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Abstract

From Enormous Structured Models to On-device Federated Learning:

Robustness, Heterogeneity and Optimization

Krishna Pillutla

Co-chairs of the Supervisory Committee:

Zaid Harchaoui

Department of Statistics

Sham Kakade

Paul G. Allen School of Computer Science & Engineering and Department of Statistics

Artificial intelligence has been shaped by three revolutions in recent years: (1) differentiable program-

ming, the practice of writing programs by chaining parameterized modules and learning these parameters

from data, (2) an explosion of scale, where increasing model size consistently improves performance, and

(3) federated learning, where model training moves to mobile devices, where the data is generated and

resides. This dissertation presents diagnostic methods and new algorithms to measure and improve the

robustness ofmachine learningmodels to heterogeneous operating circumstances across these revolutions.

Differentiable programming and end-to-end learning from examples are challenged by applications

that require combinatorial algorithms as a part of their computations. We overcome this problem with

smoothed versions of combinatorial algorithms and rigorously show how to construct them from the top-

K best outputs. We leverage this smoothing to propose a family of accelerated optimization algorithms

for structured prediction problems.

Further, enormous language models have recently gained the ability to compose clear and coherent

essays that are up to several hundredwords long. We propose a comparison tool that directlymeasures how



close the distribution of generated text is to that of human-written text. We show experimentally that the

proposed measure correlates the strongest with human evaluations of machine text and can quantify many

qualitative properties of machine-generated text, such as the effect of model size and decoding algorithms.

Finally, the move to massively distributed on-device federated learning of models gives rise to new

challenges due to the natural heterogeneity of underlying user data and privacy requirements of model

aggregation. We propose a federated learning method that is robust to corrupted updates sent by malicious

users and proves effective where traditional outlier detection or filtering methods are not applicable due

to privacy requirements. We also propose another federated learning method that improves performance

for users who do not conform to population trends. In both cases, we introduce federated optimization

algorithms that are both communication efficient and privacy-preserving.
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Chapter 1

Introduction

Artificial intelligence is witnessing breakthroughs in diverse applications, ranging from natural language

processing, computer vision, and speech recognition to protein structure prediction and vaccine develop-

ment (LeCun et al., 2015; Hannun et al., 2014; Jumper et al., 2021; Arshadi et al., 2020). These advances are

being ushered in by a resurgence of deep neural networks, and modern machine learning models are en-

abling artificial agents to master challenging tasks, from playing the complex strategic game of Go (Mnih

et al., 2015; Silver et al., 2016) to robot-aided surgery (Kassahun et al., 2016).

The resurgence of neural networks and their rapid rise to ubiquity in everyday life has been driven by

three revolutions: differentiable programming, a massive explosion of scale, and federated learning. The

first revolution enabled deep models to be trained with a variety of modular components in an end-to-

end fashion using automatic differentiation and first-order stochastic optimization. Driven by increased

hardware capacity and unprecedented availability of web-scale data, the second revolution yielded new

and surprising emergent capabilities of machine learning models and striking improvements in existing

abilities to match or even exceed human performance for a variety of tasks. The third revolution, federated

learning, has moved machine learning from the cloud to mobile phones or other decentralized entities,

allowing users to leverage their collective statistical power without explicitly sharing sensitive data.

In the rest of this chapter, we illustrate the paradigm shifts brought in by these three revolutions

through the common lens of language modeling. We then describe the emerging challenges of the robust-

ness of modern machine learning systems in heterogeneous operating environments. We conclude this

chapter with a summary of the chapter-wise contributions of this dissertation in tackling these issues.

1.1 The Three Revolutions

We highlight the impact of each revolution by examining the task of language modeling. Emerging in

the 1970s as an important component of speech recognition systems (Baker, 1975; Jelinek, 1976), language

modeling has been a major driver of progress in natural language processing in recent years (Peters et al.,

2018; Devlin et al., 2019; Brown et al., 2020). Given a previous context of natural language tokens (which

could be words or parts of words), a language model aims to “guess” the next token. Formally, given a

sequence y1, . . . , yt of tokens, a language model P assigns a probability P ( · |y1, . . . , yt) over the next

token yt+1.

11



y1 y2 y3 y4 y5 y6 y1 y2 y3 y4 y5 y6

Figure 1.1: Graphical models depicting the temporal dependence assumptions behind (left) a 3-gram
language model, and (right) modern neural language models based on recurrent neural networks and

transformers.

1.1.1 Differentiable Programming

Differentiable programming refers to the practice of constructing a program by chaining together generic

parameterized functional blocks, which are trained to exhibit the desired behavior from input-output ex-

amples using gradient-based optimization. This approach evolved from the realization that the techniques

employed to train neural networks, namely stochastic gradient optimization with reverse-mode automatic

differentiation (Baydin et al., 2017), also known as backpropagation, could be used to optimize arbitrary

compositions of differentiable functions.

To illustrate the impact of this revolution on language modeling, consider that the dominant approach

to language modeling, from its inception in the 1970s until around 2012, was based on n-grams (e.g.,

Jurafsky and Martin, 2009, Chap. 4). The n-gram model imposes a Markovian assumption of order n− 1,
as depicted in Figure 1.1 (left) and expressed as

P (yt+1 | y1, · · · , yt) = P (yt+1 | yt−n+2, · · · , yt) ,

building upon the seminal works of Markov (1913) and Shannon (1948). Here, the model is simply a

transition matrix, which can be estimated by counting n-grams. The first neural language model of Bengio

et al. (2003) still held the Markovian assumption, but it was parameterized by a non-linear model defined

by a chain of 5 compositions. This assumption was relaxed by Mikolov et al. (2010), who used recurrent

neural networks (Hopfield, 1982; Rumelhart et al., 1986); see also Figure 1.1 (right). Here, each time step

included 5 compositions, but the chain now extended over the time dimension.

These chains of computations gradually grew more complex (Sundermeyer et al., 2015), as illustrated

in Figure 1.2. The next dominant architecture was based on long short-term memory (LSTM) networks

(Hochreiter and Schmidhuber, 1997); each LSTM cell contained 7 successive compositions per time-step.

Similar to RNNs, the computation graph extended over the time dimension. Typical models contained 2-5

LSTM layers stacked atop each other (Peters et al., 2018). As of 2022, the dominant architecture for language

models is the transformer (Vaswani et al., 2017). A transformer block is a chain of 10 compositions, where

all operations are performed in parallel across time. Transformer language models run quite deep, from

12 layers for BERT to 96 for GPT-3.

The overwhelming empirical success of differentiable programming leads to a natural question: can

it be extended to handle problems that are not compositions of elementary differentiable functions? Ex-

amples of such problems include outputs of combinatorial algorithms and nonlinear control (Roulet et al.,

2019), solutions to continuous optimization problems (Domke, 2012; Amos, 2019), and computations in-

cluding stochastic operations (Schulman et al., 2015) or partial differential equations (Chen et al., 2018c;

Ainsworth et al., 2021). These settings require us to define appropriate surrogate objectives or gradient

estimators and show how to implement these algorithms in a computationally efficient manner. Addi-

tional challenges include analyzing their usefulness and reasoning about the convergence of the resulting

12
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Figure 1.2: Evolution in the complexity of language modeling architectures over the decade 2012-2022.

Left: The number of papers published in the NeurIPS conference each year that used RNN/LSTM/trans-

former language models. Papers with the phrases “language model” and “RNN” (resp. “LSTM” and “trans-

former”) at least thrice (case-insensitive) were included in the count. Right: The number n of functions

f1, f2, · · · , fn whose composition f = fn ◦ · · · ◦ f1 makes up a RNN/LSTM/transformer block, as well as

the total number of functional compositions in such a language model. Specifically, we give the counts for

the RNN language model of Mikolov et al. (2010), the LSTM language model ELMo (Peters et al., 2018), and

the transformer language model GPT-3 (Brown et al., 2020). Each component fi is either a linear map (with

no two consecutive fi, fi+1 both linear) or simple non-linear maps, such as component-wise activations,

the softmax function, a product of gates in the LSTM, or layer normalization.

stochastic first-order optimization algorithms.

1.1.2 Explosion of Scale

The differentiable programming revolution was immediately followed by the observation that deeper mod-

els (i.e., longer chains of compositions) with more data consistently improved performance not just in nat-

ural language processing, but also in computer vision (Dosovitskiy et al., 2021), speech processing (Hsu

et al., 2021), andmulti-modal learning (Radford et al., 2021). It was demonstrated that these enormousmod-

els exhibited many remarkable emergent properties for which they were not trained (Bommasani et al.,

2021). For instance, the GPT-2 model (Radford et al., 2019) wrote a long and high-quality essay of text in re-

sponse to a prompt although it was not trained to generate text. The in-context learning of GPT-3 (Brown

et al., 2020), which can be adapted to downstream tasks simply with their natural language description as

a prompt, is another striking example.

Figure 1.3 illustrates the effect of scaling up the model size for language modeling. Recent scaling

studies (Kaplan et al., 2020) show that one attains consistent improvements not just in language modeling

but also in downstream tasks across all these orders of magnitude of model size. For instance, the test loss

L for language modeling itself scales with the model sizeM as

L = a− b logM ,

where a = 4.33 and b = 0.28; this is illustrated in Figure 1.3 (left). Figure 1.3 (center) shows how model

sizes have evolved over the last four years: starting from ELMo and BERT, with 93.6 and 117 million

parameters respectively, to GPT-3, with 175 billion parameters, and Wu Dao 2.0, with a whopping 1.75

trillion parameters (wud, 2021). Likewise, the rightmost plot of Figure 1.3 shows that the amount of data
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Figure 1.3: Scaling of neural language models over 2018-2022. Left: As the model size increases across

orders of magnitude, the performance of themodel at languagemodeling, as measured by the cross entropy

on unseen data, consistently improves. The numbers are taken from (Kaplan et al., 2020). Center & Right:

The size of the recent neural language models (center) and the amount of data they were trained on (right)

have consistently increased across orders of magnitude.

used to train these models has likewise exploded: starting from about 5 gigabytes of text for ELMo and

BERT to 570 gigabytes for GPT-3 and 1.8 terabytes for Megatron Turing-NLG (Smith et al., 2022).

To summarize, large-scale models demonstrate emergent behavior, but there is little understanding of

the mechanism behind this phenomenon. This calls for more research on diagnostic measures as well as

methodologies to understand and channel the emergent behavior for downstream tasks.

1.1.3 Federated Learning

A driving force behind the success of differentiable programming is the widespread access to data. The

amount of data generated by interactions between users and smart devices has exploded with the prolifer-

ation of mobile phones, wearables, and smart appliances – an estimated 6.6 billion people use smartphones

worldwide. Rich user data generated by mobile phones, sensors, or organizations (referred to as clients)
are inherently privacy-sensitive. Laws such as the European Union General Data Protection Regulation

(GDPR) (2016) aim to minimize privacy risks associated with the transfer of such data. Federated learning,
where various clients collaboratively train a model while keeping their data fully decentralized (i.e., at the

client), aims to overcome the data-access barrier.

To illustrate how federated learning changes the usual machine learning pipeline, consider the task

of predicting the next word on a mobile keyboard. Given a context y1, . . . , yt, a standard approach is

to predict the word argmaxy′ P (y
′ | y1, · · · , yt) with the highest probability under a language model P .

The prevailing GBoard model prior to the advent of federated learning was a n-gram language model

trained on data available at the server (Ouyang et al., 2017). A data-hungry deep network such as an

LSTM or transformer requires access to a much larger amount of data; federated learning makes this

possible (Hard et al., 2018). In addition, the language models are trained with cryptographic secure multi-

party computation (Bonawitz et al., 2019) and differential privacy (Kairouz et al., 2021a) to give rigorous

privacy guarantees.

To summarize, federated learning calls for novel algorithmic solutions to emerging problems while

respecting communication constraints of mobile devices and providing rigorous privacy guarantees on

the sensitive user data accessed.
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1.2 Robustness, Heterogeneity, and Optimization: The Challenges

The three revolutions – differentiable programming, the explosion of scale, and federated learning – have

greatly expanded the capabilities and applicability of machine learning models, which continue to grow

in popularity. Across each of these paradigm shifts, however, machine learning systems remain brittle and

exhibit poor robustness when exposed to heterogeneous operating conditions. For example, chatbot Tay

posted a number of inflammatory tweets (Metz, 2018), and modern language models have been shown to

produce racist, sexist, and toxic text (Gehman et al., 2020). Some failures also pose a direct threat to human

life, such as self-driving cars injuring or killing pedestrians (Knight, 2018).

A typical example is the lack of robustness of machine learning systems to “outlier” data at training

time, i.e., data that takes values outside its nominal range. Machine learning pipelines usually include

non-robust operations such as averaging losses or gradients over a minibatch, where an outlier can have

an outsized effect on the resulting aggregate. This can be formalized by the notation of the breakdown

point of an estimator (Donoho and Huber, 1983), which is the fraction of data that must be replaced before

the estimator takes arbitrary values; the arithmetic mean has a breakdown point of zero, meaning that is

susceptible to a single outlier. Further, the massive amounts of data that enormous models are pretrained

on are not always released to the public (e.g., Radford et al., 2019; 2021); the lack of established conven-

tions for data release and sanitization coupled with the tendency of massive models to memorize training

data (Carlini et al., 2021) can lead to undesirable behavior of the resulting model, including on downstream

tasks it is finetuned for (e.g., Schuster et al., 2021). Similarly, in federated learning, this problem is greatly

exacerbated by privacy requirements, which stipulate that the data on, or the updates sent by (potentially

compromised) clients cannot be inspected by the service provider. Across all these settings, solutions to

address robustness are complicated by the presence of data heterogeneity; apparently adversarial outliers

might really be manifestations of heterogeneous inputs.

Machine learning systems also exhibit a lack of robustness at deployment time. Supervised learning

usually assumes that training and test data are drawn from the same distribution. Real data is, however,

heterogeneous, resulting in a violation of this assumption when models are deployed in the real world. In

federated learning, for instance, a model is trained on the average population distribution but deployed

on individual clients that might differ from the population. More generally, machine learning models

have been found to perform poorly on subgroups of data whose distribution is shifted relative to the

training distribution. This can have massive societal consequences when the deployed model exhibits

poor performance on, for instance, minority groups in terms of ethnicity, race, religion, etc. (Buolamwini

and Gebru, 2018; Sap et al., 2019). Enormous pretrained models with the same in-distribution performance

have been found to exhibit a large variance in performance on out-of-distribution data due to factors

as innocuous as a random seed (D’Amour et al., 2020). This is also true when finetuning the model on

downstream tasks.

Yet another source of mismatch between deployment and training conditions is the emergent behavior

from massively scaling up the model size. For instance, while GPT-3 is trained for the task of language

modeling, it can be deployed for a range of natural language tasks by leveraging its emergent in-context

learning. Here, we include a text description of a new task and a few examples in the prompt, and the

resulting output of the model looks like the model had “learned” this new task. This emergent behavior can

fail to be robust to different deployment conditions. For example, small changes in the text of the prompt

for GPT-3, or in the order of the in-context examples can lead to vastly different model behavior (Scao and

Rush, 2021; Lu et al., 2022).

These problems highlight a need for novel diagnostic methods that can quantify the robustness or

lack thereof and the extent and type of heterogeneity, as well as training time solutions that build greater

15



robustness into the model. Solutions of the latter kind often involve nonsmooth objective formulations,

which suffer from slow convergence relative to the usual (non-robust) approach. Nonsmooth optimiza-

tion problems also show up when considering extensions of differentiable programming to handle com-

binatorial algorithms or solutions to other optimization problems. The difficulties associated with slow

convergence are compounded by the need to tune additional smoothing hyperparameters and the lack of

unbiased stochastic gradient estimators in some formulations.

1.3 Motivation, Contributions, and Outline

This thesis addresses specific aspects of robustness and optimization of machine learningmodels to hetero-

geneous environments across each of these three revolutions. It contains five chapters and a conclusion.

1.3.1 Contributions and Dissertation Structure

Chapters 2 and 3: Differentiable Programming and Optimization of Deep Structured Models

Combinatorial algorithms like dynamic programming play an important role in natural language process-

ing and computer vision. This setting is collectively referred to as structured prediction since it involves

the forecast of highly structured objects such as sequences, trees, and lattices. More broadly, combinatorial

algorithms are key to pipelines with a search step, with examples ranging from robotics and simulators to

symbolic reasoning and formal logic. The paradigm of differentiable programming and end-to-end learn-

ing from examples is challenged by applications that require seemingly incompatible computations such

as combinatorial algorithms. Further, typical approaches to learning structured prediction models rely on

nonsmooth optimization algorithms that suffer from slow convergence.

Contributions. In Chapter 2, we investigate smoothed versions of combinatorial algorithms (Pillutla

et al., 2018) in order to make them compatible with differentiable programming. We rigorously show

how to construct smoothed versions of combinatorial algorithms from the top-K best outputs; these K-

best outputs can be computed efficiently with extensions of the combinatorial routines. We leverage this

smoothing to propose a family of accelerated optimization algorithms for structured prediction problems.

This framework, called Casimir, exhibits the optimal rate of n+
√
n/λε (up to constants and polylog fac-

tors) to find an ε-accurate solution for non-smooth and λ-strongly convex problems written as an average

of n functions, while automatically tuning the smoothing parameter. We demonstrate faster optimization

and superior task performance compared to the previous state-of-the-art.

In Chapter 3, we study extensions of Casimir based on the prox-linear approach that make it applicable

to deep learning (Pillutla et al., 2018; 2022c). While such algorithms have been found to exhibit rapid

local convergence, we formalize an example in the statistical setting where rapid local convergence is not

reached before reaching the problem’s noise level. Empirically, we delineate a regime in terms of the signal-

to-noise ratio of the problem where the stochastic subgradient method performs better than approaches

based on the prox-linear algorithm.

Chapter 4: Diagnosing Text Generation Models with MAUVE

A property of enormous language models that emerges from the explosion of scale is open-ended text gen-

eration: models can write remarkably fluent and grammatical essays of text in response to a prompt (gpt,
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2019). Unlike previous generations of models, contemporary models do not commit obvious errors of rep-

etition and syntax; instead, they make subtler errors in semantics, narration, or continuity. Though the

capability of open-ended generation is recent, it has already been widely deployed commercially in the

form of artificial writing assistants, dialog agents, and chatbots.

Open-ended text generation suffers from amismatch between training and deployment conditions: the

model is trained for language modeling, but it is used to generate long-form text. As a consequence, the

resulting model distribution P (y) =
∏T
t=1 P (yt | y1, · · · , yt−1) over sequences y = (y1, · · · , yT ) diverges

significantly from the human distribution over text sequences. This necessitates the use of decoding al-

gorithms as heuristic post hoc fixes to improve the quality of the generated text (Holtzman et al., 2020).

Moreover, due to the open-ended nature of the problem, it is unclear how to quantify the contribution of

the heuristics and the value of the text generation model.

Contributions. In Chapter 4, we present a diagnostic measure, MAUVE, to quantify the “goodness” of

text generation models (Pillutla et al., 2021b). We overcome the challenges posed by open-endedness, i.e.,

a diverse set of continuations are possible by directly comparing the resulting distribution of generated

text to the distribution of human text. We find that MAUVE correlates strongly with human judgments of

how human-like machine-written text is. MAUVE also quantifies several properties of generated text that

were previously observed qualitatively, e.g., the effect of the model size or the decoding algorithm.

Chapters 5 and 6: Robustness and Heterogeneity in Federated Learning

Federated learning is now deployed on a global scale with millions of clients. The practical requirements of

privacy and the natural characteristics of data heterogeneity raise the need for novel algorithmic solutions

that respect the scale and systems requirements of federated learning to classical problems. Robustness

is one such problem: existing secure aggregation routines for privacy preservation make it impossible to

apply traditional outlier detection and filtration methods to defend the system against corrupted updates

sent by malicious clients. Moreover, federated learning suffers from a train-test mismatch due to statistical

heterogeneity. The model is trained to minimize the average error across all clients, but it is deployed on

individual clients whose distributionmight differ from the average, leading to poor predictive performance.

Contributions. In Chapter 5, we study how to make the aggregation process of federated learning robust

to corrupted updates contributed by potentially malicious clients (Pillutla et al., 2022a). In particular, we

propose RFA, a robust aggregation algorithm based on the classical geometric median (a high-dimensional

median analogue), and show how to make it compatible with existing secure aggregation mechanisms for

privacy preservation. We establish convergence guarantees for moderate-to-low data heterogeneity.

