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Models leak information 
about their training data

Carlini et al. (USENIX Security 2021)



Models leak information about their training data reliably

Carlini et al. (USENIX Security 2021)Carlini et al. (ICLR 2023)





Differential privacy (DP)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of one user’s data 

does not alter its output distribution by more than 𝜀



Differential privacy eliminates memorization

High privacy Low privacy Low privacyHigh privacy

Nearly 
non-private 
loss

Huge 
improvement 
in 
memorization

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural 
Networks. USENIX Security 2019.



How do we train models with DP?

Model 
parameters

Loss 
function

Data



DP-SGD: How do we train models with DP?

Learning 
rate

Gradient clipped 
to ǁgǁ ≤ G 

Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



Recall: 𝜌-Zero-Concentrated DP (𝜌-zCDP)

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016

For all 0 < 𝛼 < ∞, we have

Rényi 𝛼-divergence



DP-SGD: How do we train models with DP?

Independent 
Gaussian noise

For 𝜌-zCDP, take
noise variance = 

     (G = gradient clip norm)

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016



DP-FTRL: DP Training with Correlated Noise

Correlated 
Gaussian noise 

(zt i.i.d. Gaussian)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.



DP-FTRL: DP Training with Correlated Noise

Correlated 
Gaussian noise 

(zt i.i.d. Gaussian)
For 𝜌-zCDP, take
noise variance = 

sensitivity

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.



Production Training

“the first production neural 
network trained directly on 
user data announced with a 

formal DP guarantee.”

- Google AI Blog post, Feb 2022

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html


Do we use independent or correlated noise?
 

DP-SGD DP-FTRL



Prior work: [Choquette-Choo et al. (NeurIPS ’23)]
● (Empirically) correlated noise outperforms 

independent noise

DP-SGD + Amplification
DP-FTRL (no amplification)
DP-FTRL + Amplification

DP-FTRL (+ amplification) 
uniformly beats DP-SGD

Experiment:
DP learning with 
CIFAR-10



Our contributions

Theory
● correlated noise is provably better



Our contributions

𝜂: learning rate
𝜌: privacy level

Improve dimension d to 
problem-dependent 

effective dimension deff 

What we show: For linear regression (without clipping) and 
learning rate 𝜂<1, the expected final error as T→∞ scales as

Independent noise

Correlated noise 

Lower bound 



Our contributions

𝜂: learning rate
𝜌: privacy level

Matches lower bound 
(upto polylog factors)

Independent noise (DP-SGD without clipping)

Correlated noise  (DP-FTRL without clipping)

Lower bound for any algorithm 

Informal Theorem: For linear regression (without clipping) and 
learning rate 𝜂<1, the expected final error as T→∞ is



Prior work: [Choquette-Choo et al. (NeurIPS ’23)]
● Solve a semi-definite program (SDP) to find these correlations
● Cubic complexity O(T3) in the number of iterations T



Our contributions

Empirical: 
● computationally much more efficient: 

cubic O(T3) → linear O(T)



Our contributions

Empirical: 
● computationally much more efficient: 

cubic O(T3) → linear O(T)

Set

The hyper-parameter 𝜈 is tuned

Update



Empirical results for private deep learning



Outline

● Background

● Theoretical Results

● Empirical Results



Outline

● Background

● Theoretical Results

● Empirical Results



DP-SGD’s primitive: private mean estimation of 
minibatch (clipped) gradients in each iteration



DP-SGD adds independent noise in each iteration

Abadi et. al., Deep Learning with Differential Privacy, CCS 2016.

Data

Gaussian 
Mech1 g1 + z1  ⊕

Mech.
Output

Gaussian 
Mech2 ⊕

Gaussian 
Mech3 ⊕

Gaussian 
Mech4 ⊕

g2 + z2  

g3 + z3  

g4 + z4  

Gradient 
(clipped 
per-example)



Why DP-FTRL?

DP-SGD requires privacy amplification by random 
sampling for good practical performance



Why DP-FTRL?

DP-SGD requires privacy amplification by random 
sampling for good practical performance

(Provable) Random sampling not possible in applications 
such as federated learning

Charging/WiFi required for 
federated learning 
(usually at night)



DP-FTRL: privatize prefix sums of gradients

SGD update (without noise)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



DP-FTRL: privatize prefix sums of gradients

SGD update (without noise)

g1 + w1  ⊕

Gradient 
(clipped 
per-example)

g1 + g2+ 
w2

⊕

g1 + g2+  g3 + w3⊕

g1 + g2+  g3 + g4+ w4⊕

Stateful
DP

Mechanism

Mech.
Output

wt are not independent across rounds.

Data

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



DP-FTRL: privatize prefix sums of gradients

Empirically, DP-FTRL (without amplification) 
is competitive with DP-SGD + amplification

Figure: Google AI Blog post

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html


DP-FTRL in Equations



DP-FTRL: Incorporating Correlated Noise

SGD update (without noise)



DP-FTRL: Incorporating Correlated Noise

DP-SGD update (with independent noise)



DP-FTRL: Incorporating Correlated Noise

DP-FTRL update (with correlated noise)

Noise correlation matrix



DP-FTRL: Incorporating Correlated Noise

DP-FTRL update (with correlated noise)

Noise correlation matrix



DP-FTRL: Incorporating Correlated Noise

Privatize B-1G with the Gaussian mechanism



DP-FTRL: Incorporating Correlated Noise

Privatize B-1G with the Gaussian mechanism

For 𝜌-zCDP, take
noise variance = 

sensitivity



DP-FTRL vs. DP-SGD: Empirical

DP-SGD + Amplification

DP-FTRL (+ amplification) 
uniformly beats DP-SGD



DP-FTRL vs. DP-SGD: Theory

DP-SGD

DP-FTRL

𝜌: privacy level (zCDP)
d: dimension
T: #iterations

For convex & G-Lipschitz losses

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



Improved analysis DP-FTRL
No provable gap between DP-SGD & DP-FTRL (same as previous)



