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MAUVE: Measuring the Gap Between Neural Text and Human Text

Errors In Text Generation

Experiments

Our Approach: Directly compare distributions!

Motivation
Enormous language models can now write high 
quality text. But how close is it to human text?

Open Ended Text Generation

MAUVE

Software

Brown et al. (2020), 
Devlin et al. (2018)

In a shocking finding, scientists 
discovered a herd of unicorns living in a 
remote, previously, unexplored valley, in 
the Andes Mountains. 


Continuation. The scientists named the 
population, after their distinctive horn, 
Ovid’s Unicorn. These four-horned, 
silver-white unicorns were previously….
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How good is neural text?
Continuation 2. This discovery has kicked 
off an all-out search for other mythical 
creatures from the frozen reaches of the 
Antarctic to the tropical islands of the Pacific 


Continuation 3. Perhaps most 
astonishingly, these unicorns have 
developed their own artificial general 
intelligence named Yuyaysapa …
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Generations!

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)
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Type I Error:
The time is
the time is
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the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.
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P: human text 
distribution

Q: machine text             
distribution

e.g. repetitions e.g. truncation

Type I Error = KL(Q|P) Type II Error = KL(P|Q)

was arbitrary, consider Type I and
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P: human distribution
Q: machine distribution

i. KL can be infinite


ii. Smooth KL with mixture 
distribution


iii. Varying mixture weight
 divergence curve ⟹

Sajjadi et al. (2018); Djolonga et al. (2020)

Computing MAUVE: KLs are intractable
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MAUVE correlates with human judgements
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pip install mauve-text 

MAUVE = area 
under the 
divergence curve

Conclusion
MAUVE can accurately measure the gap 
between neural text and human text!

Theory of MAUVE: See our other paper 
at NeurIPS 2021

Software

from mauve import compute_mauve

out = compute_mauve(p_text=p_text, q_text=q_text)


print(f'Mauve(P, Q) = {out.mauve}')

Liu, Pillutla, et al. Divergence Frontiers for 
Generative Models: Sample Complexity, 
Quantization Level, and Frontier Integral.

http://krishnap25.github.io