In Chapter 6, we address the train-test mismatch of federated learning by minimizing the tail statistics

of the per-user predictive errors (Pillutla et al., 2021a; Laguel et al., 2021a) through a statistical summary

called the superquantile (Rockafellar and Uryasev, 2002). We address the challenges raised by optimiz-

ing a nonsmooth functional such as the superquantile by proposing a federated optimization algorithm

that is compatible with existing secure aggregation mechanisms and differential privacy. We establish

a rate of O(1/ε4) communication rounds in the nonsmooth, nonconvex case for an ε-approximate sta-

tionary point, identical to rates for the usual mean objective in the smooth case. We also establish a

O(κ3/2 log(1/ε) + κ/ε) rate in the nonsmooth but strongly convex case for an ε-approximate minimizer,

where κ is a condition number; this is only slightly worse in a lower order term when compared to the

O(κ log(1/ε) + κ/ε) rate for the usual mean objective in the smooth and strongly convex case. In both
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chapters, we demonstrate empirically that the proposed algorithms outperform several competitive and

state-of-the-art baselines.

Chapter 7: Conclusion

We conclude with a discussion of future research directions that build upon the contributions of this dis-

sertation.

1.3.2 Authorship Details

The work in this dissertation is the result of several research collaborations. Prior publications of the work

contained in this thesis are listed below. Unless stated otherwise, the author of this dissertation is the

primary author of these papers.
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This dissertation does not include work on personalized federated learning (Pillutla et al., 2022b), for

which this dissertation author is the primary author and conducted during an internship. It also does not
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optimization algorithms for objectives based on order statistics (Mehta et al., 2022), and, (4) a formalization

of model revision to edit or unlearn particular model behaviors (Fisher et al., 2022).
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Chapter 2

Casimir: A Smoother Way to Train

Structured Prediction Models

In this chapter, we consider structured prediction, a supervised learning framework to predict discrete data

structures such as sequences, trees, and lattices. Structured prediction is ubiquitous in natural language

processing, computer vision, and speech processing, with applications such as named entity recognition,

machine translation, object detection, and automatic speech recognition.

The enormous size of the output space is a central challenge in structured prediction. For instance, the

number of sequences of length p over a base vocabulary V is |V |p, so that brute-force search is often im-

possible. One overcomes this in practice with efficient combinatorial optimization algorithms, which are

required to interact with continuous optimization algorithms while learning structured prediction mod-

els. In this chapter, we describe how these combinatorial algorithms can be integrated into differentiable

programming pipelines to design smooth and accelerated first-order optimization algorithms.

We focus in particular onmaximummargin structured predictionmodels (Taskar et al., 2004b; Tsochan-

taridis et al., 2004). The usual empirical risk minimization problem arising in this case is

min
w∈Rd

[
F (w) :=

1

n

n∑

i=1

f (i)(w) +
λ

2
∥w∥22

]
, (2.1)

where each f (i) is the structural hinge loss, defined as f (i)(w) = maxy∈Y ψ
(i)(y;w). Here, ψ(i)(y;w)

measures the advantage of choosing y instead of the true label y(i)
for input x(i)

(see Section 2.1 for a

detailed description). This loss attains its minimum value of 0 if the true label y(i)
is the best output to

choose under the model for each training example i = 1, · · · , n. The computation of the structural hinge

loss itself requires searching over the structured output space Y and is a nonsmooth function of the model

parameters, denoted by w ∈ Rd.
Batch nonsmooth optimization algorithms such as cutting plane methods are appropriate for problems

with small or moderate sample sizes (Tsochantaridis et al., 2004; Joachims et al., 2009). Stochastic nons-

mooth optimization algorithms such as stochastic subgradient methods can tackle problems with large

sample sizes (Ratliff et al., 2007; Shalev-Shwartz et al., 2011). However, both families of methods achieve

the typical worst-case complexity bounds of nonsmooth optimization algorithms and cannot easily lever-

age a possible hidden smoothness of the objective.

Furthermore, as significant progress is being made on incremental smooth optimization algorithms for

training unstructured prediction models (Lin et al., 2018), we would like to transfer such advances and de-

sign faster optimization algorithms to train structured prediction models. Indeed if each term in the finite-
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sum were L-smooth, incremental optimization algorithms such as MISO (Mairal, 2013), SAG (Le Roux

et al., 2012; Schmidt et al., 2017), SAGA (Defazio et al., 2014), SDCA (Shalev-Shwartz and Zhang, 2013), and

SVRG (Johnson and Zhang, 2013) could leverage the finite-sum structure of the objective (2.1) and achieve

faster convergence than batch algorithms on large-scale problems.

Incremental optimization algorithms can be further accelerated, either on a case-by-case basis (Shalev-

Shwartz and Zhang, 2014; Frostig et al., 2015; Allen-Zhu, 2017; Defazio, 2016) or using the Catalyst accel-

eration scheme (Lin et al., 2015; 2018), to achieve near-optimal convergence rates (Woodworth and Srebro,

2016). Accelerated incremental optimization algorithms demonstrate stable and fast convergence behavior

on a wide range of problems, in particular for ill-conditioned ones.

We introduce a general framework that allows us to bring the power of accelerated incremental op-

timization algorithms to the realm of structured prediction problems while leveraging differentiable pro-

gramming. We seek primal optimization algorithms, as opposed to saddle-point or primal-dual optimiza-

tion algorithms, in order to be able to tackle structured prediction models with affine mapping as well

as deep structured prediction models with nonlinear mappings. We show how to overcome the inherent

nonsmoothness of the objective while still being able to rely on efficient inference algorithms. The key

contributions of the chapter are as follows.

Smooth Inference Oracles. We introduce a notion of smooth inference oracles that gracefully fits the

framework of black-box first-order optimization. While the exp inference oracle reveals the rela-

tionship between max-margin and probabilistic structured prediction models, the top-K inference

oracle can be efficiently computed using simple modifications of efficient inference algorithms in

many cases of interest.

Incremental Optimization Algorithms. We present a new algorithm built on top of SVRG, blending an

extrapolation scheme for acceleration and an adaptive smoothing scheme. We establish the worst-

case complexity bounds of the proposed algorithm, which equal or improve over the state-of-the-art,

as shown in Table 2.1. Finally, we demonstrate its effectiveness compared to competing algorithms

on two tasks, namely named entity recognition and visual object localization.

The code is publicly available as a software library called Casimir1. We start this chapter with a re-

view of structured prediction in Section 2.1. We discuss smoothing for structured prediction in Section 2.2.

We define and study the properties of inference oracles in Section 2.3 and describe efficient combinatorial

algorithms to implement the inference oracles in Section 2.4. Then, we switch gears to study acceler-

ated incremental algorithms in the convex case in Section 2.5; we study the extensions of the algorithms

to deep structured prediction in Chapter 3. Finally, we evaluate the proposed algorithms on two tasks,

namely named entity recognition and visual object localization in Section 2.6. Finally, we review related

work in Section 2.7 and conclude the chapter with future directions in Section 2.8.

2.1 Background

Structured prediction refers to a supervised learning setting where we aim to predict a structured object

y ∈ Y such as a sequence or a lattice, from an input x ∈ X . More concretely, we aim to search for score
functions ϕ parameterized by w ∈ Rd that model the compatibility of input x ∈ X and output y ∈ Y as

1https://github.com/krishnap25/casimir
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Table 2.1: Convergence rates, given in terms of the number of calls to various oracles, for different optimization

algorithms on the learning problem (2.1) for maximummargin structured prediction with linear ψ(i)(·;w). The rates
are specified in terms of the target accuracy ε, the number of training examples n, the regularization λ, the size of

the structured space |Y|, the maximum feature normR = maxy∈Y,i∈[n] ∥ψ(i)(y;w)∥2 and R̃ ≥ R (see Remark 2.24

for explicit form). The rates are specified up to constants and factors logarithmic in the problem parameters. The

dependence on the initial error is ignored. * denotes algorithms that make O(1) oracle calls per iteration.

Algo. (exp oracle) # Oracle calls

Exponentiated

gradient*

(Collins et al., 2008)

(n+ log |Y|)R2

λε

Excessive gap

reduction

(Zhang et al., 2014)

nR

√
log |Y|
λε

Proposition 2.25*,

entropy smoother

√
nR2 log|Y|

λε

Proposition 2.26*,

entropy smoother

n+
R2 log|Y|

λε

Algo. (max oracle) # Oracle calls

BMRM

(Teo et al., 2009)

nR2

λε

QP 1-slack

(Joachims et al., 2009)

nR2

λε

Stochastic

subgradient*

(Shalev-Shwartz et al., 2011)

R2

λε

Block-Coordinate

Frank-Wolfe*

(Lacoste-Julien et al., 2013)

n+
R2

λε

Algo.

(top-K oracle)

# Oracle calls

Proposition 2.25*,

ℓ22 smoother

√
nR̃2

λε

Proposition 2.26*,

ℓ22 smoother

n+
R̃2

λε

ϕ(x,y;w). Given such a score function, we can make predict the best output for a given input x as

y∗(x;w) ∈ argmax
y∈Y

ϕ(x,y;w) . (2.2)

This is also known as the inference problem.

The key challenge in structured prediction is that the output space Y is typically too large for a brute-

force search. This is overcome in practice by modeling the structure of the outputs in a manner that the

inference problem (2.2) can be computed (or approximated) efficiently by combinatorial algorithms.

In this section, we discuss modeling structured prediction problems with graphical models and then

discuss the learning problem. Controlling the computation complexity of the inference problem will be a

key theme we shall keep returning to throughout this chapter.

2.1.1 Structured Prediction: Modeling and Inference

A structured prediction model aims to capture the interdependence between the various components of an

output y = (y1, · · · , yp). In this chapter, we consider modeling the output structure through a graphical

model G = (V, E). The nodes V = {1, · · · , p} represent the components of the output y while the edges

E define the dependencies between various components. The value of each component yv for v ∈ V
represents the state of the node v and takes values from a finite set Yv . The set of all output structures
Y = Y1 × · · · × Yp is finite but exponentially large in the number p of components.

The structure of the graph (i.e., its edge structure) depends on the task. For the task of sequence

labeling, the graph is a chain (Figure 1.1, left), while for the task of parsing, the graph is a tree. On the

other hand, the graph used in image segmentation is a grid. As we shall see, the techniques in this chapter

are most effective when the structure of the graph admits efficient combinatorial search algorithms. This

precludes examples such as the complete graph (Figure 1.1, right) that are used in autoregressive neural

language models — we shall return to this setting in Chapter 4.
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In this chapter, we consider score functions that decompose over the nodes and edges of the graph as

ϕ(x,y;w) =
∑

v∈V
ϕv(x, yv;w) +

∑

(v,v′)∈E

ϕv,v′(x, yv, yv′ ;w) . (2.3)

For a fixed w, each input x defines a specific compatibility function ϕ(x, · ;w). The nature of the

learning problem and the corresponding optimization algorithms we consider hinge upon whether ϕ is an

affine function of w or not. We consider two settings in this dissertation:

(a) Pre-defined Feature Map. In this structured prediction framework, a pre-specified feature map Φ :
X × Y → Rd is employed and the score ϕ is defined as the linear function

ϕ(x,y;w) = ⟨Φ(x,y),w⟩ =
∑

v∈V
⟨Φv(x, yv),w⟩+

∑

(v,v′)∈E

⟨Φv,v′(x, yv, yv′),w⟩ . (2.4)

(b) Learning the Feature Map. We also consider the setting where the feature map Φ is parameterized

byw0, for example, using a neural network, and is learned from the data. The score function can then

be written as

ϕ(x,y;w) = ⟨Φ(x,y;w0),w1⟩ (2.5)

where w = (w0,w1) and the scalar product decomposes into nodes and edges as above.

This framework captures both generative probabilistic models such as HiddenMarkovModels (HMMs)

that model the joint distribution between x and y as well as discriminative probabilistic models, such as

conditional random fields (LeCun et al., 1998; Lafferty et al., 2001) where dependencies among the input

variables x do not need to be explicitly represented. In these cases, the log joint and conditional probabil-

ities respectively play the role of the score ϕ.

Example 2.1 (Sequence Tagging). Consider the task of sequence tagging in natural language processing

where each x = (x1, · · · , xp) ∈ X is a sequence of words and y = (y1, · · · , yp) ∈ Y is a sequence of

labels, both of length p. Common examples include part-of-speech tagging and named entity recognition.

Each word xv in the sequence x comes from a finite dictionary D, and each tag yv in y takes values from

a finite set Yv = Ytag. The corresponding graph is simply a linear chain.

The score function measures the compatibility of a sequence y ∈ Y for the input x ∈ X using param-

eters w = (wunary,wpair) as, for instance,

ϕ(x,y;w) =

p∑

v=1

⟨Φunary(xv, yv),wunary⟩+
p∑

v=0

⟨Φpair(yv, yv+1),wpair⟩ ,

where, using wunary ∈ R|D||Ytag|
and wpair ∈ R|Ytag|2

as node and edge weights respectively, we define

for each v ∈ [p],

⟨Φunary(xv, yv),wunary⟩ =
∑

x∈D, j∈Ytag

wunary, x,j I(x = xv) I(j = yv) .

The pairwise term ⟨Φpair(yv, yv+1),wpair⟩ is analogously defined. Here, y0, yp+1 are special “start” and

“stop” symbols respectively. This can be written as a dot product ofw with a pre-specified feature map as

in (2.4), by defining

Φ(x,y) =
( p∑

v=1

exv ⊗ eyv
)
⊕
( p∑

v=0

eyv ⊗ eyv+1

)
,

where exv is the unit vector (I(x = xv))x∈D ∈ R|D|
, eyv is the unit vector (I(j = yv))j∈Ytag ∈ R|Ytag|

, ⊗
denotes the Kronecker product between vectors and ⊕ denotes vector concatenation.
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Inference with Combinatorial Algorithms. As mentioned earlier, the inference problem (2.2) cannot

typically be solved by brute-force search because the size m = |Y| of the output space is exponentially
large in the size p of each output structure. For sequences, the inference problem can be solved with

the famous dynamic programming algorithm of Viterbi (1967). The Viterbi algorithm maintains a table

πv(yv) with the score of the best possible length-v sequence ending in yv . Starting with a base case of

π1(y1) = ϕ1(x, y1;w) for each label y1, this table can be recursively updated as

πv(yv) = ϕv(x, yv;w) + max
yv−1

{πv−1(yv−1) + ϕv,v−1(x, yv, yv−1;w)} .

The maximum value can be obtained from

max
y∈Y

ϕ(x,y;w) = max
yp

πp(yp) ,

and the maximizer y∗(x;w) can be reconstructed by tracing the maximizers in the recursion (using an-

other table of back-pointers). Assuming each label yv can take r different values, the Viterbi algorithm

runs in time O(pr2) and requires space O(pr), compared to O(rp) time for brute-force search.

More generally, the max-product algorithm generalizes the Viterbi algorithm to tree structures (Pearl,

1988). Other combinatorial algorithms such as branch and bound search, minimum graph cuts, or bipartite

matching might be applicable, depending on the graph structure.

2.1.2 Learning Structured Prediction Models

Given a dataset of n input-output pairs (x(i),y(i)), the learning problem in structured prediction consists

in finding model parametersw such that the inferred prediction y∗(x(i);w) ≈ y(i)
for i = 1, · · · , n. The

approximation in “≈” is quantified by a task loss ℓ : Y × Y → R, such as the Hamming loss for sequence

prediction. An ideal learning procedure would aim to find the parameters w so as to minimize the task

loss over the training dataset:

inf
w∈Rd

1

n

n∑

i=1

ℓ

(
y(i), argmax

y∈Y
ϕ(x(i),y;w)

)
. (2.6)

Since this objective is piecewise constant in the parameters (due to the argmax), it is not amenable to

first-order optimization algorithms.

In this chapter, we focus on a surrogate to the task loss, known as the structural hinge loss (Altun et al.,

2003; Taskar et al., 2004a; Tsochantaridis et al., 2004). It is defined on an input-output pair (x(i),y(i)) as

f (i)(w) = max
y∈Y

{
ψ(i)(y;w) := ϕ(x(i),y;w) + ℓ(y(i),y)− ϕ(x(i),y(i);w)

}
. (2.7)

The maximization over Y within the definition of f (i) is known as loss-augmented inference, and we refer

to ψ(i)
as the augmented score function. The combinatorial algorithms to solve the inference problem (2.2)

can also handle this maximization, provided the task loss ℓ decomposes along the nodes V and edges E of
the graph G = (V, E) defining the output structure.

With the structural hinge loss as the surrogate, the optimization problem of interest is the usual em-

pirical risk minimization problem

min
w∈Rd

{
F (w) :=

1

n

n∑

i=1

f (i)(w) +
λ

2
∥w∥22

}
, (2.8)

where λ ≥ 0 is a regularization parameter.
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2.1.3 Notation Review

Vectors are denoted by bold lowercase characters asw ∈ Rd while matrices are denoted by bold uppercase

characters asA ∈ Rd×n. For a matrixA ∈ Rm×n
, define the norm for α, β ∈ {1, 2,∞},

∥A∥β,α = max{⟨y,Ax⟩ | ∥y∥α ≤ 1 , ∥x∥β ≤ 1} . (2.9)

For any function f : Rd → R ∪ {+∞}, its convex conjugate f∗ : Rd → R ∪ {+∞} is defined as

f∗(z) = sup
w∈Rd

{⟨z,w⟩ − f(w)} .

A function f : Rd → R is said to beL-smoothwith respect to an arbitrary norm ∥·∥ if it is continuously
differentiable and its gradient ∇f is L-Lipschitz with respect to ∥·∥. When left unspecified, ∥·∥ refers to
∥ · ∥2. Given a continuously differentiable map g : Rd → Rm, its Jacobian ∇g(w) ∈ Rm×d

at w ∈ Rd is
defined so that its (i, j)th entry is [∇g(w)]ij = ∂gi(w)/wj where gi is the i

th
element of g and wj is the

jth element of w. A vector-valued function g : Rd → Rm is said to be L-smooth with respect to ∥·∥ if it
is continuously differentiable and its Jacobian∇g is L-Lipschitz with respect to ∥·∥.

For a vector z ∈ Rm, z(1) ≥ · · · ≥ z(m) refer to its components enumerated in non-increasing order

where ties are broken arbitrarily. Further, we let z[k] = (z(1), · · · , z(k)) ∈ Rk denote the vector of the k
largest components of z. We denote by∆m−1

the standard probability simplex inRm. When the dimension

is clear from the context, we shall simply denote it by ∆. Moreover, for a positive integer p, [p] refers to
the set {1, . . . , p}. Lastly, Õ in the big-O notation hides factors logarithmic in problem parameters.

Throughout we consider a finite output set Y with |Y| = m. For some fixed bijection σ : Y → [m],
we let yth

component uy of a vector u ∈ Rm to refer to the σ(y)th component uσ(y).

2.2 Smooth Structured Prediction

Recall that we defined the structural hinge loss w.r.t. a fixed input-output pair (x(i),y(i)
) as (dropping the

index i for simplicity)

f(w) = max
y∈Y

ψ(y;w) , (2.10)

where ψ is the augmented score function. The task loss ℓ is assumed to possess appropriate structure so

that the maximization inside (2.10), known as loss-augmented inference, is no harder than the inference

problem in (2.2).

When the map w 7→ ψ(y;w) is affine, the structural hinge loss f and the objective F from (2.1) are

both convex — we refer to this case as the structural support vector machine. When w 7→ ψ(y;w) is a
nonlinear but smooth map, then the structural hinge loss f and the objective F are nonconvex.

2.2.1 Smoothing Strategy

We first rewrite the structural hinge loss as a composition

g :

{
Rd → Rm

w 7→ (ψ(y;w))y∈Y ,
h :

{
Rm → R
z 7→ maxi∈[m] zi,

(2.11)

wherem = |Y| so that the structural hinge loss reads

f(w) = h ◦ g(w) . (2.12)
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The nonsmoothness of the structural hinge loss arises from the nonsmoothness of the max function h. Any
nonsmooth convex function can be smoothed taking its infimal convolution with a smooth function (Nes-

terov, 2005b; Beck and Teboulle, 2012). Its dual representation leads to the smoothing hµω of h with a

strongly convex function ω : domh∗ → R and a smoothing parameter µ > 0 as

hµω(z) = max
u∈domh∗

{⟨u, z⟩ − h∗(u)− µω(u)} .

Its gradient hµω(z) is simply the maximizer in the expression above; see Appendix A.1 for a review. We

smooth the structural hinge loss (2.12) by simply smoothing the non-smooth max function h as

fµω = hµω ◦ g.

When g is smooth and Lipschitz continuous, fµω is a smooth approximation of the structural hinge loss,

whose gradient is readily given by the chain rule. The smoothing parameter µ controls both the approxi-

mation quality and the smoothness. For any µ1 ≥ µ2 ≥ 0, we have the approximation error bound

(µ1 − µ2) min
u∈∆m−1

ω(u) ≤ fµ2ω(w)− fµ1ω(w) ≤ (µ1 − µ2) max
u∈∆m−1

ω(u) . (2.13)

Next, we turn to smoothness. When ω is 1-strongly convex w.r.t. ∥·∥α, and g is an affine map g(w) =
Aw+b, it follows that fµω is (∥A∥2β,α/µ)-smooth with respect to ∥ · ∥β (cf. Lemma A.3 in Appendix A.1).

