression

with i (H)=1and 0 <7y <1

Independent noise (Noisy-SGD)
Correlated noise (v-Noisy-FTRL)

Lower bound for any algorithm

1
< degp tn? log’ <)

> detp ' n?

dimension d

effective dimension d_

yl

Google Research



Linear regression: theory predicts simulations

Dimension Dependence

10—2 -

Asymptotic Subopt. F,

Dimension d

Noisy-SGD
scales with d

Noisy-FTRL
scales with d «

Effective Dimension Dependence

1072 e

.
R B
®
.

10—3 . ’. -

2'3 2'4 2%
Effective Dimension d

Google Research



Informal Theorem: The asymptotic error for linear regression

with i (H)=1and 0 <7y <1

Independent noise (Noisy-SGD)
Correlated noise (v-Noisy-FTRL)

Lower bound for any algorithm

Google Research



Learning Rate Dependence

Noisy-SGD scales as 5

10_1':
v-Noisy-FTRL
scales as n?
10_2':
10‘3':

0.02 0.04 0.08 0.16
Learning Rate 7

Google Research

Noisy-FTRL » Noisy-SGD at small 5



Anticorrelated Noise Injection for Improved Generalization

1

Antonio Orvieto ! Hans Kersting > Frank Proske® Francis Bach? Aurelien Lucchi*

Anti-PGD [Orvieto et al. (ICML '22)] corresponds to g,=1, g,=-1

01 = 0 — (9 + 2—2-1)

N

Subtract out the
previous noise

Google Research



Anticorrelated Noise Injection for Improved Generalization

1

Antonio Orvieto ! Hans Kersting > Frank Proske® Francis Bach? Aurelien Lucchi*

Anti-PGD [Orvieto et al. (ICML '22)] corresponds to g,=1, g,=-1

01 = 0 — (9 + z—21)

Asymptotic error = oo (as sensitivity scales of O(t) for t iterations)

Google Research



Anti-PGD can be adapted for DP by damping: take g,=1, ,=-v (0 <v < 1)

Orr1 = 0 — (gt T Zt—VZt—l)

Asymptotic error = \/ddeff p_1 773/2 Gel\cl)njetrgé;n[;eandof
oisy- an
lower bound

Google Research



Rates with DP

Independent noise (DP-SGD) i 4+ 1
pl’" T

. 1 1

Correlated noise (v-DP-FTRL) 4=
pT? T

Privacy error

Google Research



Extensions

e Gap between DP-FTRL & DP-SGD for general strongly convex functions

Asymptotics for Strongly Convex Functions

8
= 2 —— DP-SGD
B ) v-DP-FTRL
< Optimized
(@p) 20_
kS
5 27!
=
o
-2
%2
<

91 92 93 o4 95 96 97
Condition Number k = L/ Google Research



Proof sketch for Mean Estimation

Updates are not Markovian (key for all stochastic gradient proofs)

Our approach: Analysis the Fourier domain

Google Research



Letting 6,=0,- 0,, the DP-FTRL update can be written as

Linear

(LTI) system

t
Time-Invariant Ot11 = (1 — n)gt —n Z ﬂth_T
7=0

Convolution of the
noise

Google Research



Fourier analysis can give the stationary variance of 9, in terms of
the discrete-time Fourier transform B(w) = Y 2%, Bie™*
of the convolution weights s

Frequency

2Hz +2.5Hz

Time-domain
description

1.8 Cyde‘S/S?cqnd x-coordinate for center of mass

| _ i Frequency-domain
GT e i description

Google Research

I‘mage: 3bluelbrown.com/lessons/fourier-transforms




Letting 6,=0,- 0,, the DP-FTRL update can be written as

Linear

(LTI) system

t
Time-Invariant Ot11 = (1 — n)gt —n Z ﬂth_T
7=0

Convolution of the
noise

The stationary variance of §, can be given as

lim E[6?] = 772(/7r Bl dw) El2]

t—o0 2 T |1_T’_eiw|2

Google Research



lim E[62] = ﬁ (/7r B)l dw) E[2?]

t—o00 2 - |1_n_ez’w|2

sensitivity
For o-zCDP, take ]E[zf]:% ma (B, »
1 /” dw o [3-2 B Bo -
20 J-x 27| B(w)[? '

Google Research



lim E[§?] = ﬁ (/W ()" dw) E[2?]

t—00 27 - |1_,r’_ez'w|2

Requires |B(w)|

small sensitivity
1
For 0-zCDP, take E[?]= . max|[B .| o
20 112 B B Bo
1 /,r dw - ,3.2 B Bo -
2p J_x 27| B(w)|? '

Requires |B(w)|
large

Google Research



2 T B 2
lim E[§?] = n / B(w) —dw | E[2?]
t—o00 27’(’ — |1 —n— ezw|2

Requires |B(w)]|
small

] , _i . 2 Bo
For 9-zCDP, take E[22] = 2 m?X“[B el B(ﬂl Bo )

1 /w dw o B bo o
20 J = 27| B(w)|? '

Requires |B(w)]|
large

Optimizing for |B(w)| gives the theorem Google Research



For linear regression:

0,1 = (I—n(x:®x))0; + &y — 1 Z Brwi—r . (25)
=0

Multiplicative
noise

Google Research



01I€+1 = (I —n(z: ® wt))eé +né&xs —n Z Brwi—r . (25)
7=0

Decomposition:

o) = (I —nH)8” + nga, — nZ/Bth ks

6, =35m0 + 5.
g)l = - 77H)0( L n(H -z ® wt)e ) for r > 0, ¢ = 2r=00; t

t—|—1 =T —nz: ® wt)é( ")+ n(H — x; ® x+)0; )

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.

Google Research



0111 = (I —n(@ ®x1))0; + &y —n Y Brwy . (25)
7=0

Decomposition:

o) = (I —nH)8” + nga, — nZIBth ks

0, =300 +8™.
?g?l = - 77H)0( L n(H -z ® iBt)O ) for r > 0, ¢ = 2r=00; t

t+1 =T —nz: ® wt)(s( ")+ n(H — x; ® x+)0; )

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.

Key idea: E [6(()m) ® 6(()m)] — 0 as m — oo.
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r=0
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Language modeling with Stack Overflow
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Image classification with CIFAR-10
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Image classification with CIFAR-10
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Summary

Theory

e correlated noise is provably better

e Depends on effective dimension
instead of dimension

e Matches lower bounds

Empirical:

e computationally much more efficient that
SoTA (cubic — constant)

e nearly matches SoTA empirically
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Future Work

Theory
e Averaged iterate analysis + precise finite time bounds
e Analysis for non-Toeplitz systems

Ruppert. Efficient Estimations from a Slowly Convergent Robbins-Monro Process. 1998

Polyak and Juditsky. Acceleration of Stochastic Approximation by Averaging. SIAM ] Control Optim, 1992
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Future Work

Algorithms
e Natively support adaptive gradient methods
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Future Work

Practical.

e FEfficient approximation:
o Currently, running time = O(T?) for T iterations
o “Low rank” approx: O(k) runtime, O(kd) memory
o Approximation theory of rational functions

Newman. Rational approximation to |x|. Michigan Math. J. (1964)
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Thank you! Questions?

https://arxiv.org/pdf/2310.06771.pdf

rxiv link
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