Towards a provable gap between DP-SGD & DP-FTRL



Streaming setting: Suppose we draw a fresh data 
point xt~P in each iteration t (i.e. only 1 epoch)

Model 
parameters

Loss 
function

Data



Toeplitz noise correlations: 𝛽t,𝜏= 𝛽𝜏

Computationally: store O(T) coefficients instead of O(T2)



Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

Asymptotic 
error

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

Lets us study the noise dynamics of the algorithms
(do not satisfy DP guarantees)



Outline

● Background

● Theoretical Results

● Empirical Results



Mean estimation in 1 dimension

Data distribution 
s.t. |x| ≤ 1

Solve with stochastic optimization problem 
with DP-SGD/DP-FTRL



Independent noise (DP-SGD)

Correlated noise  (DP-FTRL)

𝜂: learning rate
𝜌: privacy level

Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a 𝜌-zCDP sequence is 



DP-FTRL is always 
better than DP-SGD

DP-FTRL is 
significantly better at 

𝜂 → 0 or 𝜂 → 1



Closed form correlations for mean estimation

Proposition: The correlations
attain the optimal error



Closed form correlations for mean estimation

For general problems, use

and tune the parameter 𝜈

Proposition: The correlations
attain the optimal error

𝜈-DP-FTRL



Linear regression

H is also the 
Hessian of the 

objective



Linear regression

Well-specified 
linear model



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error for linear regression 
with 𝜆max(H) = 1 and 0 < 𝜂 < 1

Improve dimension d to 
problem-dependent 

effective dimension deff 



Effective dimension

Low effective dimension High effective dimension

Closely connected to numerical/stable rank



[Rudelson & Vershynin (J. ACM 2007)]



The stable rank appears in:

● Numerical linear algebra (e.g. randomized matrix 

multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]

● Matrix concentration [Hsu-Kakade-Zhang (2012), Minsker (2017)] 

● …



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Improve dimension d to 
problem-dependent 

effective dimension deff 

Informal Theorem: The asymptotic error for linear regression 
with 𝜆max(H) = 1 and 0 < 𝜂 < 1



Linear regression: theory predicts simulations



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Improved dependence on 
the learning rate 𝜂

Informal Theorem: The asymptotic error for linear regression 
with 𝜆max(H) = 1 and 0 < 𝜂 < 1



Noisy-SGD scales as 𝜂

𝜈-Noisy-FTRL 
scales as 𝜂2

Noisy-FTRL ≫ Noisy-SGD at small 𝜂



Anti-PGD [Orvieto et al. (ICML ‘22)] corresponds to 𝛽0=1, 𝛽1=-1

Subtract out the 
previous noise



Anti-PGD [Orvieto et al. (ICML ‘22)] corresponds to 𝛽0=1, 𝛽1=-1

Asymptotic error = ∞ (as sensitivity scales of O(t) for t iterations)



Anti-PGD can be adapted for DP by damping: take 𝛽0=1, 𝛽1=-𝜈 (0 < 𝜈 < 1)

Asymptotic error = Geometric mean of 
Noisy-SGD and 

lower bound



Rates with DP

Independent noise (DP-SGD)

Correlated noise  (𝜈-DP-FTRL)

Privacy error



Extensions

● Gap between DP-FTRL & DP-SGD for general strongly convex functions 



Proof sketch for Mean Estimation

Updates are not Markovian (key for all stochastic gradient proofs)

Our approach: Analysis the Fourier domain 



Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



Fourier analysis can give the stationary variance of 𝛅t in terms of 
the discrete-time Fourier transform 
of the convolution weights 𝛽

Frequency

Time-domain 
description

Frequency-domain 
description

Image: 3blue1brown.com/lessons/fourier-transforms 



The stationary variance of 𝛅t can be given as

Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



For 𝜌-zCDP, take

sensitivity



For 𝜌-zCDP, take

sensitivity
Requires |B(𝜔)| 

small

Requires |B(𝜔)| 
large



For 𝜌-zCDP, take

Requires |B(𝜔)| 
small

Requires |B(𝜔)| 
large

Optimizing for |B(𝜔)| gives the theorem

sensitivity



For linear regression:

Multiplicative 
noise



Decomposition:

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.



Key idea:

Thus,

Decomposition:

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.



Outline

● Background

● Theoretical Results

● Empirical Results



Empirical Results



Language modeling with Stack Overflow



Image classification with CIFAR-10



Image classification with CIFAR-10



Summary

Theory
● correlated noise is provably better
● Depends on effective dimension 

instead of dimension
● Matches lower bounds

Empirical: 
● computationally much more efficient that 

SoTA (cubic → constant)
● nearly matches SoTA empirically



Future Work
Theory
● Averaged iterate analysis + precise finite time bounds
● Analysis for non-Toeplitz systems

Ruppert. Efficient Estimations from a Slowly Convergent Robbins-Monro Process. 1998

Polyak and Juditsky. Acceleration of Stochastic Approximation by Averaging. SIAM J Control Optim,  1992



Algorithms
● Natively support adaptive gradient methods 

Future Work



Practical: 
● Efficient approximation: 

○ Currently, running time = O(T2) for T iterations
○ “Low rank” approx: O(k) runtime, O(kd) memory 
○ Approximation theory of rational functions

Future Work

Newman. Rational approximation to |x|. Michigan Math. J. (1964)



Thank you! Questions?

https://arxiv.org/pdf/2310.06771.pdf

https://arxiv.org/pdf/2310.06771.pdf