2.2.2 Smoothing Variants

In the context of smoothing the max function, we now describe two popular choices for the smoothing

function ω, followed by computational considerations.

Entropy and ℓ22 smoothing. When h is the max function, the smoothing operation can be computed

analytically for the entropy smoother and the ℓ22 smoother, denoted respectively as

−H(u) := ⟨u, logu⟩ and ℓ22(u) :=
1
2(∥u∥22 − 1) .

These lead respectively to the log-sum-exp function (Nesterov, 2005b, Lemma 4)

h−µH(z) = µ log

(
m∑

i=1

ezi/µ

)
, ∇h−µH(z) =

[
ezi/µ∑m
j=1 e

zj/µ

]

i=1,...,m

,

and an orthogonal projection onto the simplex,

hµℓ22(z) = ⟨z, proj∆m−1(z/µ)⟩ − µ
2∥ proj∆m−1(z/µ)∥2 + µ

2 , ∇hµℓ22(z) = proj∆m−1(z/µ) .

Furthermore, (2.13) translates, for all µ1 ≥ µ2 ≥ 0, to,

0 ≤ h−µ1H(z)− h−µ2H(z) ≤ (µ1 − µ2) logm, and, 0 ≤ hµ1ℓ22(z)− hµ2ℓ22(z) ≤
1
2(µ1 − µ2) .
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Top-K Strategy. Though the gradient of the composition fµω = hµω ◦ g can be written using the chain

rule, its actual computation for structured prediction problems involves computing ∇g over all m = |Y|
of its components, which may be intractable. However, in the case of ℓ22 smoothing, projections onto the

simplex are sparse, as pointed out by the following proposition.

Proposition 2.2. Consider the Euclidean projection u∗ = argminu∈∆m−1 ∥u− z/µ∥22 of z/µ ∈ Rm onto
the simplex, where µ > 0. The projection u∗ has exactly k ∈ [m] non-zeros if and only if

k∑

i=1

(
z(i) − z(k)

)
< µ ≤

k∑

i=1

(
z(i) − z(k+1)

)
, (2.14)

where z(1) ≥ · · · ≥ z(m) are the components of z in non-decreasing order and z(m+1) := −∞. In this case,
u∗ is given by

u∗i = max

{
0, 1

kµ

k∑

j=1

(
zi − z(j)

)
+ 1

k

}
.

Proof. The projection u∗
satisfies u∗i = (zi/µ+ ρ∗)+, where ρ

∗
is the unique solution of ρ in the equation

(Held et al., 1974)

m∑

i=1

(
zi
µ

+ ρ

)

+

= 1 , (2.15)

where α+ = max{0, α} (e.g., Held et al., 1974). Note that z(i)/µ + ρ∗ ≤ 0 implies that z(j)/µ + ρ∗ ≤ 0
for all j ≥ i. Therefore u∗

has k non-zeros if and only if z(k)/µ+ ρ∗ > 0 and z(k+1)/µ+ ρ∗ ≤ 0.
Now suppose that u∗

has exactly k non-zeros, we can then solve (2.15) to obtain ρ∗ = φk(z/µ), which
is defined as

φk

(
z

µ

)
:=

1

k
− 1

k

k∑

i=1

z(i)

µ
. (2.16)

Plugging in the value of ρ∗ in z(k)/µ+ ρ∗ > 0 gives µ >
∑k

i=1

(
z(i) − z(k)

)
. Likewise, z(k+1)/µ+ ρ∗ ≤ 0

gives µ ≤∑k
i=1

(
z(i) − z(k+1)

)
.

Conversely assume (2.14) and let ρ̂ = φk(z/µ). Eq. (2.14) can be written as z(k)/µ + ρ̂ > 0 and

z(k+1)/µ + ρ̂ ≤ 0. Furthermore, we verify that ρ̂ satisfies Eq. (2.15), and so ρ̂ = ρ∗ is its unique root. It

follows, therefore, that the sparsity of u∗
is k.

Thus, the projection of z/µ onto the simplex picks out some number Kz/µ of the largest entries of

z/µ — we refer to this as the sparsity of proj∆m−1(z/µ). This fact motivates the top-K strategy: given
µ > 0, fix an integerK a priori and consider as surrogates for hµℓ22 and ∇hµℓ22 respectively

hµ,K(z) := max
u∈∆K−1

{〈
z[K],u

〉
− µℓ22(u)

}
, and, ∇̃hµ,K(z) := ΩK(z)⊤ proj∆K−1

(
z[K]

µ

)
,

where z[K] denotes the vector composed of theK largest entries of z and ΩK : Rm → {0, 1}K×m
defines

their extraction, i.e., ΩK(z) = (e⊤j1 , . . . , e
⊤
jK

)⊤ ∈ {0, 1}K×m
where j1, · · · , jK satisfy zj1 ≥ · · · ≥ zjK

such that z[K] = ΩK(z)z . A surrogate of the ℓ22 smoothing is then given by

fµ,K := hµ,K ◦ g , and, ∇̃fµ,K(w) := ∇g(w)⊤∇̃hµ,K(g(w)) . (2.17)
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Exactness of Top-K Strategy. We say that the top-K strategy is exact at z for µ > 0 when it recovers

the first order information of hµℓ22 , i.e., when hµℓ22(z) = hµ,K(z) and ∇hµℓ22(z) = ∇̃hµ,K(z). The next
proposition outlines when this is the case. Note that if the top-K strategy is exact at z for a smoothing

parameter µ > 0 then it will be exact at z for any µ′ < µ.

Proposition 2.3. The top-K strategy is exact at z for µ > 0 if

µ ≤
K∑

i=1

(
z(i) − z(K+1)

)
. (2.18)

Moreover, for any fixed z ∈ Rm such that the vector z[K+1] = ΩK+1(z)z has at least two unique elements,
the top-K strategy is exact at z for all µ satisfying 0 < µ ≤ z(1) − z(K+1).

Proof. First, we note that the top-K strategy is exactwhen the sparsityKz/µ of the projection proj∆m−1(z/µ)
satisfiesKz/µ ≤ K . From Proposition 2.2, the condition thatKz/µ ∈ {1, 2, · · · ,K} happens when

µ ∈
K⋃

k=1

(
k∑

i=1

(
z(i) − z(k)

)
,

k∑

i=1

(
z(i) − z(k+1)

)
]
=

(
0,

K∑

i=1

(
z(i) − z(K+1)

)
]
,

since the intervals in the union are contiguous. This establishes (2.18).

The only case when (2.18) cannot hold for any value of µ > 0 is when the right hand size of (2.18) is

zero. In the opposite case when z[K+1] has at least two unique components, or equivalently, z(1)−z(K+1) >
0, the condition 0 < µ ≤ z(1) − z(K+1) implies (2.18).

If the top-K strategy is exact at g(w) for µ, then

fµ,K(w) = fµℓ22(w) and ∇̃fµ,K(w) = ∇fµℓ22(w) ,

where the latter follows from the chain rule. When used instead of ℓ22 smoothing in the algorithms pre-

sented in Section 2.5, the top-K strategy provides a computationally efficient heuristic to smooth the

structural hinge loss. Though we do not have theoretical guarantees using this surrogate, experiments

presented in Section 2.6 show its efficiency and its robustness to the choice ofK .

Gobal and Local Smoothness Bounds. Consider the case of affine inner functions g(w) = Aw +
b, where A ∈ Rd×m. For entropy smoothing f−µH , we get a global bound on the smoothness as (cf.

Lemma A.3 in Appendix A.1)

L−µH =
∥A∥22,1
µ

= max
i=1,··· ,m

∥ai∥22
µ

,

where a1, · · · ,am are the rows of A. On the other hand, for ℓ22, the corresponding global smoothness

bound is

L−µℓ22 =
∥A∥22,2
µ

.

Note that ∥A∥2,2 is the spectral norm of A, and we have the relation ∥A∥2,1 ≤ ∥A∥2,2 ≤ m ∥A∥2,1.
However, this global bound can be quite loose locally due to the sparsity of ℓ22 smoothing. A careful

analysis can give a tighter local smoothness bound of Kw L−µH in the neighborhood of w, where Kw is

the sparsity of the projection proj∆m−1(
(
Aw + b)/µ

)
.
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Lemma 2.4. Let h(z) = maxj∈[m] zj be the max function and let hµ ≡ hµℓ22 denote its Euclidean smoothing.
Let gj : Rd → R be Bj-Lipschitz and Lj-smooth w.r.t. ∥ · ∥2 for j ∈ [m] and define g = (g1, · · · , gm) :
Rd → Rm. Further, for any w ∈ Rd, let

S(w) = {j ∈ [m] : [∇hµ(g(w))]j ̸= 0} =
{
j ∈ [m] : [proj∆m−1(g(w)/µ)]j

}
.

Then, we have for any w,w′ ∈ Rd that

∥∇(hµ ◦ g)(w)−∇(hµ ◦ g)(w′)∥2 ≤



( ∑

j∈S(w)∪S(w′)

B2
j

)1/2
+ max
j∈[m]

Lj


 ∥w −w′∥2

≤
(∣∣S(w) ∪ S(w′)

∣∣ max
j∈m

Bj +max
j∈m

Lj

)
∥w −w′∥2 .

As a consequence, hµ ◦ g is globally
(

1
µ

∑m
j=1B

2
j +maxj∈[m] Lj

)
-smooth w.r.t. ∥ · ∥2 over Rd.

The proof of this lemma is given in Appendix A.1.

2.3 Inference Oracles

We now define inference oracles as first order oracles in structured prediction. These are used later to

understand the information-based complexity of optimization algorithms.

First Order Oracles in Structured Prediction. A first order oracle for a function f : Rd → R is a

routine which, given a point w ∈ Rd, returns on output a value f(w) and a (sub)gradient v ∈ ∂f(w),
where ∂f is the Fréchet (or regular) subdifferential (Rockafellar and Wets, 2009, Def. 8.3). We now define

inference oracles as first order oracles for the structural hinge loss f and its smoothed variants fµω . Note
that these definitions are independent of the graphical structure. However, as we shall see, the graphical

structure plays a crucial role in the implementation of the inference oracles.

Definition 2.5. Consider an augmented score function ψ, a level of smoothing µ > 0 and the structural

hinge loss f(w) = maxy∈Y ψ(y;w). For a given w ∈ Rd,

(i) the max oracle returns f(w) and v ∈ ∂f(w).

(ii) the exp oracle returns f−µH(w) and∇f−µH(w).

(iii) the top-K oracle returns fµ,K(w) and ∇̃fµ,K(w) as surrogates for fµℓ22(w) and ∇fµℓ22(w) respec-
tively.

Note that the exp oracle gets its name since it can be written as an expectation over all y, as revealed by

the next lemma, which gives analytical expressions for the gradients returned by the oracles.

Lemma 2.6. Consider the setting of Definition 2.5. We have the following:

(i) For any y∗ ∈ argmaxy∈Y ψ(y;w), we have that ∇wψ(y
∗;w) ∈ ∂f(w). That is, the max oracle can

be implemented by inference.
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She sells sea shells

(a) Non-smooth.

She sells sea shells

(b) ℓ22 smoothing.

She sells sea shells

(c) Entropy smoothing.

Figure 2.1: Viterbi trellis for a chain graph with p = 4 nodes and 3 labels.

(ii) The output of the exp oracle satisfies ∇f−µH(w) =
∑

y∈Y Pψ,µ(y;w)∇ψ(y;w), where

Pψ,µ(y;w) =
exp

(
1
µψ(y;w)

)

∑
y′∈Y exp

(
1
µψ(y

′;w)
) .

(iii) The output of the top-K oracle satisfies ∇̃fµ,K(w) =
∑K

i=1 u
∗
ψ,µ,i(w)∇ψ(y(i);w) , where YK ={

y(1), · · · ,y(K)

}
is the set ofK largest scoring outputs satisfying

ψ(y(1);w) ≥ · · · ≥ ψ(y(K);w) ≥ max
y∈Y\YK

ψ(y;w) ,

and u∗
ψ,µ = proj∆K−1

([
ψ(y(1);w), · · · , ψ(y(K);w)

]⊤).

Proof. Part (ii) deals with the composition of differentiable functions, and follows from the chain rule.

Part (iii) follows from the definition in Eq. (2.17). The proof of Part (i) follows from the chain rule for

Fréchet subdifferentials of compositions (Rockafellar and Wets, 2009, Theorem 10.6) together with the fact

that by convexity and Danskin’s theorem (Bertsekas, 1999, Proposition B.25), the subdifferential of the max

function is given by ∂h(z) = conv{ei | i ∈ [m] such that zi = h(z)}.

Example 2.7. Consider the task of sequence tagging from Example 2.1. The inference problem (2.2) is

a search over all |Y| = |Ytag|p label sequences. For chain graphs, this is equivalent to searching for the

shortest path in the associated trellis, shown in Figure 2.1. An efficient dynamic programming approach

called the Viterbi algorithm (Viterbi, 1967) can solve this problem in space and time polynomial in p and
|Ytag|. The structural hinge loss is non-smooth because a small change in w might lead to a large change

in the best scoring path shown in Figure 2.1.

When smoothing f with ω = ℓ22, the smoothed function fµℓ22 is given by a projection onto the simplex,

which picks out some numberKψ/µ of the highest scoring outputs y ∈ Y or equivalently,Kψ/µ shortest

paths in the Viterbi trellis (Figure 2.1b). The top-K oracle then uses the top-K strategy to approximate

fµℓ22 with fµ,K .

On the other hand, with entropy smoothing ω = −H , we get the log-sum-exp function and its gra-

dient is obtained by averaging over paths with weights such that shorter paths have a larger weight (cf.

Lemma 2.6(ii)). This is visualized in Figure 2.1c.
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Top-K Oracle and Differentiable Programming. The computation of ∇̃fµ,K of the top-K oracle

within a differentiable programming framework is straightforward. First, we obtainYK = {y(1), · · · ,y(K)}
with efficient combinatorial algorithms that we describe in the upcoming section. Second, we calculate

u∗
ψ,µ by projecting the top-K scores ψ(y(i);w) on the simplex — this operation can be hidden from the

automatic differentiation engine, e.g., with torch.no_grad() in PyTorch. Finally, we compute the

linear combination fµ,K(w) =
∑K

i=1 u
∗
ψ,µ,iψ(y(i));w) so that the gradient ∇fµ,K(w) can be directly

obtained using a automatic differentiation.

Exp Oracles and Conditional Random Fields. Recall that a Conditional Random Field (CRF) (LeCun
et al., 1998; Lafferty et al., 2001) with augmented score function ψ and parametersw ∈ Rd is a probabilistic
model that assigns to output y ∈ Y the probability

P(y | ψ;w) = exp (ψ(y;w)−Aψ(w)) , (2.19)

where Aψ(w) is known as the log-partition function, a normalizer so that the probabilities sum to one.

Gradient-basedmaximum likelihood learning algorithms for CRFs require computation of the log-partition

function Aψ(w) and its gradient ∇Aψ(w). The next proposition relates the computational costs of the

exp oracle and the log-partition function.

Proposition 2.8. The exp oracle for an augmented score function ψ with parametersw ∈ Rd is equivalent in
hardness to computing the log-partition function Aψ(w) and its gradient∇Aψ(w) for a conditional random
field with augmented score function ψ.

Proof. Fix a smoothing parameter µ > 0. Consider a CRF with an augmented score function ψ′(y;w) =
µ−1ψ(y;w). Its log-partition function Aψ′(w) satisfies exp(Aψ′(w)) =

∑
y∈Y exp

(
µ−1ψ(y;w)

)
. The

claim now follows from the bijection f−µH(w) = µAψ′(w) between f−µH and Aψ′ .

2.4 Implementation of Inference Oracles

We now turn to the concrete implementation of the inference oracles. This depends crucially on the struc-

ture of the graph G = (V, E). If the graph G is a tree, then the inference oracles can be computed exactly

with efficient procedures, as we shall see in Section 2.4.1. When the graph G is not a tree, we study special

cases when a specific discrete structure can be exploited to efficiently implement some of the inference

oracles in Section 2.4.2. The results of this section are summarized in Table 2.2.

Setting. Consider a structured output space Y , whose structure is encoded by a graph G = (V, E). In this

section we will construct smooth surrogates tomaxy∈Y ψ(y;w), where ψ : Y ×Rd → R is any function

which decomposes along nodes V and edges E of G as

ψ(y;w) =
∑

v∈V
ψv(yv;w) +

∑

(v,v′)∈E

ψv,v′(yv, yv′ ;w) . (2.20)

This structural hinge loss considered earlier is encompassed by this setting. Indeed, for an input-

output pair (x(i),y(i)), consider the augmented score function ψ(y;w) = ϕ(x(i),y;w) + ℓ(y(i),y) −
ϕ(x(i),y(i);w) it defines, where the index of the sample is dropped by convenience. The decomposition

(2.20) follows from (2.3) and the decomposability of the loss.

To be consistent with the previous notation, we shall continue to call ψ as the augmented score func-

tion. When w is clear from the context, we denote ψ(· ;w) by ψ. Likewise for ψv and ψv,v′ .
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Table 2.2: Smooth inference oracles, algorithms, and complexity. Here, p is the size of each y ∈ Y . The
time complexity is phrased in terms of the time complexity T of the max oracle.

Max oracle Top-K oracle Exp oracle

Algorithm Algorithm Time Algorithm Time

Max-product Top-K max-product O(KT logK) Sum-product O(T )
Graph cut BMMF O(pKT ) Intractable

Graph matching BMMF O(KT ) Intractable

Branch & bound search Top-K search N/A Intractable

2.4.1 Inference Oracles in Trees

We first consider algorithms implementing the inference algorithms in trees and examine their computa-

tional complexity. Since the max oracle in trees is given by dynamic programming, it follows that imple-

mentations of smooth inference oracles show us how to smooth dynamic programming.

Max Oracle. In tree-structured graphical models, the inference problem (2.2), and thus the max oracle

(cf. Lemma 2.6(i)) can always be solved exactly in polynomial time by the max-product algorithm (Pearl,

1988), which uses the technique of dynamic programming (Bellman, 1957). The Viterbi algorithm for chain

graphs from Example 2.7 is a special case.

Top-K Oracle. The top-K oracle uses a generalization of the max-product algorithm that we name top-

K max-product algorithm. It keeps track of the K-best intermediate structures while the max-product

algorithm just tracks the single best intermediate structure (cf. Seroussi and Golmard, 1994). Formally, the

kth largest element from a discrete set S is defined as

max(k)
x∈S

f(x) =

{
kth largest element of {f(y) | y ∈ S} k ≤ |S|
−∞, k > |S| .

We present the algorithm in the simple case of chain structured graphical models in Algorithm 2.1. Note

that it requires Õ(K) times the time and space of the max oracle.

Exp oracle. The relationship of the exp oracle with CRFs (Proposition 2.8) leads directly to Algorithm 2.2,

which is based on marginal computations from the sum-product algorithm.

Remark 2.9. We note that clique trees allow the generalization of the algorithms of this section to general
graphs with cycles. However, the construction of a clique tree requires time and space exponential in the
treewidth of the graph.

Example 2.10. Consider the task of sequence tagging from Example 2.1. The top-K Viterbi algorithm

(Algorithm 2.1) must store in π
(k)
v (yv) the score of k

th
best length-v prefix that ends in yv for each k ∈

[K]. In contrast, the usual Viterbi algorithm (Viterbi, 1967) maintains a table πv(yv), which stores the

best length-v prefix ending in label yv . Here, the entry πv(yv) is updated by looking at the previous
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Algorithm 2.1. Top-K max-product (top-K Viterbi) algorithm for chain graphs

Input: Augmented score function ψ(·, ·;w) defined on chain graph G, integerK > 0.

1: For k = 1, · · · ,K , set π
(k)
1 (y1)← ψ1(y1) if k = 1 and −∞ otherwise for all y1 ∈ Y1.

2: for v = 2, · · · p and k = 1, · · · ,K do

3: For all yv ∈ Yv , set

π(k)v (yv)← ψv(yv) + max(k)
yv−1∈Yv−1,ℓ∈[K]

{
π
(ℓ)
v−1(yv−1) + ψv,v−1(yv, yv−1)

}
. (2.21)

4: Assign to δ
(k)
v (yv), κ

(k)
v (yv) the yv−1, ℓ that attain themax(k) above for each yv ∈ Yv .

5: For k = 1, · · · ,K , set ψ(k) ← max
(k)
yp∈Yp,k∈[K] π

(k)
p (yp) and store in y

(k)
p , ℓ(k) respectively the maxi-

mizing assignments of yp, k.
6: for v = p− 1, · · · 1 and k = 1, · · · ,K do

7: Set y
(k)
v ← δ

(ℓ(k))
v+1

(
y
(k)
v+1

)
and ℓ(k) ← κ

(ℓ(k))
v+1

(
y
(k)
v+1

)
.

8: return

{
ψ(k),y(k) := (y

(k)
1 , · · · , y(k)p )

}K
k=1

.

Algorithm 2.2. Entropy smoothed max-product algorithm

Input: Augmented score function ψ(·, ·;w) defined on tree-structured graph G, µ > 0.
1: Compute the log-partition function and marginals using the sum-product algorithm (e.g. Koller and

Friedman, 2009, Chap. 10)

Aψ/µ, {Pv for v ∈ V}, {Pv,v′ for (v, v′) ∈ E} ← SumProduct

(
1
µψ(· ;w),G

)
.

2: Set f−µH(w)← µAψ/µ and

∇f−µH(w)←
∑

v∈V

∑

yv∈Yv

Pv(yv)∇ψv(yv;w) +
∑

(v,v′)∈E

∑

yv∈Yv

∑

yv′∈Yv′

Pv,v′(yv, yv′)∇ψv,v′(yv;w) .

3: return f−µH(w),∇f−µH(w).

column πv−1. Compare this to update (2.21) of the top-K Viterbi algorithm. In this case, the exp oracle is

implemented by the forward-backward algorithm, a specialization of the sum-product algorithm to chain

graphs.

Complexity of Inference Oracles. The next proposition presents the correctness guarantee and com-

plexity of each of the aforementioned algorithms. The full proofs may be found in (Pillutla et al., 2018,

Appendix B).

Proposition 2.11. Consider as inputs an augmented score function ψ(·, ·;w) defined on a tree-structured
graph G, an integerK > 0 and a smoothing parameter µ > 0.

(i) The output (ψ∗,y∗) of the max-product algorithm (the Viterbi algorithm for the special case when G is
chain structured) satisfies ψ∗ = ψ(y∗;w) = maxy∈Y ψ(y;w). Thus, the pair

(
ψ∗,∇ψ(y∗;w)

)
is a

correct implementation of themax oracle. It requires timeO(pmaxv∈V |Yv|2) and spaceO(pmaxv∈V |Yv|).
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(ii) The output {ψ(k),y(k)}Kk=1 of the top-K max-product algorithm (Algorithm 2.1 for the special case when
G is chain structured) satisfies ψ(k) = ψ(y(k)) = max

(k)
y∈Y ψ(y). Thus, the top-K max-product algo-

rithm followed by a projection onto the simplex (Algorithm A.1 in Appendix A.1) is a correct implemen-
tation of the top-K oracle. It requires time O(pK logKmaxv∈V |Yv|2) and space O(pKmaxv∈V |Yv|).

(iii) Algorithm 2.2 returns
(
f−µH(w),∇f−µH(w)

)
. Thus, Algorithm 2.2 is a correct implementation of the

exp oracle. It requires time O(pmaxv∈V |Yv|2) and space O(pmaxv∈V |Yv|).

Comparison to Differentiable Dynamic Programming. We now compare this form of smoothing to

the differentiable dynamic programming approach (Mensch and Blondel, 2018).

Consider a directed acyclic graph G = (V, E) of N nodes V = {1, · · · , N} and let Pi denote the

set of parents of node i. We make our comparison for a specific parameterization — let w ∈ Rd with

d =
∑n

i=1 |Pi| denote the transition scores. Denoting the score of the edge (j, i) by wj,i, the total score of
a path j1, · · · , jp is then given by wj1,j2 + · · ·+ wjp−1,jp .

The score f(w) of the best path can be computed by dynamic programming. The dynamic program-

ming recursion maintains fi(w), which stores the cost of the best path prefix ending in node i and is

updated as

f0(w) = 0 , fi(w) = max
j∈Pi

{fj(w) + wj,i} , f(w) = fN (w) .

In this parameterization, the ℓ22 smoothing we consider in this chapter depends on the set Y of paths

in the graph G. In general graphs, its sizem = |Y| is exponential inN . LetA : Rd → Rm be a linear map

such that [Aw]j gives score of the j
th
path. Our ℓ22-smoothing is defined as

fµℓ22(w) = max
u∈∆m−1

{
⟨u,Aw⟩ − µ

2
∥w∥22

}
.

In contrast, the differentiable dynamic programming approach of (Mensch and Blondel, 2018) smooths

each step of the dynamic program. In particular, for a smoothing parameter µ > 0, their approach main-

tains fi,µ(w), as the smoothed score of the path prefix ending in node i, given by

f0(w) = 0 ,

fi(w) = max
u∈∆|Pi|−1

{〈
u,
(
fj(w) + wj,i

)
j∈Pi

〉
− µ

2
∥u∥22

}

fDP,µ(w) = fN,µ(w) .

(2.22)

We now compute the smoothness of this smooth variant fDP, see Section A.3 for a proof.

Proposition 2.12. At a smoothing parameter µ > 0, we have that fDP,µ as defined in (2.22) is 1-Lipschitz
globally. Further, it satisfies,

∥∇fDP,µ(w)−∇fDP,µ(w
′)∥2 ≤

1

µ

N∑

i=1

|P ′
i (w) ∪ P ′

i (w
′)| ∥w −w′∥2 ,

where P ′
i (w) denotes the “active” parents of node i at w, i.e., P ′

i (w) =
{
j ∈ Pi : [u

(i)
⋆ (w)]j ̸= 0

}
, where

u
(i)
⋆ (w) denotes the argmax in the definition of fi(w) in (2.22). In particular, fDP,µ is

∑N
i=1 |Pi|/µ-smooth

w.r.t. ∥ · ∥2 globally.
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Overall, the differences between the two approaches can be summarized as:

(a) Approximation Quality: We have, |fDP,µ(w) − f(w)| ≤ Nµ/2 while our ℓ22 smoothing satisfies

|fµℓ22(w)− f(w)| ≤ µ/2. That is, the smoothing considered here is N times tighter. For sequences of

length p over a finite alphabet of size r, we have that N = pr2.

(b) Computational Complexity: The computational complexity of computing fDP,µ(w) and its gradient is

the same as that of the max oracle. However, the complexity of fµℓ22 using the top-K strategy is Õ(K)
times that of the max oracle, since we need to find theK best outputs.

(c) Smoothness: Proposition 2.12 bounds the smoothness of fDP,µ as

∑
i∈[N ] |Pi|/µ. While a worst-case

global bound on the smoothness of fµℓ22 can be much worse, Lemma 2.4 shows that its local behavior

is much better. We have,

∥∇fµℓ22(w)−∇fµℓ22(w
′)∥2 ≤ Kw,w′∥w −w′∥2 ,

where Kw,w′ is the combined size of the supports of the proj∆m−1(Aw/µ) and proj∆m−1(Aw′/µ).
Similarly, the Lipschitz constant of ∇fDP,µ depends locally on the sum of the number of “active par-

ents” for each node. These two quantities do not appear to admit a straightforward comparison.

(d) Generality: The function fDP,µ is tailored to dynamic programs, while the ℓ22 smoothing we consider

is more general and is applicable whenever we have an oracle for the K best solutions of inference.

We see concrete examples for loopy graphs in the next section.

2.4.2 Inference Oracles in Loopy Graphs

For general loopy graphs with high tree-width, the inference problem (2.2) is NP-hard (Cooper, 1990). In

particular cases, graph cut, matching or search algorithms can be used for exact inference in dense loopy

graphs, and therefore, to implement the max oracle as well (cf. Lemma 2.6(i)). In each of these cases, we

find that the top-K oracle can be implemented, but the exp oracle is intractable. We refer to (Pillutla et al.,

2018, Appendix C) for a review of the algorithms and guarantees referenced in this section, as well as full

proofs.

Inference Oracles using Max-Marginals. We recall a max-marginal, which is a constrained maximum

of the augmented score ψ.

Definition 2.13. The max-marginal of ψ relative to a variable yv is defined, for j ∈ Yv as

ψv;j(w) := max
y∈Y : yv=j

ψ(y;w) . (2.23)

In cases where exact inference is tractable using graph cut or matching algorithms, it is possible to extract

max-marginals as well. This, as we shall see next, allows the implementation of the max and top-K oracles.

When the augmented score function ψ is unambiguous, i.e., no two distinct y1,y2 ∈ Y have the same

augmented score, the output y∗(w) is unique and can be decoded from the max-marginals as (Pearl, 1988;

Dawid, 1992)

y∗v(w) = argmax
j∈Yv

ψv;j(w) . (2.24)
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If one has access to an algorithmM that can compute max-marginals, the top-K oracle is also easily

implemented via the Best Max-Marginal First (BMMF) algorithm (Yanover andWeiss, 2004). This algorithm

requires computations of 2K sets of max-marginals, where a set of max-marginals refers to max-marginals

for all yv in y. Therefore, the BMMF algorithm followed by a projection onto the simplex is a correct

implementation of the top-K oracle at a computational cost of 2K sets of max-marginals.

Graph Cut and Matching Inference. Submodular energy functions over binary variables can be ef-

ficiently minimized exactly via a minimum cut algorithm (Kolmogorov and Zabin, 2004), while bipartite

matching can be used for inference in a class of alignment problems (e.g., Taskar et al., 2005). In both these

cases, max-marginals can be computed exactly and efficiently by combinatorial algorithms. This gives us

a way to implement the max and top-K oracles. However, in both settings, computing the log-partition

function Aψ(w) of a CRF with score ψ is known to be #P-complete (Jerrum and Sinclair, 1993). Proposi-

tion 2.8 immediately extends this result to the exp oracle. This discussion is summarized by the following

proposition.

Proposition 2.14. Consider as inputs an augmented score function ψ(·, ·;w), an integer K > 0 and a
smoothing parameter µ > 0. Further, suppose that ψ is unambiguous, that is, ψ(y′;w) ̸= ψ(y′′;w) for all
distinct y′,y′′ ∈ Y . Consider one of the two settings:

(A) the output space Yv = {0, 1} for each v ∈ V , and the function −ψ is submodular, or,

(B) the augmented score corresponds to an alignment task where the inference problem (2.2) corresponds to
a maximum weight bipartite matching.

In these cases, we have the following:

(i) The max oracle can be implemented at a computational complexity of O(p) minimum cut computations
in Case (A), and in time O(p3) in Case (B).

(ii) The top-K oracle can be implemented at a computational complexity of O(pK)minimum cut computa-
tions in Case (A), and in time O(p3K) in Case (B).

(iii) The exp oracle is #P-complete in both cases.

Proposition 2.14 is loose in that the max oracle can be implemented with just one minimum cut com-

putation instead of p in in Case (A) (Kolmogorov and Zabin, 2004).

Branch and Bound Search. Max oracles implemented via search algorithms can often be extended to

implement the top-K oracle. We restrict our attention to the best-first branch and bound search such as

the celebrated Efficient Subwindow Search (Lampert et al., 2008).

Branch and bound methods partition the search space into disjoint subsets while keeping an upper

bound ψ̂ : X × 2Y → R, on the maximal augmented score for each of the subsets Ŷ ⊆ Y . Using a best-

first strategy, promising parts of the search space are explored first. Parts of the search space whose upper

bound indicates that they cannot contain the maximum do not have to be examined further.

The top-K oracle is implemented by simply continuing the search procedure until K outputs have

been produced — see Algorithm A.2 in Appendix A.2. Both the max oracle and the top-K oracle can

degenerate to an exhaustive search in the worst case, so we do not have sharp running time guarantees.

However, we have the following correctness guarantee.
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Proposition 2.15. Consider an augmented score function ψ(·, ·;w), an integer K > 0 and a smoothing
parameter µ > 0. Suppose the upper bound function ψ̂(·, ·;w) : X × 2Y → R satisfies the following
properties:

(a) ψ̂(Ŷ;w) is finite for every Ŷ ⊆ Y ,

(b) ψ̂(Ŷ;w) ≥ max
y∈Ŷ ψ(y;w) for all Ŷ ⊆ Y , and,

(c) ψ̂({y};w) = ψ(y;w) for every y ∈ Y .
Then, we have the following:

(i) Algorithm A.2 withK = 1 is a correct implementation of the max oracle.

(ii) Algorithm A.2 followed by a projection onto the simplex (Algorithm A.1 in Appendix A.1) is a correct
implementation of the top-K oracle.

The discrete structure that allows inference via branch and bound search cannot be leveraged to implement

the exp oracle.

Comparison to SparseMAP. We now compare the ℓ22-smoothing we defined to SparseMAP (Niculae

et al., 2018).

Suppose that the structure of output y ∈ Y is encoded by the graph G = (V, E). The output space
Y is the space of all labelings of the graph G from a base label set Y , so that m = |Y| = |V||Y |. We

consider SparseMAP in the node and edge score parameterization. Let the score of label j for node v ∈ V
be given by parameter wv,j , while the score of the label pair (j, j′) for edge (v, v′) ∈ E be given by

wv,v′,j,j′ , and let w ∈ Rd denote the concatenation of all these node and edge scores into a vector. Note

that d = |V||Y |+ |E||Y |2 is the total dimension. The score of each output configuration y is given by

ψ(y;w) =
∑

v∈V
wv,yv +

∑

v,v′∈E
wv,v′,yv ,yv′ .

Then, the inference problem corresponds to f(w) = maxy∈Y ψ(y;w), and the ℓ22 smoothing we consid-

ered is

fµℓ22(w) = max
u∈∆|Y|−1

{〈
u, (ψ(y;w))y∈Y

〉
− µ

2
∥u∥2

}
,

SparseMAP relies on a vector representation of outputs as the one-hot encoding of each node and edge

— denote this encoding by φ : Y → Rd. The resulting polytope Z = convφ(Y) ⊂ Rd is known as the

marginal polytope. Since the maximum of a linear function over a polytope occurs at one of its vertices,

the inference problem can also be written as

f(w) = max
y∈Y

ψ(y;w) = max
z∈Z
⟨z,w⟩ .

For a smoothing parameter µ > 0, SparseMAP performs the smoothing

fSpMap,µ(w) = max
z∈Z

{
⟨z,w⟩ − µ

2
∥z∥2

}
(2.25)

= max
u∈∆|Y|−1

{〈
u, (ψ(y;w))y∈Y

〉
− µ

2
∥Ey∼u[φ(y)]∥2

}
, (2.26)

where we interpret u ∈ ∆|Y|−1
as a distribution over Y . Note that SpareMAP’s regularization is different

from that of fµℓ22 . We have the following smoothness and approximation properties.
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Proposition 2.16. For a smoothing parameter µ > 0, we have that fSpMap,µ defined in (2.25) over a graph
G = (V, E) is 1-Lipschitz and 1/µ-smooth w.r.t. ∥ · ∥2. Moreover, its approximation quality is

0 ≤ |fSpMap,µ(w)− f(w)| ≤ µ

2
(|V|+ |E|) .

Proof. The Lipschitzness is obvious and smoothness follows from Property A.2. Since the maximum of the

convex function ∥·∥22 over a convex polytopeZ occurs at one of its corners, and each corner of themarginal

polytope is defined by some y ∈ Y (cf. Wainwright and Jordan, 2008), we have from Property A.2that

0 ≤ |fSpMap,µ(w)− f(w)| ≤ µ

2
max
z∈Z
∥z∥22 =

µ

2
max
y∈Y
∥φ(y)∥22 =

µ

2
(|V|+ |E|) .

Note that we used ∥φ(y)∥22 = |V|+ |E| owing to the one-hot representation.

We now give an overall comparison of SparseMAP to our smoothing.

(a) Sparsity: Both formulations have the property of returning a sparse distribution u ∈ ∆|Y|−1
over

outputs. We are unaware of any theoretical bound on the sparsity of SparseMAP, while we bound the

sparsity of the ℓ22 smoothing we consider in Proposition 2.3.

(b) Approximation Quality: Proposition 2.16 gives that |fSpMap,µ(w)− f(w)| ≤ (|V|+ |E|)µ/2, while our
ℓ22 smoothing satisfies |fµℓ22(w) − f(w)| ≤ µ/2. For sequences of length p over a finite alphabet Y ,

we have that fSpMap,µ is a uniform O(p|Y |2µ)-approximation to f .

(c) Computational Complexity: By the use of the top-K strategy and controlling the smoothing parameter

µ, the smoothing fµℓ22 and its gradient can be computed in Õ(K) times the complexity of the max

oracle, where K is a small integer fixed a priori (cf. Table 2.2). On the other hand, SparseMAP is

computed using a fully-corrective variant of the Frank-Wolfe algorithm. To obtain an ε-approximation,

SparseMAP requires at most dγ log(1/ε) calls to a max oracle, where γ ≥ 1 is a constant known as

eccentricity, that depends on the structure of the marginal polytope convφ(Y) ⊂ Rd (Lacoste-Julien
and Jaggi, 2015).

2
For instance, for a sequence of length p from a dictionary Y , the dimensionality

of the representation is d = p|Y | + (p − 1)|Y |2. Thus, the worst-case computational complexity of

SparseMAP is larger than that of fµℓ22 forK = O(p|Y |2). In practice, we find thatK = 5 or 10 suffices,

so this is always the case.

(d) Smoothness: Proposition 2.16 showed that fSpMap,µ is 1/µ-smooth w.r.t. ∥ · ∥2. While a naïve worst-

case bound on the smoothness of fµℓ22 can be much worse, Lemma 2.4 shows that its local behavior is

much better. The Lipschitz constant of∇fµℓ22(w) scales asK/µ, whereK is the sparsity of fµℓ22 atw.

(e) Generality: SparseMAP requires a max oracle and a tractable lower dimensional representation of the

outputs in terms if factor graphs. On the other hand, the top-K strategy to compute fµℓ22 requires a

top-K oracle. While the former appears more general a priori, we show that the latter is implementable

in several cases of interest. We also remark that our approach is applicable when a factor graph rep-

resentation of the outputs is not obvious, e.g., inference by branch and bound search (Lampert et al.,

2008).

2

Determining sharp bounds on the eccentricity of the marginal polytope, which determines the rate of convergence, is an

open problem (Lacoste-Julien and Jaggi, 2015). The eccentricity of the simplex ∆d−1
is d, which is the smallest possible for any

polytope, while that of the unit cube [0, 1]d is d2.
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2.5 Smoothable Convex Optimization: the Casimir Algorithm

We now come back to the optimization problem (2.1) with f (i) defined in (2.12). We assume in this section

that the mappings g(i)
defined in (2.11) are affine. Problem (2.1) now reads

min
w∈Rd

[
F (w) :=

1

n

n∑

i=1

h(A(i)w + b(i)) +
λ

2
∥w∥22

]
. (2.27)

For a single input (n = 1), the problem reads

min
w∈Rd

h(Aw + b) +
λ

2
∥w∥22. (2.28)

where h is a simple non-smooth convex function and λ ≥ 0. Nesterov (2005b;a) first analyzed such

setting: while the problem suffers from its non-smoothness, fast methods can be developed by considering

smooth approximations of the objectives. We combine this idea with the Catalyst acceleration scheme (Lin

et al., 2018) to accelerate a linearly convergent smooth optimization algorithm resulting in a scheme called

Casimir.

2.5.1 Casimir: Catalyst with Smoothing

The Catalyst (Lin et al., 2018) approach minimizes regularized objectives centered around the current it-

erate. It proceeds by computing approximate proximal point steps instead of the classical (sub)-gradient

steps. A proximal point step from a point w with step-size κ−1
is defined as the minimizer of

min
z∈Rm

F (z) +
κ

2
∥z −w∥22, (2.29)

which can also be seen as a gradient step on the Moreau envelope of F — see (Lin et al., 2018) for a detailed

discussion. While solving the subproblem (2.29) might be as hard as the original problem we only require

an approximate solution returned by a given optimization methodM. The Catalyst approach is then an

inexact accelerated proximal point algorithm that carefully mixes approximate proximal point steps with

the extrapolation scheme of Nesterov (1983). The Casimir scheme extends this approach to non-smooth

optimization.

For the overall method to be efficient, subproblems (2.29) must have low complexity. That is, there

must exist an optimization algorithmM that solves them linearly. For the Casimir approach to be able

to handle non-smooth objectives, it means that we need not only to regularize the objective but also to

smooth it. To this end we define

Fµω(w) :=
1

n

n∑

i=1

hµω(A
(i)w + b(i)) +

λ

2
∥w∥22

as a smooth approximation of the objective F , and,

Fµω,κ(w; z) :=
1

n

n∑

i=1

hµω(A
(i)w + b(i)) +

λ

2
∥w∥22 +

κ

2
∥w − z∥22

a smooth and regularized approximation of the objective centered around a given point z ∈ Rd. While the

original Catalyst algorithm considered a fixed regularization term κ, we vary κ and µ along the iterations.

This enables us to get adaptive smoothing strategies.
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The overall method is presented in Algorithm 2.3. We first analyze in Section 2.5.2 its complexity

for a generic linearly convergent algorithmM. Thereafter, in Section 2.5.3, we compute the total com-

plexity with SVRG (Johnson and Zhang, 2013) asM. Before that, we specify two practical aspects of the

implementation: a proper stopping criterion (2.31) and a good initialization of subproblems (Line 3).

Stopping Criterion. We solve subproblem k in Line 3 to a degree of relative accuracy specified by δk ∈
[0, 1). In view of the (λ+κk)-strong convexity of Fµkω,κk(· ; zk−1), the functional gap can be controlled by
the norm of the gradient. In particular, ∥∇Fµkω,κk(ŵ; zk−1)∥22 ≤ (λ+κk)δkκk∥ŵ−zk−1∥22 is a sufficient

condition for the stopping criterion (2.31).

A practical alternate stopping criterion used in (Lin et al., 2018) is to fix an iteration budget Tbudget and
run the inner solverM for exactly Tbudget steps. We do not have a theoretical analysis for this scheme

but find that it works well in experiments.

Warm Start of Subproblems. The rate of convergence of first order optimization algorithms depends

on the initialization and we must warm startM at an appropriate initial point in order to obtain the best

convergence of subproblem (2.30) in Line 3 of Algorithm 2.3. We advocate the use of the prox center zk−1 in

iteration k as the warm start strategy. We also experiment with other warm start strategies in Section 2.6.

2.5.2 Convergence of Casimir

We first state the outer loop complexity results of Algorithm 2.3 for any generic linearly convergent algo-

rithmM. Then, we consider the complexity of each inner optimization problem (2.30) based on properties

ofM.

Outer Loop Complexity Results. The following theorem states the convergence of the algorithm for

general choice of parameters, where we denote w∗ ∈ argminw∈Rd F (w) and F ∗ = F (w∗).

Theorem 2.17. Consider Problem (2.27). Suppose δk ∈ [0, 1) for all k ≥ 1, the sequence (µk)k≥1 is non-
negative and non-increasing, and the sequence (κk)k≥1 is strictly positive and non-decreasing. Further, sup-
pose the smoothing function ω : domh∗ → R satisfies −Dω ≤ ω(u) ≤ 0 for all u ∈ domh∗ and that
α2
0 ≥ λ/(λ+ κ1). Then, the sequence (αk)k≥0 generated by Algorithm 2.3 satisfies 0 < αk ≤ αk−1 < 1 for

all k ≥ 1. Furthermore, the sequence (wk)k≥0 of iterates generated by Algorithm 2.3 satisfies

F (wk)− F ∗ ≤ A
k−1
0

Bk1
∆0 + µkDω +

k∑

j=1

Ak−1
j

Bkj
(µj−1 − (1− δj)µj)Dω , (2.35)

where Aji :=
∏j
r=i(1 − αr), B

j
i :=

∏j
r=i(1 − δr), ∆0 := F (w0) − F ∗ +

(κ1+λ)α2
0−λα0

2(1−α0)
∥w0 −w∗∥22 and

µ0 := 2µ1.

The proof is given Appendix A.5. The key innovation is blending the adaptive smoothing and Moreau-

Yosida regularization into the analysis of acceleration via extrapolation (Lin et al., 2018).

We now instantiate the rates implied by this theorem in a number of concrete settings, although with

the parameter choices — these are summarized in Table 2.3. Overall, the target accuracy sequences δk is
chosen such that Bkj is a constant and the parameters µk and κk are then carefully chosen for an almost

parameter-free algorithm with the right rate of convergence.
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Algorithm 2.3. The Casimir algorithm

Input: Smoothable objective F of the form (2.28) with h simple, smoothing function ω, linearly conver-

gent algorithmM, a non-negative and non-increasing sequence of smoothing parameters (µk)k≥1,

positive and non-decreasing sequence of regularization parameters (κk)k≥1, non-negative sequence

of relative target accuracies (δk)k≥1 and, initial point w0, α0 ∈ (0, 1), time horizonK .

1: Initialize: z0 = w0.

2: for k = 1, · · · ,K do

3: UsingM with zk−1 as the starting point, find wk ≈ argminw∈Rd Fµkω,κk(w; zk−1) where

Fµkω,κk(w; zk−1) :=
1

n

n∑

i=1

hµkω(A
(i)w + b(i)) +

λ

2
∥w∥22 +

κk
2
∥w − zk−1∥22 (2.30)

such that

Fµkω,κk(wk; zk−1)−min
w

Fµkω,κk(w; zk−1) ≤ δkκk
2 ∥wk − zk−1∥22 (2.31)

4: Solve for αk ≥ 0

α2
k(κk+1 + λ) = (1− αk)α2

k−1(κk + λ) + αkλ. (2.32)

5: Set

zk = wk + βk(wk −wk−1), (2.33)

where

βk =
αk−1(1− αk−1)(κk + λ)

α2
k−1(κk + λ) + αk(κk+1 + λ)

. (2.34)

6: return wK .

The first corollary considers the strongly convex case (λ > 0) with constant smoothing µk = µ,
assuming that ε is known a priori. We note that this is, up to constants, the same complexity obtained by

the original Catalyst scheme on a fixed smooth approximation Fµω with µ = O(εDω).

Corollary 2.18. Consider the setting of Theorem 2.17. Let q = λ/(λ + κ). Suppose λ > 0 and µk = µ,
κk = κ, for all k ≥ 1. Choose α0 =

√
q and, δk =

√
q/(2−√q) . Then, we have,

F (wk)− F ∗ ≤ 3−√q
1−√qµDω + 2

(
1−
√
q

2

)k
(F (w0)− F ∗) .

Next, we consider the strongly convex case where the target accuracy ε is not known in advance. We

let smoothing parameters (µk)k≥0 decrease over time to obtain an adaptive smoothing scheme that gives

progressively better surrogates of the original objective.

Corollary 2.19. Consider the setting of Theorem 2.17. Suppose λ > 0 and κk = κ, for all k ≥ 1. Let
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Table 2.3: Summary of outer iteration complexity for Algorithm 2.3 for different parameter settings. We use

shorthand ∆F0 := F (w0)− F ∗
and∆0 = ∥w0 −w∗∥2. Absolute constants are omitted from the rates.

Cor. λ > 0 κk µk δk α0 F (wk)− F ∗
Remark

2.18 Yes κ µ
√
q

2−√
q

√
q

(
1−

√
q
2

)k
∆F0 +

µD
1−√

q q = λ
λ+κ

2.19 Yes κ µ
(
1−

√
q
2

)k/2 √
q

2−√
q

√
q

(
1−

√
q
2

)k/2 (
∆F0 +

µD
1−√

q

)
q = λ

λ+κ

2.20 No κ µ k−2 c 1
k2

(
∆F0 + κ∆2

0

)
+ µD c = (

√
5− 1)/2

2.21 No κ k µ/k k−2 c log k
k (∆F0 + κ∆2

0 + µD) c = (
√
5− 1)/2

q = λ/(λ+ κ) and η = 1−√q/2. Choose α0 =
√
q and, the sequences (µk)k≥1 and (δk)k≥1 as

µk = µηk/2 , and, δk =

√
q

2−√q ,

where µ > 0 is any constant. Then, we have,

F (wk)− F ∗ ≤ ηk/2
[
2 (F (w0)− F ∗) +

µDω

1−√q

(
2−√q +

√
q

1−√η

)]
.

The next two corollaries consider the unregularized problem, i.e., λ = 0 with constant and adaptive

smoothing respectively.

Corollary 2.20. Consider the setting of Theorem 2.17. Suppose µk = µ, κk = κ, for all k ≥ 1 and λ = 0.
Choose α0 = (

√
5− 1)/2 and δk = (k + 1)−2 . Then, we have,

F (wk)− F ∗ ≤ 8

(k + 2)2

(
F (w0)− F ∗ +

κ

2
∥w0 −w∗∥22

)
+ µDω

(
1 +

12

k + 2
+

30

(k + 2)2

)
.

Corollary 2.21. Consider the setting of Theorem 2.17 with λ = 0. Choose α0 = (
√
5 − 1)/2, and for some

non-negative constants κ, µ, define sequences (κk)k≥1, (µk)k≥1, (δk)k≥1 as

κk = κ k , µk =
µ

k
and, δk =

1

(k + 1)2
.

Then, for k ≥ 2, we have,

F (wk)− F ∗ ≤ log(k + 1)

k + 1

(
2(F (w0)− F ∗) + κ∥w0 −w∗∥22 + 27µDω

)
.

For the first iteration (i.e., k = 1), this bound is off by a constant factor 1/ log 2.

Inner Loop Complexity. Consider a class FL,λ of functions defined as

FL,λ =
{
f : Rd → R such that f is L-smooth and λ-strongly convex

}
.

We now formally define a linearly convergent algorithm on this class of functions.
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Table 2.4: Summary of global complexity of Casimir-SVRG, i.e., Algorithm 2.3 with SVRG as the inner solver for

various parameter settings. We show E[N ], the expected total number of SVRG iterations required to obtain an

accuracy ε, up to constants and factors logarithmic in problem parameters. We denote ∆F0 := F (w0) − F ∗
and

∆0 = ∥w0 −w∗∥2. Constants D,A are short for Dω, Aω (see (2.37)).

Prop. λ > 0 µk κk δk E[N ] Remark

2.25 Yes ε/D AD/εn− λ
√

λεn
AD n+

√
ADn
λε fix ε in advance

2.26 Yes µck λ c′ n+ A
λε

∆F0+µD
µ c, c′ < 1 are universal constants

2.27 No ε/D AD/εn 1/k2 n
√

∆F0
ε +

√
ADn∆0
ε fix ε in advance

2.28 No µ/k κ0 k 1/k2 ∆̂0
ε

(
n+ A

µκ0

)
∆̂0 = ∆F0 +

κ0
2 ∆2

0 + µD

Definition 2.22. A first order algorithmM is said to be linearly convergent with parameters C : R+ ×
R+ → R+ and τ : R+ × R+ → (0, 1) if the following holds: for all L ≥ λ > 0, and every f ∈ FL,λ and

w0 ∈ Rd,M started at w0 generates a sequence (wk)k≥0 that satisfies:

Ef(wk)− f∗ ≤ C(L, λ) (1− τ(L, λ))k (f(w0)− f∗) , (2.36)

where f∗ := minw∈Rd f(w) and the expectation is over the randomness ofM.

The parameter τ determines the rate of convergence of the algorithm. For instance, batch gradient de-

scent is a deterministic linearly convergent algorithm with τ(L, λ)−1 = L/λ and incremental algorithms

such as SVRG and SAGA satisfy (2.36) with τ(L, λ)−1 = c(n+ L/λ) for some universal constant c.

The warm start strategy in step k of Algorithm 2.3 is to initializeM at the prox center zk−1. SinceM is

linearly convergent, we expect the inner optimization to take Õ(τ(L, λ)−1) iterations. This is formalized

in the next proposition, due to (Lin et al., 2018, Cor. 16).

Lemma 2.23. Consider Fµω,κ(· ; z) defined in Eq. (2.30), and a linearly convergent algorithmM with pa-
rameters C , τ . Let δ ∈ [0, 1). Suppose Fµω is Lµω-smooth and λ-strongly convex. Then the expected number
of iterations E[T̂ ] ofM when started at z in order to obtain ŵ ∈ Rd that satisfies

Fµω,κ(ŵ; z)−min
w

Fµω,κ(w; z) ≤ δκ
2 ∥w − z∥22

is upper bounded by

E[T̂ ] ≤ 1

τ(Lµω + κ, λ+ κ)
log

(
8C(Lµω + κ, λ+ κ)

τ(Lµω + κ, λ+ κ)
· Lµω + κ

κδ

)
+ 1 .

2.5.3 Casimir with SVRG

We now choose SVRG (Johnson and Zhang, 2013) to be the linearly convergent algorithmM, resulting

in an algorithm called Casimir-SVRG. The rest of this section analyzes the total iteration complexity of

Casimir-SVRG to solve Problem (2.27). The proofs of the results from this section are calculations stemming
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from combining the outer loop complexity from Corollary 2.18 to 2.21 with the inner loop complexity from

Lemma 2.23, and are relegated to Appendix A.5.3. Table 2.4 summarizes the results of this section.

Recall that if ω is 1-strongly convex with respect to ∥ · ∥α, then hµω(Aw + b) is Lµω-smooth with

respect to ∥ · ∥2, where Lµω = ∥A∥22,α/µ. Therefore, the complexity of solving problem (2.27) will depend

on

Aω := max
i=1,··· ,n

∥A(i)∥22,α . (2.37)

Remark 2.24. We have that ∥A∥2,2 = ∥A∥2 is the spectral norm of A and ∥A∥2,1 = maxj ∥aj∥2 is the
largest row norm, where aj is the jth row of A. Moreover, we have that ∥A∥2,2 ≥ ∥A∥2,1.

We start with the strongly convex case with constant smoothing.

Proposition 2.25. Consider the setting of Theorem 2.17 and fix ε > 0. If we run Algorithm 2.3 with SVRG
as the inner solver with parameters: µk = µ = ε/10Dω , κk = k chosen as

κ =

{
A
µn − λ , if A

µn > 4λ

λ , otherwise
,

q = λ/(λ+ κ), α0 =
√
q, and δ =

√
q/(2−√q). Then, the number of iterations N to obtain w such that

F (w)− F (w∗) ≤ ε is bounded in expectation as

E[N ] ≤ Õ
(
n+

√
AωDωn

λε

)
.

Here, we note that κ was chosen to minimize the total complexity (cf. Lin et al. (2018)). This bound is

known to be tight, up to logarithmic factors (Woodworth and Srebro, 2016). Next, we turn to the strongly

convex case with decreasing smoothing.

Proposition 2.26. Consider the setting of Theorem 2.17. Suppose λ > 0 and κk = κ, for all k ≥ 1 and that
α0, (µk)k≥1 and (δk)k≥1 are chosen as in Corollary 2.19, with q = λ/(λ + κ) and η = 1 − √q/2. If we
run Algorithm 2.3 with SVRG as the inner solver with these parameters, the number of iterations N of SVRG
required to obtain w such that F (w)− F ∗ ≤ ε is bounded in expectation as

E[N ] ≤ Õ
(
n+

Aω
µ(λ+ κ)ε

(
F (w0)− F ∗ +

µDω

1−√q

))
.

Unlike the previous case, there is no obvious choice of κ, such as to minimize the global complexity. Notice

that we do not get the accelerated rate of Proposition 2.25. We now turn to the case when λ = 0 andµk = µ
for all k.

Proposition 2.27. Consider the setting of Theorem 2.17 and fix ε > 0. If we run Algorithm 2.3 with SVRG
as the inner solver with parameters: µk = µ = ε/20Dω , α0 = (

√
5− 1)/2, δk = 1/(k + 1)2, and κk = κ =

Aω/µ(n+ 1). Then, the number of iterations N to get a point w such that F (w) − F ∗ ≤ ε is bounded in
expectation as

E[N ] ≤ Õ
(
n

√
F (w0)− F ∗

ε
+
√
AωDωn

∥w0 −w∗∥2
ε

)
.
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This rate is tight up to log factors (Woodworth and Srebro, 2016). Lastly, we consider the non-strongly

convex case (λ = 0) together with decreasing smoothing. As with Proposition 2.26, we do not obtain an

accelerated rate here.

Proposition 2.28. Consider the setting of Theorem 2.17. Suppose λ = 0 and that α0, (µk)k≥1,(κk)k≥1 and
(δk)k≥1 are chosen as in Corollary 2.21. If we run Algorithm 2.3 with SVRG as the inner solver with these
parameters, the number of iterations N of SVRG required to obtain w such that F (w)− F ∗ ≤ ε is bounded
in expectation as

E[N ] ≤ Õ
(
1

ε

(
F (w0)− F ∗ + κ∥w0 −w∗∥22 + µD

)(
n+

Aω
µκ

))
.

2.6 Experiments

In this section, we study the experimental behavior of the proposed algorithms in two structured prediction

tasks, namely named entity recognition and visual object localization. Recall that given training examples

{(x(i),y(i))}ni=1, we wish to solve the problem:

min
w∈Rd

[
F (w) :=

λ

2
∥w∥22 +

1

n

n∑

i=1

max
y′∈Y(x(i))

{
ϕ(x(i),y′;w) + ℓ(y(i),y′)

}
− ϕ(x(i),y(i);w)

]
.

Note that we now allow the output spaceY(x) to depend on the instancex - the analysis from the previous

sections applies to this setting as well. In all the plots, the shaded region represents one standard deviation

over ten random runs.

We compare the performance of various optimization algorithms based on the number of calls to a

smooth inference oracle. Moreover, following literature for algorithms based on SVRG (Schmidt et al.,

2017; Lin et al., 2018), we exclude the cost of computing the full gradients.

The results must be interpreted keeping in mind that the running time of all inference oracles is not

the same. The ultimate yardstick to benchmark the performance of optimization algorithms is wall clock

time. However, this depends heavily on implementation, system and ambient system conditions. With

regards to the differing running times of different oracles, we find that a small value of K , e.g., 5 suffices,

so that our highly optimized implementations of the top-K oracle incurs negligible running time penalties

over the max oracle. Moreover, the computations of the batch gradient have been neglected as they are

embarrassingly parallel.

The outline of the rest of this section is as follows. First, we describe the datasets and task descrip-

tion in Section 2.6.1, followed by methods compared in Section 2.6.2 and their hyperparameter settings in

Section 2.6.3. Lastly, Section 2.6.4 presents the experimental studies.

2.6.1 Dataset and Task Description

For each of the tasks, we specify below the following: (a) the dataset {(x(i),y(i))}ni=1, (b) the output

structure Y , (c) the loss function ℓ, (d) the score function ϕ(x,y;w), (e) implementation of inference

oracles, and lastly, (f) the evaluation metric used to assess the quality of predictions.

CoNLL 2003: Named Entity Recognition. Named entities are phrases that contain the names of per-

sons, organizations, locations, etc., and the task is to predict the label (tag) of each entity. Named entity
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recognition can be formulated as a sequence tagging problem where the set Ytag of individual tags is of

size 7.

Each datapoint x is a sequence of words x = (x1, · · · , xp), and the label y = (y1, · · · , yp) ∈ Y(x) is
a sequence of the same length, where each yi ∈ Ytag is a tag.
Loss Function. The loss function is the Hamming Loss ℓ(y,y′) =

∑
i I(yi ̸= y′i).

Score Function. We use a chain graph to represent this task. In other words, the observation-label depen-

dencies are encoded as a Markov chain of order 1 to enable efficient inference using the Viterbi algorithm.

We only consider the case of linear score ϕ(x,y;w) = ⟨w,Φ(x,y)⟩ for this task. The feature map Φ
here is very similar to that given in Example 2.1. Following Tkachenko and Simanovsky (2012), we use

local context Ψi(x) around i
th
word xi of x. In particular, define Ψi(x) = exi−2 ⊗ · · · ⊗ exi+2 , where ⊗

denotes the Kronecker product between column vectors, and exi denotes a one-hot encoding of word xi,
concatenated with the one-hot encoding of its the part of speech tag and syntactic chunk tag which are

provided with the input. Now, we can define the feature map Φ as

Φ(x,y) =

[
p∑

v=1

Ψv(x)⊗ eyv

]
⊕
[

p∑

i=0

eyv ⊗ eyv+1

]
,

where ey ∈ R|Ytag|
is a one-hot encoding of y ∈ Ytag, and ⊕ denotes vector concatenation.

Inference. We use the Viterbi algorithm (Viterbi, 1967) as the max oracle and top-K Viterbi algorithm

(Algorithm 2.1) for the top-K oracle.

Dataset. The dataset used was CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003), which contains about

∼ 20K sentences.

Evaluation Metric. We follow the official CoNLL metric: the F1 measure excluding the ‘O’ tags. In addition,

we report the objective function value measured on the training set (“train loss”).

Other Implementation Details. The sparse feature vectors obtained above are hashed onto 216 − 1 dimen-

sions for efficiency.

PASCALVOC 2007: Visual Object Localization. Given an image and an object of interest, the task is to

localize the object in the given image, i.e., determine the best bounding box around the object. A related,

but harder task is object detection, which requires identifying and localizing any number of objects of

interest, if any, in the image. Here, we restrict ourselves to pure localization with a single instance of each

object. Given an image x ∈ X of size n1 × n2, the label y ∈ Y(x) is a bounding box, where Y(x) is the
set of all bounding boxes in an image of size n1 × n2. Note that |Y(x)| = O(n21n

2
2).

Loss Function. The PASCAL IoU metric (Everingham et al., 2010) is used to measure the quality of localiza-

tion. Given bounding boxes y,y′
, the IoU is defined as the ratio of the intersection of the bounding boxes

to the union:

IoU(y,y′) =
Area(y ∩ y′)

Area(y ∪ y′)
.

We then use the 1− IoU loss defined as ℓ(y,y′) = 1− IoU(y,y′).

Score Function. The formulation we use is based on the popular R-CNN approach (Girshick et al., 2014). We

consider two cases: linear score and non-linear score ϕ, both of which are based on the following definition
of the feature map Φ(x,y).
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• Consider a patch x|y of image x cropped to box y, and rescale it to 64× 64. Call this Π(x|y).

• Consider a convolutional neural network known as AlexNet (Krizhevsky et al., 2012) pre-trained on

ImageNet (Russakovsky et al., 2015) and pass Π(x|y) through it. Take the output of conv4, the
penultimate convolutional layer as the feature map Φ(x,y). It is of size 3× 3× 256.

In the case of linear score functions, we take ϕ(x,y;w) = ⟨w,Φ(x,y)⟩. In the case of non-linear

score functions, we define the score ϕ as the result of a convolution composed with a non-linearity and

followed by a linear map. Concretely, for θ ∈ RH×W×C1
and w ∈ RC1×C2

let the map θ 7→ θ ⋆ w ∈
RH×W×C2

denote a two-dimensional convolution with stride 1 and kernel size 1, and σ : R → R denote

the exponential linear unit, defined respectively as

[θ ⋆w]ij = w⊤[θ]ij and σ(x) = x I(x ≥ 0) + (exp(x)− 1) I(x < 0) ,

where [θ]ij ∈ RC1
is such that its lth entry is θijl and likewise for [θ ⋆ w]ij . We overload notation to

let σ : Rd → Rd denote the exponential linear unit applied element-wise. Notice that σ is smooth. The

non-linear score function ϕ is now defined, with w1 ∈ R256×16,w2 ∈ R16×3×3
and w = (w1,w2), as,

ϕ(x,y;w) = ⟨σ(Φ(x,y) ⋆w1),w2⟩ .

Inference. For a given input imagex, we follow the R-CNN approach (Girshick et al., 2014) and use selective

search (Van de Sande et al., 2011) to prune the search space. In particular, for an image x, we use the

selective search implementation provided by OpenCV (Bradski, 2000) and take the top 1000 candidates

returned to be the set Ŷ(x), which we use as a proxy for Y(x). The max oracle and the top-K oracle are

then implemented as exhaustive searches over this reduced set Ŷ(x).
Dataset. We use the PASCAL VOC 2007 dataset (Everingham et al., 2010), which contains∼ 5K annotated

consumer (real world) images shared on the photo-sharing site Flickr from 20 different object categories.

For each class, we consider all images with only a single occurrence of the object, and train an independent

model for each class.

Evaluation Metric. We keep track of two metrics. The first is the localization accuracy, also known as

CorLoc (for correct localization), following Deselaers et al. (2010). A bounding box with IoU> 0.5with the
ground truth is considered correct and the localization accuracy is the fraction of images labeled correctly.

The second metric is average precision (AP), which requires a confidence score for each prediction. We

use ϕ(x,y′;w) as the confidence score of y′
. As previously, we also plot the objective function value

measured on the training examples.

Other Implementation Details. For a given input-output pair (x,y) in the dataset, we instead use (x, ŷ)
as a training example, where ŷ = argmax

y′∈Ŷ(x)
IoU(y,y′) is the element of Ŷ(x) which overlaps the

most with the true output y.

2.6.2 Methods Compared

The experiments compare various convex stochastic and incremental optimization methods for structured

prediction.

• SGD: Stochastic subgradient method with a learning rate γt = γ0/(1 + ⌊t/t0⌋), where η0, t0 are

tuning parameters. Note that this scheme of learning rates does not have a theoretical analysis.

However, the averaged iterate wt = 2/(t2 + t)
∑t

τ=1 τwτ obtained from the related scheme γt =
1/(λt) was shown to have a convergence rate of O((λε)−1) (Shalev-Shwartz et al., 2011; Lacoste-
Julien et al., 2012). It works on the non-smooth formulation directly.
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• BCFW: The block coordinate Frank-Wolfe algorithm of Lacoste-Julien et al. (2013). We use the

version that was found to work best in practice, namely, one that uses the weighted averaged iterate

wt = 2/(t2+ t)
∑t

τ=1 τwτ (called bcfw-wavg by the authors) with an optimal tuning of learning

rates. This algorithm also works on the non-smooth formulation and does not require any tuning.

• SVRG: The SVRG algorithm proposed by Johnson and Zhang (2013), with each epoch making one

pass through the dataset and using the averaged iterate to compute the full gradient and restart the

next epoch. This algorithm requires smoothing.

• Casimir-SVRG-const: Algorithm 2.3 with SVRG as the inner optimization algorithm. The param-

eters µk and κk as chosen in Proposition 2.25, where µ and κ are hyperparameters. This algorithm

requires smoothing.

• Casimir-SVRG-adapt: Algorithm 2.3 with SVRG as the inner optimization algorithm. The param-

eters µk and κk as chosen in Proposition 2.26, where µ and κ are hyperparameters. This algorithm

requires smoothing.

2.6.3 Hyperparameters and Variants

Smoothing. In light of the discussion of Section 2.4, we use the ℓ22 smoother ω(u) = ∥u∥22/2 and use the
top-K strategy for efficient computation. We then have Dω = 1/2.

Regularization. The regularization coefficient λ is chosen as c/n, where c is varied in {0.01, 0.1, 1, 10}.

Choice of K. The experiments use K = 5 for named entity recognition where the performance of the

top-K oracle isK times slower, andK = 10 for visual object localization, where the running time of the

top-K oracle is independent of K . We also present results for other values of K in Figure 2.4d and find

that the performance of the tested algorithms is robust to the value ofK .

Tuning Criteria. Some algorithms require tuning one or more hyperparameters such as the learning

rate. We use grid search to find the best choice of the hyperparameters using the following criteria: For

the named entity recognition experiments, the train function value and the validation F1 metric were only

weakly correlated. For instance, the 3 best learning rates in the grid in terms of F1 score, the best F1

score attained the worst train function value and vice versa. Therefore, we choose the value of the tuning

parameter that attained the best objective function value within 1% of the best validation F1 score in order

to measure the optimization performance while still remaining relevant to the named entity recognition

task. For the visual object localization task, a wide range of hyperparameter values achieved nearly equal

performance in terms of the best CorLoc over the given time horizon, so we choose the value of the

hyperparameter that achieves the best objective function value within a given iteration budget.

Learning Rate. The algorithms SVRG and Casimir-SVRG-adapt require tuning of a learning rate, while

SGD requires η0, t0 and Casimir-SVRG-const requires tuning of the Lipschitz constant L of ∇Fµω , which
determines the learning rate γ = 1/(L + λ + κ). Therefore, tuning the Lipschitz parameter is similar

to tuning the learning rate. For both the learning rate and Lipschitz parameter, we use grid search on a

logarithmic grid, with consecutive entries chosen a factor of two apart.
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Choice of κ. For Casimir-SVRG-const, with the Lipschitz constant in hand, the parameter κ is chosen to

minimize the overall complexity as in Proposition 2.25. For Casimir-SVRG-adapt, we use κ = λ.

Stopping Criteria. Following the discussion of Section 2.5, we use an iteration budget of Tbudget = n.

WarmStart. Thewarm start criterion determines the starting iterate of an epoch of the inner optimization

algorithm. Recall that we solve the following subproblem using SVRG for the kth iterate (cf. (2.30)):

wk ≈ argmin
w∈Rd

Fµkω,κk(wk; zk−1) .

Here, we consider the following warm start strategy to choose the initial iterate ŵ0 for this subproblem:

• Prox-center: ŵ0 = zk−1.

In addition, we also try out the following warm start strategies of Lin et al. (2018):

• Extrapolation: ŵ0 = wk−1 + c(zk−1 − zk−2) where c =
κ

κ+λ .

• Prev-iterate: ŵ0 = wk−1.

We use the Prox-center strategy unless mentioned otherwise.

Level of Smoothing andDecay Strategy. For SVRG and Casimir-SVRG-const with constant smoothing,

we try various values of the smoothing parameter in a logarithmic grid. On the other hand, Casimir-SVRG-

adapt is more robust to the choice of the smoothing parameter (Figure 2.4a). We use the defaults of µ = 2
for named entity recognition and µ = 10 for visual object localization.

2.6.4 Experimental study of different methods

For the named entity recognition task, Figure 2.2 plots the performance of various methods on CoNLL

2003. On the other hand, Figure 2.3 presents plots for various classes of PASCAL VOC 2007 for visual

object localization.

The plots reveal that smoothing-based methods converge faster in terms of training error while achiev-

ing a competitive performance in terms of the performance metric on a held-out set. Furthermore, BCFW

and SGD make twice as many actual passes as SVRG based algorithms.

2.6.5 Experimental Study of Effect of Hyperparameters

We now study the effects of various hyperparameter choices.

Effect of Smoothing. Figure 2.4a plots the effect of the level of smoothing for Casimir-SVRG-const and

Casimir-SVRG-adapt. The plots reveal that, in general, small values of the smoothing parameter lead to

better optimization performance for Casimir-SVRG-const. Casimir-SVRG-adapt is robust to the choice

of µ. Figure 2.4b shows how the smooth optimization algorithms work when used heuristically on the

non-smooth problem.
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Figure 2.2: Comparison of convex optimization algorithms for the task of Named Entity Recognition on

CoNLL 2003.

Effect of Warm Start Strategies. Figure 2.4c plots different warm start strategies for Casimir-SVRG-

const and Casimir-SVRG-adapt. We find that Casimir-SVRG-adapt is robust to the choice of the warm start

strategy while Casimir-SVRG-const is not. For the latter, we observe that Extrapolation is less stable

(i.e., tends to divergemore) thanProx-center, which is in turn less stable thanPrev-iterate, which
always works (cf. Figure 2.4c). However, when they do work, Extrapolation and Prox-center
provide greater acceleration than Prev-iterate. We use Prox-center as the default choice to trade-

off between acceleration and applicability.

Effect of K. Figure 2.4d illustrates the robustness of the method to choice of K : we observe that the

results are all within one standard deviation of each other.

2.7 Related Work

2.7.1 Surrogates for Structured Prediction

As discussed in Section 2.1, the underlying goal is to minimize the task loss, cf. (2.6). However, this

objective is piece-wise constant in the parameters and is not amenable to gradient-based optimization.

Therefore, past approaches either (a) construct a proxy for the gradient to this loss to be used in first-order

optimization, or, (b) define a surrogate loss, and optimize it using first-order methods in lieu of optimiz-

ing the task loss. Instances of the former include the straight-through estimator (Bengio et al., 2013) and

SPIGOT (Peng et al., 2018). However, these approaches come with no theoretical guarantees of correct-

ness. Typical examples of the latter include convex surrogates such as the structured perceptron (LeCun

et al., 1998; Collins, 2002), the structural hinge loss (Taskar et al., 2004b; Tsochantaridis et al., 2004) and

the conditional random field (LeCun et al., 1998; Lafferty et al., 2001), and nonconvex surrogates such as
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the structured ramp (Chapelle et al., 2009) and probit (Keshet et al., 2011) losses. More recently, numer-

ous surrogates such as the square loss (Ciliberto et al., 2016; Osokin et al., 2017) and variants including

projections (Blondel, 2019) have been the focus of theoretical study for properties such as consistency.

Some approaches which construct a gradient proxy can be viewed as minimizing an appropriate sur-

rogate. For instance, the approach proposed in (Pogancic et al., 2020) coincides with minimization of the

structural ramp loss, while (Berthet et al., 2020) minimizes a Gaussian smoothing of the structured per-

ceptron loss. An approach which, at first sight, is disparate from the two mentioned above is direct loss

minimization (Hazan et al., 2010; Song et al., 2016). However, it turns out in practice to minimize a surro-

gate known as the structural ramp loss (cf. McAllester and Keshet, 2011). Direct loss minimization gives

an expression for the gradient of the expected task loss as

∇w Ex,y∼P

[
ℓ

(
y, argmax

y′∈Y
ϕ(x,y′;w)

)]
= lim

ε→0

1

ε
E [∇ϕ(x, ŷε(x,y;w);w)−∇ϕ(x,y⋆(x;w);w)] ,

for a continuous distribution P, where ŷε(x,y;w) ∈ argmaxy′∈Y {ϕ(x,y′;w) + ε ℓ(y,y′)} is the output
of loss augmented inference. However, it is not possible to obtain unbiased stochastic gradients for this

expression since, owing to the piecewise constant nature of the argmax, the limit ε → 0 and expectation

(i.e., integral) do not commute. Using direct loss minimization with a fixed ε > 0 gives a biased gradient

estimator, which turns out to coincide the the Clarke subdifferential of the (appropriately scaled) structured

ramp loss.

While we focus in this work on the structural hinge loss, the approach proposed here can be viewed

more generally to construct faster optimization algorithms for nonsmooth Fenchel-Young losses (Blondel

et al., 2020) through the use of appropriate smooth surrogates.

2.7.2 Inference in Structured Prediction

Note that the objective in (2.7),(2.8) contains a maximization over an exponentially large (in the size of

each y ∈ Y) number m = |Y| of outputs, and this is achieved in general by inference algorithms. There

exist a number of exact inference algorithms based on the output structure. These use dynamic pro-

gramming (Pearl, 1988; Dawid, 1992), graph cuts (Greig et al., 1989; Ishikawa and Geiger, 1998), bipartite

matchings (Cheng et al., 1996; Taskar et al., 2005) and search algorithms (Daumé III and Marcu, 2005;

Lampert et al., 2008; Lewis and Steedman, 2014; He et al., 2017), among others. We note that when exact

inference is not tractable, continuous relaxations (Schlesinger, 1976; Johnson, 2008), iterative fixed-point

algorithms (McEliece et al., 1998; Murphy et al., 1999) and variational inference (Wainwright et al., 2005;

Wainwright and Jordan, 2008).

Top-K Inference. The top-K oracle considered here for ℓ22 smoothing of inference echoes older heuris-

tics in speech and language processing (Jurafsky et al., 2014). Combinatorial algorithms for top-K in-

ference have been studied extensively under the name “M -best MAP”, including exact algorithms for

trees (Seroussi and Golmard, 1994; Nilsson, 1998), search algorithms (Flerova et al., 2016), or other cases

where a max-marginal oracle is available (Yanover and Weiss, 2004). This study has been extended to con-

tinuous relaxation as well (Fromer and Globerson, 2009; Batra, 2012). In this work, we show how top-K
inference algorithms can be used to approximate ℓ22-smoothed inference.

Smoothing Inference. Smoothing for inference was used to speed up iterative algorithms for continuous

relaxations, including the entropy smoother (Johnson, 2008; Jojic et al., 2010; Savchynskyy et al., 2011) and
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ℓ22 smoother (Meshi et al., 2012). Explicit smoothing of discrete inference algorithms in order to smooth

the learning problem was considered for the entropy (Zhang et al., 2014) and ℓ22 smoothers (Song et al.,

2014) as well. Smooth inference is crucially important for backpropagation; we shall return to it shortly.

Alternatives to Inference Oracles. The blackbox view of inference oracles considered here are tai-

lored to the case when exact inference is tractable through combinatorial algorithms, for which there exist

highly optimized algorithms. An alternative is the approach of projection oracles, which admit efficient

implementations for a variety of structures (Taskar et al., 2006; Blondel, 2019). When such combinatorial

algorithms are not available, one must resort to continuous relaxations of inference; the use of inference

as a blackbox here is suboptimal, and interleaving optimization and inference steps have been shown to

lead to speedups (Hazan et al., 2016).

2.7.3 End-to-End Structured Prediction and Backpropagation Through Inference

The general framework for global training of structured prediction models was introduced by (Bottou

and Gallinari, 1990) and applied to handwriting recognition (Bengio et al., 1995) and document process-

ing (LeCun et al., 1998). This approach, now called “deep structured prediction”, finds widespread appli-

cation (Collobert et al., 2011; Belanger and McCallum, 2016).

As we have seen, the training objectives of structured prediction involve combinatorial inference al-

gorithms. End-to-end learning of structured prediction via differentiable programming must therefore

“backpropagate through” an inference algorithm. Backpropagation through a combinatorial inference al-

gorithm could either refer to (a) backpropagation through the value of inference algorithm, e.g., Eq. (2.7),

or (b) backpropagation through the maximizer obtained from the inference algorithm, e.g., Eq. (2.6). We

look at both in turn, and then highlight the connection between the two.

The value of an inference algorithm is the general form f(w) = maxy∈Y ψ(y;w). Whenw 7→ ψ(·;w)
is smooth, the inclusion∇ψ(y⋆(w);w) ∈ ∂f(w) follows from the chain rule (Rockafellar andWets, 2009,

Thm. 10.6), where y⋆(w) ∈ argmaxy∈Y ψ(y;w) is a maximizer and ∂f(w) is the regular subdifferential.
However, ψ is not a smooth function of w, it is possible to construct the Clarke subdifferential of f w.r.t.

w (Gao et al., 2019) using the optimal solution y⋆(w) again. In this work, we use infimal convolution

smoothing to construct a smooth surrogate fµω to f , i.e., fµω is continuously differentiable whose gradient

is O(1/µ)-Lipschitz and |f − fµω| ≤ O(µ). The benefit of this approach is that it allows us to consider

accelerated optimization algorithms, as we discuss later.

“Backpropagating through the maximizer of inference” refers to computing first-order information of

functions of the form w 7→ G(y⋆(w)) for some G : Y → R, where y⋆(w) ∈ argmaxy∈Y ψ(y;w) is
a maximizer. As we have seen earlier with (2.6), these functions are piecewise constant in w. Research,

therefore, has focuses on defining surrogates which admit subgradients. This typically has two ingredi-

ents: (a) continuous representation, and, (b) smoothing. For (a), consider a q-dimensional representation

φ : Y → Rq of outputs, and relaxations ψ̄ : convφ(Y) × Rd → R, Ḡ : convφ(Y) → R, which sat-

isfy ψ̄(φ(y);w) = ψ(y;w) and Ḡ(φ(y)) = G(y). The other ingredient (b) is smoothing. It is required

since the relaxed maximizer z⋆(w) ∈ argmaxz∈convφ(Y) ψ̄(z;w) might not be unique, leading to a dis-

continuity in w 7→ z⋆(w). The smoothing ensures that this map is Lipschitz continuous, which allows

appropriate subdifferentials to be well-defined. Past works have considered smoothing with infimal con-

volution (Martins and Astudillo, 2016; Djolonga and Krause, 2017; Niculae et al., 2018; Wilder et al., 2019),

as well as convolution with noise (Papandreou and Yuille, 2011; Berthet et al., 2020). Notably, the former

includes the ubiquitous use of the softmax map as a Lipschitz (in fact, continuously differentiable) proxy

to the argmax. Smoothing with infimal convolution is preferred to convolution with noise because the
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Lipschitz constant of w 7→ z⋆(w) in the latter case scales linearly with the dimension of the ambient

space (Nesterov, 2011), while it is dimension-free for the former (Beck and Teboulle, 2012).

To make concrete the relation between backpropagating through the value of inference versus its max-

imizer, consider the one-hot representation
3 φ(y) ∈ {0, 1}|Y|

, and infimal convolution smoothing with a

strongly convex function ω and a smoothing parameter µ > 0. In this case, we have the simple relation:

z⋆µω(w) = ∇fµω(w) (the notation z⋆µω highlights the dependence of the maximizer on ω and µ). This tight
connection allows advances in backpropagation through inference maximizers to yield first order oracles

of smooth surrogates to the value of inference. In this work, we make this connection concrete through

inference oracles, and utilize these for accelerated optimization of structural support vector machines.

We provide detailed comparison of smoothness of our approach to the other smooth inference ap-

proaches of differentiable dynamic programming (Mensch and Blondel, 2018) and SparseMAP (Niculae

et al., 2018) in Section 2.3. In addition, the viewpoint of first-order optimization of structured prediction is

absent in these related works. We define smooth inference oracles in the context of black-box first-order

optimization and establish worst-case complexity bounds for incremental optimization algorithms mak-

ing calls to these oracles. Indeed, we relate the amount of smoothing to the resulting complexity of the

optimization algorithms relying on smooth inference oracles. This gives a concrete use-case to smooth

inference in training structured prediction models.

2.7.4 Optimization Algorithms for Structural Support Vector Machines

We now turn to the structural hinge loss as surrogate loss and optimization algorithms to minimize it. The

optimization problem (2.8) is convex iff the score functionw 7→ ϕ(·, ·;w) is affine. We consider each case

in turn.

Convex Optimization. Suppose the optimization problem (2.8) is convex. Its Fenchel-Rockafellar dual

is the quadratic program

max
u(1),··· ,u(n)∈∆m−1



−

n∑

i=1

⟨b(i),u(i)⟩ − 1

2nλ

∥∥∥∥∥
n∑

i=1

(A(i))⊤u(i)

∥∥∥∥∥

2

2



 ,

where m = |Y| is the size of the output space, b(i) =
(
ℓ(y(i),y)

)
y∈Y ∈ Rm, A(i) ∈ Rm×d

is the matrix

given byA(i)w+ b(i) =
(
ψ(i)(y;w)

)
y∈Y . Note that (a) the dimensionalitym = |Y| of the dual variables

is extremely large, and, (b) the primal can be written as a quadratic program withm = |Y| constraints.
Early works (Taskar et al., 2004b; Tsochantaridis et al., 2004; Joachims et al., 2009; Teo et al., 2009)

considered batch quadratic programming algorithms. The dual algorithms used reparameterizations to

reduce the dimensionality of the dual variables. On the other hand, primal algorithms used constraint

generation methods to work with a tractable number of constraints, where choosing the “best” constraint

to add could be solved by inference. These algorithms can be viewed as iterative application of dual variable

selection using inference and optimization over selected variables.

The move from batch to incremental algorithms started with an application of the stochastic subgra-

dient method, which operated directly on the non-smooth primal formulation (Ratliff et al., 2007; Shalev-

Shwartz et al., 2011). Here, the subgradient was again given by inference (cf. max orcale in Section 2.3). The

block coordinate Frank-Wolfe (BCFW) (Lacoste-Julien et al., 2013) was proposed based on the observations

(a) that a linear minimization oracle of the dual could be computed by inference, and, (b) the dual variables

3

Formally, consider a bijection σ : Y → m = |Y|, and set [φ(y)]σ(y) = 1 and zero elsewhere.
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variables need not be explicity constructed. Extensions based on the other variants of the Frank-Wolfe

algorithms were proposed as well (Osokin et al., 2016).

Primal-dual or saddle-point approaches include the mirror-prox algorithm (Taskar et al., 2006; Cox

et al., 2014; He and Harchaoui, 2015). In the structured prediction setting, one must be careful about

the dimensionality m of the dual variables, for instance, by using a compact q-dimensional represen-

tation φ : Y → Rq for some q ≪ |Y| and using projection oracles to efficiently compute projections on

convφ(Y) ⊆ Rq (Taskar et al., 2006). Incremental optimization algorithm for saddle-point problems (Pala-

niappan and Bach, 2016) could potentially be coupled with the tricks noted above to optimize structured

prediction models. Incremental optimization algorithms suited to conditional random fields, a related con-

vex surrogate, have also been proposed (Schmidt et al., 2015). An alternate approach is to consider the

lower dimensional min-max saddle point problem mentioned above and consider the dual of the inner

maximization (Hazan et al., 2016). Strong duality holds, and this results in a min-min problem, which can

be tackled by block coordinate descent algorithms. The rate of this algorithm cannot directly be compared

to the other rates mentioned here because the cost per iteration is different.

Table 2.1 gives an overview of the rates of convergence of the algorithms referred to above in compar-

ison with the approaches proposed in this work. We note that the dual-based approaches and saddle point

algorithms work only for the convex case where the score function ϕ(·, ·;w) is affine inw. We focus here

on primal optimization algorithms in order to be able to train structured prediction models with affine or

nonlinear mappings with a unified approach, and on incremental optimization algorithms which can scale

to large datasets.

Nonconvex Optimization. In the general case with a nonlinear, yet smooth feature map ϕ, the prob-
lem (2.8) is nonsmooth and nonconvex. Optimization algorithms tailored to structured prediction in this

case have not been proposed. Early works (LeCun et al., 1998, e.g.,) simply used the stochastic subgradient

method, using a heuristic notion of subgradients at points where the function was not differentiable. Its

rate of convergence on nonsmooth problems has recently been established as O(1/ε4) for an ε-stationary
point (Davis and Drusvyatskiy, 2019). Stationarity is measured here in terms of the gradient norm of the

Moreau envelope; see Chapter 3. The classical (inexact) prox-linear algorithm of (Burke, 1985; Wright,

1990), which generalizes the Levenberg-Marquardt algorithm for non-linear least squares, can be used

to optimize (2.8) in the nonconvex case. The rate of convergence of this algorithm can be improved to

O(n/ε2+
√
n/ε3)with the use of smoothing and acceleration. The notion of inference oracles introduced

in this work allows this rate to be transferred to the case of structured prediction.

In the nonconvex case, the stochastic subgradient method can be implemented by using any reverse-

mode automatic differentiation software. On the other hand, the prox-linear algorithms and its variants

require computation of Jacobian-vector products; this is most efficient with forward-mode automatic dif-

ferentiation (e.g. Griewank and Walther, 2008). In the upcoming Chapter 3, we will consider algorithms

which exhibit worst-case rates of convergence on nonsmooth problems, yet produce acceleration and faster

convergence when the problem is convex.

2.8 Discussion and Conclusion

We introduced a general notion of smooth inference oracles in the context of black-box first-order opti-

mization. This allows us to extend the scope of fast incremental optimization algorithms to structured

prediction problems owing to a careful blend of a smoothing strategy and an acceleration scheme. We

illustrated the potential of our framework by proposing a new incremental optimization algorithm to train

53



max-margin structured predictionmodels both enjoyingworst-case complexity bounds and demonstrating

competitive performance on two real-world problems.

Concurrentwithwhen thework in this chapterwas published (Pillutla et al., 2018), therewere a number

of efforts to incorporate combinatorial algorithms in differentiable programming pipelines, as we discussed

in Section 2.7.3. For a combinatorial algorithm appearing at the end of a pipeline, the various proposed

techniques, including ours, amount to choosing a surrogate loss function such as a smoothed structural

perceptron or hinge losses (cf. Section 2.7.1). On the other hand, the case where the combinatorial algo-

rithm is away from the end is not as well understood. Consider, for instance, the problem

inf
w1,w2

[
F (w1,w2) = f

(
argmax

z∈Z
⟨z, g(w1)⟩;w2

)]
,

where a polytope Z ⊂ Rm, and maps g : Rd1 → Rm and f : Z×Rd2 → R are given. The problem is fun-

damentally ill-posed, as F (w1,w2) is a piecewise discontinuous function. Following the ideas presented

in this chapter, one might consider a smoothing

Fµω(w1,w2) = f
(
∇hµℓ22

(
g(w1)

)
;w2

)
,

h(u) = maxz∈Z⟨u, z⟩ is the support function of the polytopeZ and hµℓ22 is its smoothing with coefficient

µ > 0. Using a small smoothing coefficient µ would overcome discontinuities but make it hard to “jump”

from one erstwhile discontinuous region to another. On the other hand, using a large smoothing coefficient

would completely transform the landscape of the objective, so the function we actually optimize might

not be closely related to the original objective. A promising avenue to solve this problem is to study

SPIGOT (Peng et al., 2018) or its variants (Mihaylova et al., 2020), and understand what objective they

actually minimize. This might also help construct consistent alternatives which come with a guarantee

that minimizing this objective leads to minimizing the original objective in the limit of infinite data.

The difficulty in optimizing pipelines with combinatorial algorithms has led to a move away from

structured inference algorithms during learning to local prediction methods over the components of the

structure. For instance, consider sequence to sequence models (Sutskever et al., 2014) that aim to predict

a sequence y = (y1, · · · , yp) from an in input sequence x. The output sequence y is modeled in an

autoregressive manner as P (yj |y1:j−1,x;w) using a normalized probabilistic model P with parameters

w. The learning problem over a component yj is reduced to multiclass classification, while predictions are

made sequentially using a decoding algorithm such as beam search. Such sequential structured prediction

methods built atop neural networks such as transformers dominate modern natural language processing.

We will return to them in Chapter 4 in the context of text generation.

On the optimization side, we showed that accelerated algorithms based on Casimir are faster in both

theory and practice in the convex case. We will consider the nonconvex case in Chapter 3. We find here

that algorithms based on the prox-linear method do not outperform the stochastic subgradient methods.

Future work must reconcile a number of differences between theoretical results and practical observations.

Firstly, optimization algorithms such as Adam (Kingma and Ba, 2015) are wildly successful in practice but

fail to converge in simple examples (Reddi et al., 2018). Secondly, the convergence analysis of stochastic

gradient algorithms in the nonconvex case does not reflect issues encountered in practice.
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Figure 2.3: Comparison of convex optimization algorithms for the task of visual object localization on

PASCAL VOC 2007 for λ = 10/n.
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the heuristic use of these algorithms without smoothing (labeled “non-smooth”) for λ = 0.01/n.
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Figure 2.4: Effect of hyperparameters for the task of Named Entity Recognition on CoNLL 2003. C-SVRG

stands for Casimir-SVRG in these plots.
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Chapter 3

The Trade-offs of Incremental

Linearization Algorithms for Nonsmooth

Composite Problems

In Chapter 2, we saw how to combine combinatorial algorithms with differentiable programming. We

utilized these inference oracles to design smooth and accelerated first-order optimization algorithms for

structured prediction where the objective is convex. In this chapter, we turn to the setting where the ob-

jective is nonconvex. We consider a more general compositional optimization problem that is nonsmooth

and nonconvex.

The Gauss-Newton method was first developed to take advantage of the compositional structure of

nonlinear least-squares problems: by linearizing the nonlinear mappings around the current iterate, we get

an approximation of the objective that can be solved in analytic form to output the next iterate (Nocedal and

Wright, 2006; Björck, 1996). The Gauss-Newton method was generalized to tackle generic compositional

problems of the form

min
w∈Rd

h(g(w)), (3.1)

by linearizing the inner function g around the current iterate and solving the associated subproblem (Burke,

1985). For example, to solve nonlinear equations, we can consider minimizing the absolute deviations

∥g(w)∥ by iteratively linearizing the inner function around the current iterate and solving the resulting

non-smooth convex subproblem (Nesterov, 2007).

The Gauss-Newton method and its variants such as the Levenberg-Marquardt method (Levenberg,

1944) have been applied successfully in numerous domains such as phase retrieval (Cichocki and Amari,

2002; Herring et al., 2019; Repetti et al., 2014), nonlinear control (Sideris and Bobrow, 2005; Roulet et al.,

2019), non-negative matrix factorization (Huang and Fu, 2019), see (Björck, 1996) for a broader overview.

The convergence guarantees for modified Gauss-Newton methods adapted to (3.1) have been thoroughly

developed through the viewpoint of proximal regularization (Drusvyatskiy and Paquette, 2019; Bauschke

et al., 2011). Modern machine learning problems such as deep learning possess a similar compositional

structure, which makes Gauss-Newton-like algorithms potential good candidates (Drusvyatskiy and Pa-

quette, 2019; Tran-Dinh et al., 2020; Zhang and Xiao, 2020).

However, in such problems, we are often interested in the generalization performance evaluated on

unseen data. In this chapter, we investigate whether modified Gauss-Newton methods or prox-linear al-

gorithms with incremental first-order methods in the inner loops are superior to direct stochastic subgra-
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dient algorithms for nonsmooth problems with a compositional objective and a finite-sum structure. We

present synthetic experiments that delineate the regimes where modified Gauss-Newton methods algo-

rithms appear to outperform direct stochastic subgradient algorithms. We also compare these algorithms

on a structured prediction problem with a convolutional neural network (end-to-end path planning) and

nonlinear system solving with a non-differentiable criterion. Experimental results suggest that modified

Gauss-Newton methods or prox-linear algorithms offer marginal gains in some settings, and confirm the

versatility of direct stochastic subgradient algorithms to tackle complex learning problems.

3.1 Background

In this chapter, we consider optimization problems of the form

min
w∈Rd

{
F (w) :=

1

n

n∑

i=1

h(gi(w))

}
(3.2)

with gi : Rd → Rm smooth, i.e., with Lipschitz continuous gradients, and h : Rm → R convex and

Lipschitz-continuous. The above problem is an extension to (3.1) when considering multiple compositions

that typically arise in empirical risk minimization. We are particularly interested in the settings where n
is large, as is the case with modern data science applications of supervised learning.

We are given n input-output pairs (xi,yi). In the examples we will consider, the inner function

gi(w) = (ψi(y;w))y∈Y denotes the scores of each prediction y ∈ Y relative to the input-output pair

(xi,yi), using a parametric model g(·;w) such as a deep network. The outer function h reduces the

scores for all predictions into a single scalar.

3.1.1 Examples

We instantiate the setup with specific examples.

Multi-output Regression. Here, each input xi ∈ Rp and each output yi ∈ Rm is a vector. Given a

parameterized prediction function ϕ(·;w) : Rp → Rm, the inner function gi(w) = ϕ(xi;w)− yi
is the residual, and h is simply a loss function on the residual. The loss function h(u) = ∥u∥22
would lead to the classical nonlinear least squares problems. In this chapter, we are interested in

non-smooth h, which arises in robust regression problems with the mean absolute deviation loss

h(u) = ∥u∥1 or the ℓ2 loss h(u) = ∥u∥2 (without the square).
Multi-class Classification. Each inputxi ∈ Rp is a vector while the output yi ∈ {1, · · · ,m} is categor-

ical. Typical loss functions include the multinomial logistic loss in the smooth case and multi-class

hinge loss (Crammer and Singer, 2001) in the non-smooth case.

Structured Prediction. The multi-class classification setting can be generalized to structured predic-

tion, i.e., the prediction of a combinatorial object such as a sequence with discriminative models,

as we saw in Chapter 2. Here, gi(w) is a stacking of the augmented score function ψi for all out-
puts, i.e., gi(w) =

(
ψi(y;w)

)
y∈Y . The input xi can be arbitrary, but the output comes from a

structured space Y . Examples of the loss function h include the conditional random fields (Laf-

ferty et al., 2001) and the structural hinge loss (Taskar et al., 2004b; Tsochantaridis et al., 2004). In

practice, efficient computation of this loss is possible using dynamic programming or other com-

binatorial algorithms (Viterbi, 1967). This approach has been applied for tasks in natural language

processing (Rush, 2020), speech processing (Gales et al., 2012) and planning (Ratliff et al., 2006).
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Figure 3.1: Left: The exact (resp. approximate) prox-linear method builds a convex model Cκ(w;wk)
of the objective F (w) around the current iterate wk. The next iterate wk+1 is then an exact (resp. ap-

proximate) minimizer of this model plus a proximal term. Right: A numerical comparison of gradient

descent and the exact prox-linear method on a nonsmooth and nonconvex function F : R2 → R. The
prox-linear method builds a more accurate model of the objective function, especially around points of

nonsmoothness.

3.1.2 Optimization Algorithms

We consider two families of optimization algorithms, which are stochastic and non-smooth versions of

gradient descent and the Gauss-Newton algorithm.

Stochastic Subgradient Method. The stochastic subgradient method is the non-smooth and stochastic

analogue of gradient descent. With a slight abuse of nomenclature, we refer to it as SGD, which stands for

stochastic gradient descent. In each iteration k, SGD samples an element ik from the available n uniformly

at random and takes a step in the direction of its subgradient vk ∈ ∂(h ◦ gik)(wk):

wk+1 = wk − γvk , (3.3)

where γ is the learning rate and ∂(h ◦ gi)(w) denotes the regular (or Fréchet) subdifferential, which is

defined as

∂φ(w) =
{
v ∈ Rd : φ(w′) ≥φ(w) + v⊤(w′ −w) + o(∥w′ −w∥)

}
.

The regular subdifferential generalizes the gradient for smooth functions as well as the convex subdiffer-

ential as it corresponds to the set of gradients of smooth functions that are below ψ and coincide with it

at w. In the case of (3.2), it takes a simple form (Rockafellar and Wets, 2009, Theorem 10.6):

∂(h ◦ gi)(w) = ∇gi(w)⊤∂h
(
gi(w)

)
,

where ∂h refers to the convex subdifferential of h and∇gi refers to the Jacobian of gi. The number of first-

order oracle calls of gi and h for SGD to reach an ε-stationary point is O(1/ε4) (Davis and Drusvyatskiy,

2019). In deep learning, the subgradient v ∈ ∂(h◦gi(w)) requires the computation of the so-called vector-

Jacobian product. It is readily given by reverse-mode automatic differentiation implemented in software

such as PyTorch and Tensorflow.
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The Prox-linear Method. The modified Gauss-Newton method (Nesterov, 2007), also known as the

prox-linear method (Burke, 1985; Burke and Ferris, 1995; Drusvyatskiy and Paquette, 2019), applied to the

finite-sum objective (3.2) proceeds by finding approximate solutions of a partially linearized approximation

of the objective with an additional regularization term. Namely, it computes iterates of the form

wk+1 = argmin
w∈Rd

{ 1

n

n∑

i=1

h(gi(wk) +∇gi(wk)
⊤(w −wk)) +

κ

2
∥w −wk∥22

}
(3.4)

The subproblem within the argmin is convex. As explained in Figure 3.1 (left), the prox-linear method

creates a convex model C(w;wk) of F around wk by linearizing the inner function as

C(w;wk) =
1

n

n∑

i=1

h(gi(wk) +∇gi(wk)
⊤(w −wk)) .

The next iterate is the minimizer wk+1 = argminw Cκ(w;wk) where

Cκ(w;wk) = C(w;wk) +
κ

2
∥w −wk∥2

is the model plus a proximal term. Compare this with the subgradient method, where the model is

C ′(w;wk) = F (wk) + v⊤(w −wk), where v ∈ ∂F (wk); see also Figure 3.1 (right).

In practice, it might not be possible to solve the subproblem (3.4) exactly. We consider using incremen-

tal algorithms such as Casimir-SVRG of Chapter 2 in this case and use the abbreviation PLI.
From a computational viewpoint, this requires computing a Jacobian vector product ∇gi(w)v for

some vector v. This is most efficiently computed via forward-mode automatic differentiation for efficient

implementation, which enjoys limited support in modern software libraries such as PyTorch. In our ex-

periments, we simulate forward-mode automatic differentiation using two calls to reverse-mode automatic

differentiation.

3.2 Tradeoffs of the Prox-linear Method in Statistical Settings

The closely related family of Gauss-Newton methods and its variants are known to enjoy quadratic local

convergence, provided the subproblems are solved exactly. In statistical learning problems, it is not mean-

ingful to optimize beyond the noise level of the problem. If the noise level of the problem is large, then

the local quadratic convergence may not be meaningful. In this section, we formalize this in a stylized

statistical setting with the exact prox-linear algorithm.

We start with a typical quadratic local convergence result of the prox-linear method in the overpa-

rameterized regime d > nk. We show the quadratic convergence under the assumption that the minimal

singular value σmin(∇g(w)⊤) of the transposed Jacobian of g = (g1; · · · ; gn) is strictly positive. This

implies that the Jacobian ∇g(w) is surjective; this is only possible in the overparameterized setting of

d > nk.

Proposition 3.1. Consider problem (3.2) where h is ℓ-Lipschitz, convex, and α-sharp for some α > 0, i.e.,
h(u) −minh ≥ α dist(u, U∗) for any u ∈ Rm where dist(u, U∗) is the Euclidean distance of u to U∗ =
argminu∈Rm h(u) ̸= ∅. Further, suppose the function g(w) = (g1(w); . . . ; gn(w)) ∈ Rnm is L-smooth
and satisfies σmin(∇g(w)⊤) ≥ ν > 0 for any w ∈ Rd. Then, we have the following:
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(a) The minimal value of F is the same as the minimum value of h, i.e.,

min
w∈Rd

F (w) = min
u∈Rm

h(u) .

(b) The sequence (wk)
∞
k=0 produced by the exact prox-linear algorithm (3.4) with κ = Lℓ starting from

arbitrary w0 ∈ Rd converges globally to its minimum value F (wk)→ F ∗ := minF .

(c) As soon as an iterate wj satisfies F (wj)− F ∗ ≤ (αν)2/(Lℓn2), the subsequence (wk)
∞
k=j converges

quadratically as

F (wk+1)− F ∗ ≤ Lℓn2

2(αν)2
(
F (wk)− F ∗)2 . (3.5)

The proof is given in Appendix A.7.

Statistical Setting. In a statistical setting, we might not enjoy the quadratic convergence due to the

noise in the problem. Suppose we are given n input-output pairs (xi,yi)where yi = φ(xi;w)+ξi from a

parameterized nonlinear function φ( · ;w) : Rp → Rm with parametersw ∈ Rd, and ξi ∼ N (0, σ2Im) is
i.i.d. Gaussian noise. We wish to recover the true signal w’s predictions, i.e. find ŵ such that φ(xi; ŵ) ≈
φ(xi;w) for each i. We instantiate (3.2) with gi(w) = φ(xi;w) − yi and h = ∥ · ∥2 in order to solve

this problem. This is different from the related choice of h = ∥·∥22, which corresponds to non-linear least

squares regression in the fixed design setting.

We consider early stopping of the optimization once we reach the noise level. That is, we stop the

optimization once the objective value F (wk) in iteration k falls below F (w). In this setting, we now show

that the prox-linear method can enjoy quadratic local convergence only when the noise level σ of the

problem is small enough. To this end, we make a general assumption on the radius R of local quadratic

convergence; Proposition 3.1 provides a lower bound on R in the sharp and overparameterized setting.

Proposition 3.2. Fix some δ ∈ (0, 1) and consider problem (3.2) with gi and h as defined above with the
output dimension m ≥ 4 log(2n/δ). Suppose that (i) w 7→ φ(xi;w) is L-smooth for each i ∈ [n], and, (ii)
the function φ can interpolate the data so that φ(xi;w∗) = yi for each i ∈ [n] for some w∗ ∈ Rd. Suppose
there exists a scalar R > 0 and an integer j such that for all integers k ≥ j, we have

F (wk)−minF ≤ R , and F (wk+1)−minF ≤ 1

2R

(
F (wk)−minF

)2
. (3.6)

Then, we have the following with probability at least 1− δ:
(a) If the noise level satisfies

σ >
R√
m

(
1 +

(
16

m
log(2n/δ)

)1/4
)−1

,

then the first iterate wk enjoying quadratic convergence (3.6) satisfies F (wk) < F (w).

(b) Conversely, if the noise level satisfies

σ <
R√
m

(
1−

(
4

m
log(2n/δ)

)1/4
)−1

,

then the first iterate wk enjoying quadratic convergence (3.6) satisfies F (wk) > F (w).
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Proof. First, under the interpolation assumption, we have that 0 ≤ minF ≤ F (w∗) = 0, so minF = 0.
Therefore, under this setting, quadratic convergence holds before the noise level if and only if F (w) ≥ R.
To complete the proof, we show below that with probability at least 1− δ that

σ
√
m

(
1−

(
4

m
log(n/δ)

)1/4
)
≤ F (w) ≤ σ√m

(
1 +

(
16

m
log(n/δ)

)1/4
)
. (3.7)

To this end, we simplify

F (w) =
1

n

n∑

i=1

∥φ(xi;w)− yi∥2 =
1

n

n∑

i=1

∥ξi∥2 . (3.8)

Noting that ∥ξi∥22 follows a χ2
distribution withm degrees of freedom, a standard concentration argument

shows that (see example Laurent and Massart (2000, Lemma 1))

P

(
σ2m

(
1− 2

√
λ

m

)
≤ ∥ξi∥22 ≤ σ2m

(
1 + 2

√
λ

m
+

2λ

m

))
≥ 1− 2 exp(−λ)

for any λ > 0. Plugging in λ = log(2n/δ) and invoking the union bound, we have with probability at

least 1− δ that

σ
√
m

(
1−

(
4

m
log(n/δ)

)1/4
)
≤ ∥ξi∥2 ≤ σ

√
m

(
1 +

(
16

m
log(n/δ)

)1/4
)

holds simultaneously for each i ∈ [n]. Plugging this into (3.8) completes the proof.

Proposition 3.2 shows that the potential advantages of the prox-linearmethod in terms of local quadratic

convergence may not be relevant in some statistical problems where the noise level isw large.

3.3 The Prox-linear Method with Incremental Inner Loops

In general, we cannot solve subproblems (3.4) of the prox-linear method exactly. Provided that the outer

functions h are convex, the subproblems (3.4) can be solved to any accuracy by e.g. a subgradient method.

To take advantage of the finite-sum structure, we follow the recipe of Chapter 2 by smoothing the outer

function by infimal convolution in order to obtain a smooth and strongly convex objective. The latter can

then be solved at a linear rate by any fast incremental algorithm for strongly convex objectives such as

SVRG (Johnson and Zhang, 2013), SAG (Schmidt et al., 2017), SARAH (Nguyen et al., 2017) or SPIDER (Fang

et al., 2018). We refer to this as PLI, standing for Prox-Linear with Incremental Gradient inner loop. The-

oretically, a regularization κ = Lℓ suffices to ensure the convergence of the algorithm (Drusvyatskiy and

Paquette, 2019, Proposition 3.3).

Here, we directly incorporate the smoothing operation into the prox-linear analysis and present an

algorithm that uses the gradient norm of the smooth objective as a criterion. We also provide a new

accelerated algorithm with small total complexity.
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3.3.1 Smoothing and Approximate Inner Minimization

When given a function f = h ◦ g with h convex and g differentiable, the prox-linear algorithm defines

a local convex approximation c(· ;w) around current iterate w ∈ Rd by linearizing the smooth map g as

c(z;w) := h(g(w) +∇g(w)(z −w)) .With this, it builds a convex model C(·;w) of the finite sum F
about w as

C(z;w) :=
1

n

n∑

i=1

h(g(i)(w) +∇g(i)(w)(z −w)) (3.9)

The prox-linear algorithm minimizes these models with an additional proximal-term (Burke, 1985). Fol-

lowing Drusvyatskiy and Paquette (2019), we consider only approximate solutions of these models. In

particular, we focus on having access to fast incremental order to solve the sub-problems. As before, it

means smoothing the model as

Cµω(z;w) :=
1

n

n∑

i=1

hµω(g
(i)(w) +∇g(i)(w)(z −w)) (3.10)

where hµω is a smooth surrogate of h obtained by infimal convolution smoothing as in Section 2.2. We

then use fast incremental algorithms on the smooth strongly convex objective

Cµω,κ(z;w) :=
1

n

n∑

i=1

hµω(g
(i)(w) +∇g(i)(w)(z −w)) +

κ

2
∥z −w∥22 , (3.11)

defining next iterate as an approximate minimizer

wk ≈ argmin
z∈Rd

Cµω,κ(z;wk−1),

where κ−1
defines the step-size of the procedure, that is the smaller κ−1

, the closer wk to wk−1.

Concretely, the prox-linear outer loop is displayed in Algorithm 3.1. We detail its convergence guar-

antees in Section 3.3.2. Section 3.3.3 presents an accelerated variant that attempts to make extrapolated

steps. We give the total complexity using Catalyst as the inner solver in Section 3.3.4.

Once again, similar to the convex case in chapter 2, a fixed iteration budget can be used instead of the

theoretical stopping criterion.

As shown later, the convergence of the scheme is ensured for a sufficiently large regularization, i.e.

for κ larger than a constant depending on the objective. If this constant is not known, one can use the

auto-adapt procedure described by (Paquette et al., 2018), i.e. fixing the number of iterations made for each

subproblem and increasing the regularization until the stopping criterion is met.

3.3.2 Convergence Analysis

We first make some assumptions needed for the convergence of the prox-linear method and interpret them

for structured prediction. We then recall the measure of stationarity and overall convergence.

Assumptions. Convergence of the prox-linear is only ensured if the convex models approximate the

objective up to a quadratic error, i.e., if there exists a constant L > 0 such that for all w, z ∈ Rd and

i ∈ [n],

|h
(
g(i)(w + z)

)
− h
(
g(i)(w) +∇g(i)(w)z

)
| ≤ L

2
∥z∥22 . (3.14)
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Algorithm 3.1. (Inexact) Prox-linear algorithm: outer loop

Input: Objective F of the form (3.2), linearly convergent algorithmM, initial point w0,

regularization κ, smoothing parameters (µk)k≥1

1: for k = 1, · · · ,K do

2: UsingM with wk−1 as the starting point, find

wk ≈ argmin
z∈Rd

Cµkω,κ(z;wk−1) (3.12)

where Cµkω,κ(z;wk−1) is defined in (3.11) such that

∥∇Cµkω,κ(wk;wk−1)∥2 ≤
κ

2
∥wk −wk−1∥2 . (3.13)

3: return wK .

When h is G-Lipschitz and each g(i)
is L̃-smooth, both with respect to ∥ · ∥2, then this assumption holds

with L = GL̃ (Drusvyatskiy and Paquette, 2019). To analyze the behavior fo the prox-linear algorithm

for decreasing smoothing parameters, we will need that this property holds both for the original and the

smoothing function as stated in the following assumption.

Assumption 3.3. Consider f(w) = h ◦ g(w) where g is differentiable and h can be smoothed by a

smoothing function ω as in Definition A.1. We assume that for all w, z ∈ Rd, µ ≥ 0,

|h(g(w + z))− h(g(w) +∇g(w)z)| ≤ L

2
∥z∥22 ,

|hµω(g(w + z))− hµω(g(w) +∇g(w)z)| ≤ L

2
∥z∥22 .

In the case of structured prediction, it holds when the augmented score ψ as a function of w is L-
smooth, as stated below. Its proof is given in Appendix A.6.1.

Lemma 3.4. Consider the structural hinge loss f(w) = maxy∈Y ψ(y;w) = h ◦ g(w) where h, g are as
defined in (2.11). If the augmented score function w 7→ ψ(y;w) is L-smooth with respect to ∥ · ∥2 for all
y ∈ Y , then for all w, z ∈ Rd

|h(g(w + z))− h(g(w) +∇g(w)z)| ≤ L

2
∥z∥22 ,

The same holds if h is replaced by its smoothing hµω .

Recall that the smoothing of h by a strongly convex function ω satisfying

0 ≤ ω(u) ≤ D, for all u ∈ domh∗ (3.15)

enables access to smooth surrogates Fµω andCµω(·;w) of respectively the objective F and convex models

C(·;w) that satisfy for any µ1 ≥ µ2 ≥ 0, and any w, z ∈ Rd,

0 ≤ Fµ2ω(w)− Fµ1ω(w) ≤ (µ1 − µ2)D, (3.16)

0 ≤ Cµ2ω(z;w)− Cµ1ω(z;w) ≤ (µ1 − µ2)D. (3.17)
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Assumption 3.3 adds the following assumptions on the models for any w, z ∈ Rd, µ ≥ 0,

|F (w)− C(z;w)| ≤ L

2
∥z −w∥22, (3.18)

|Fµω(w)− Cµω(z;w)| ≤ L

2
∥z −w∥22. (3.19)

This control on the quality of the approximations of the smoothed convex models allows us to characterize

the convergence of the method.

Convergence guarantee. While classical gradient methods use the norm of the gradient to measure con-

vergence, the prox-linear method is better analyzed as a fixed point algorithm. The norm of the difference

of iterates can indeed be related to near stationarity as demonstrated by Drusvyatskiy and Lewis (2018),

whose proposition is adapted below. Its proof is provided in Appendix A.6.1.

Proposition 3.5. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. For any w ∈ Rd and µ ≥ 0, κ ≥ 2L, if z ∈ Rd
approximately minimizes the model Cµω,κ as

∥∇Cµω,κ(z;w)∥2 ≤
κ

2
∥z −w∥2,

then there exists ẑ ∈ Rd such that

∥ẑ − z∥2 ≤ ∥z −w∥2 +
√
µD and d(0, ∂F (ẑ)) ≤ 5κ∥z −w∥2 + 3

√
µκD.

where d(0, ∂F (ẑ)) = infz∈∂F (ẑ) ∥z∥2.
The difference of iterates is thus a measure of near-stationarity as follows.

Corollary 3.6. Given assumptions of Proposition 3.5, and using κ ≥ 2L for Algorithm 3.1, if for k ≥ 1,

5κ∥wk −wk−1∥2 ≤ ε/2
then there exists a point ẑ ∈ Rd that is ε/2 + 3

√
µkκD near-stationary and ε/10κ+

√
µkD close to wk.

The difference of iterates can then be controlled by an appropriate step-size and relative accuracy

threshold as shown in the following theorem — the proof is given in Appendix A.6.

Theorem 3.7. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. Feed Algorithm 3.1 with a regularization κ ≥ 2L
and non-increasing smoothing parameters (µk)k≥1, then it produces a sequence (wk)k≥0 that satisfies

min
k∈{1,...,K}

κ2∥wk −wk−1∥22 ≤
4κ

K

(
F (w0)− F ∗ + µ1D

)
,

where F ∗ = infw∈Rd F (w).

For a target accuracy ε one can simply take a constant smoothing µ = ε2/κD to get an iterate ε(1/κ+
1/
√
κ)-close to an ε-near stationary point after

O

(
κ(F (w0)− F ∗)

ε2
+ 1

)

outer iterations of the prox-linear. For a decreasing accuracy, the result still holds as shown in the following

corollary. Note that the analysis does not incorporate an additional log term as required by (Drusvyatskiy

and Paquette, 2019, Thm. 5.2)
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Corollary 3.8. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. Taking µk = µ0/k, κ ≥ 2L as inputs for Al-
gorithm 3.1 ensures that there exists an iterate ε(1/κ + 1/

√
κ)-close to an ε-near stationary point after at

most

O

(
κ(F (w0)− F ∗ + 3µ0D)

ε2

)

outer iterations of the prox-linear method.

Proof. After kε = µ0κD/ε
2
iterations the smoothing approximation measured by

√
µkκD for k ≥ kε

are below the target accuracy, i.e.

√
µkκD ≤ ε. Then, following the proof of Theorem 3.7, we have for

K > kε,

min
k∈{kε+1,...,K}

∥wk −wk−1∥22 ≤
4

κ(K − kε)
(
Fµkεω(wkε)− FµKω(wK) + (µkε − µK)D

)
,

≤ 4

κ(K − kε)
(
F (wkε)− F (wK) + µ1D

)
,

≤ 4

κ(K − kε)
(
F (w0)− F ∗ + 2µ0D

)

where we used from (A.46) that F (wkε) ≤ F (w0) + µ0D and µ1 = µ0. Therefore for K − kε ≥
4κ
ε2

(
F (w0) − F ∗ + 2µ0D

)
, there exists an iterate in {kε + 1, . . . ,K} such that κ∥wk − wk−1∥ ≤ ε

and its smoothing constant is below the target accuracy. Proposition 3.5 concludes the claim.

3.3.3 The Accelerated Prox-linear Algorithm

We present a variant of the prox-linear method that attempts to make extrapolated steps in order to ac-

celerate the convergence when the convex models lower bound the objective. In the spirit of (Paquette

et al., 2018), the method presented in Algorithm 3.2 takes one classical prox-linear step on one hand and

an extrapolation step to potentially accelerate the algorithm on the other hand. We then take the best of

both of these as the next iterate to ensure convergence to a near-stationary point.

Convergence of the accelerated variant follows from the next proposition. Its proof is analogous to

that of Theorem 2.17 from Chapter 2. The additional requirement here is to have sufficient regularization

as one minimizes a model of the function and not the function itself. To ensure acceleration, the models

must lower bound the objective as in the convex case.

Proposition 3.9. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. Taking κ̄ ≥ 2L and non-increasing smoothing
parameters µk, the iterates produced by Algorithm 3.2 satisfy

min
k∈{1,...,K}

κ̄2∥wk −wk−1∥22 ≤
4κ̄

K

(
F (w0)− F ∗ + µ1D

)
.

If, moreover, the smooth convexmodels lower bound the smooth objective, i.e. for k ≥ 1 andw∗ ∈ argminw F (w)

Cµkω(wk−1; zk−1) ≤ Fµkω(wk−1) and Cµkω(w
∗; zk−1) ≤ Fµkω(w∗), (3.23)

then the algorithm converges for non-decreasing regularization parameters κk ≥ 2L as

F (wk)− F ∗ ≤ A
k−1
0

Bk1
∆0 + µkDω +

k∑

j=1

Ak−1
j

Bkj
(µj−1 − (1− δj)µj)Dω ,
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Algorithm 3.2. Accelerated prox-linear method

Input: Objective F of the form (3.2), linearly convergent algorithmM, initial w0, α0 ≥ 0,
smoothing parameters µk, fixed and varying regularizations κ̄, κk, relative target accuracies δk

1: Initialize: z0 = w0.

2: for k = 1, · · · ,K do

3: Prox-linear step: Compute ξk usingM, such that

ξk ≈ argmin
z∈Rd

Cµkω,κ̄(z;wk−1) where ∥∇Cµkω,κ(ξk;wk−1)∥2 ≤
κ̄

2
∥ξk −wk−1∥2 .

4: Accelerated step:

1. Set

zk−1 = αk−1zk−1 + (1− αk−1)wk−1. (3.20)

2. Compute ζk usingM such that

ζk ≈ argmin
z∈Rd

Cµkω,κk(z; zk−1)

where ∥∇Cµkω,κk(ζk; zk−1)∥2 ≤
κk
√
δk√
2
∥ζk − zk−1∥2 (3.21)

3. Set

zk = wk−1 +
1

αk−1
(ζk −wk−1).

4. Pick αk ∈ (0, 1) satisfying
1− αk
α2
k

=
κk+1

κkα
2
k−1

. (3.22)

5: Pick best of both: Set wk such that Fµkω(wk) ≤ min{Fµkω(ξk), Fµkω(ζk)}.
6: return wK

whereAji :=
∏j
r=i(1−αr), B

j
i :=

∏j
r=i(1−δr),∆0 := F (w0)−F ∗+

κ1α2
0

2(1−α0)
∥w0−w∗∥22 and µ0 := 2µ1.

The Casimir algorithm from Chapter 2 (in particular, Corollaries 2.20 and 2.21) readily apply to get

concrete rates when the convex models lower bound the function. The only additional requirement is to

provide regularization parameters sufficiently large, i.e. κk ≥ 2L.

Drusvyatskiy and Paquette (2019) also proposed an accelerated scheme for the prox-linear method. For

unconstrained problems such as the ones we consider here, they require that the convex models C(· ;w)
lower bound the objective F at any point, an assumption stronger than convexity. It is not clear if our

assumption is stronger or weaker than theirs. Secondly, their overall complexity depends on subproblems

whose condition number grows with time. Therefore, the inner loop complexity, and hence the total

complexity, grow with time. The scheme presented here circumvents this issue by taking extrapolated

steps rather than a combination of short and long steps.
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3.3.4 Prox-linear with Casimir-SVRG as the Inner Loop

We now analyze the total complexity of minimizing the finite sum problem (3.2) with Casimir-SVRG to

approximately solve the subproblems of Algorithm 3.1. The total complexity of the accelerated scheme

when the models lower bound the objective follows from the convex case.

For the algorithm to converge, the map w 7→ g(i)(wk) +∇g(i)(wk)(w −wk) must be Lipschitz for

each i and each iterate wk. To be precise, we assume that

Aω := max
i∈{1,··· ,n}

sup
w∈Rd

∥∇g(i)(w)∥22,α (3.24)

is finite, where ω, the smoothing function, is 1-strongly convex with respect to ∥ · ∥α. When g(i)
is the

linear mapw 7→ A(i)w, this reduces to the assumption in Eq. (2.37). The parameter Aω characterizes the

smoothness of each subproblem and is necessary to run incremental algorithms. In practice, we can search

for it on small mini-batches of the problem before running the algorithm on the whole data set, or treat it

like another hyperparameter to be tuned.

We choose the smoothing parameters µk to decrease as 1/k and use the Catalyst algorithm with SVRG

(Casimir-SVRG without smoothing) as the inner solver to solve each sub-problem. This results in the

following rate of convergence for the prox-linear, which is proved in Appendix A.6.2.

Proposition 3.10. Consider the setting of Corollary 3.8 and that the subproblem of Line 2 of Algorithm 3.1 is
solved using Catalyst-SVRG. Then, total number of SVRG iterationsN required to produce an iterate ε(1/κ+
1/
√
κ)close to an ε-near stationary is bounded as

E[N ] ≤ Õ
(
κ

√
Aωn

ε3
(∆F0 + µ0D)3/2

)
.

Note that this sample complexity is smaller than the O(1/ε4) required by the stochastic subgradient

method.

3.4 Experiments

We consider three different experimental setups: multi-output regression, structured prediction, and solv-

ing stochastic non-linear equations. In all cases, the hyper-parameters have been tuned by a grid search.

Synthetic Multi-output Regression. We consider a regression task of predicting output y ∈ Rk from
input x ∈ Rp, given a synthetic dataset {(xi,yi)}ni=1 of input-output pairs of varying size n. We use p =
128 and k = 10 throughout. We sample the each input xi i.i.d. from a zero-mean normal distribution with

covariance matrix Σ exhibiting a 1/j2 spectral decay. The output is generated as yi = ϕ⋆(xi;w
⋆) + σξi,

where ϕ⋆(· ;w⋆) is a multilayer perceptron (MLP) with one hidden layer of width 256, and standard normal

weightsw⋆
, while ξi is sampled from a standard Laplace distribution in Rk and σ is the noise scale, which

we vary. We define the signal-to-noise ratio (SNR) of a problem instance as SNR = ∥w⋆∥2/σ2 ∝ 1/σ2.
Finally, the loss and evaluation measure we use is the ℓ2 loss (without the square).

We vary the number of samples n and the SNR (equivalently, σ) and compare the two methods intro-

duced in Section 3.1.2: the stochastic subgradient method (SGD) and prox-linear with incremental gradient

inner loop (PLI). For each instance, we tune the hyperparameters to achieve the smallest loss on a held-

out validation dataset in 100 epochs and report the test loss. We run the experiment in two regimes: (a)
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Figure 3.2: Synthetic multi-output regression: comparing the stochastic subgradient method (SGD) and

the prox-linear with incremental gradient inner-loop (PLI) for various choices of the number of samples n
and the signal-to-noise ratio (SNR). We highlight the method which finds the smallest test ℓ2 loss.
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Figure 3.3: Left: example map and associated best path (in solid white lines), Right: associated reward for

each cell.

under-parameterized, where the model is a MLP with 64 hidden units, and, (b) over-parameterized, where

the MLP has 512 hidden units, compared to the 256 hidden units of ϕ⋆(· ;w⋆).

We see in Figure 3.2 that SGD tends to outperform PLI overall, especially in high SNR regime. In the

low SNR regime, PLI and SGD are mostly tied in their performance, exhibiting very similar test errors.

Path Planning as Structured Prediction. Among all monotonic paths from the top left corner to the

bottom right corner of a grid, we consider finding the path that maximizes the rewards collected on each

tile it passes through. Specifically, we consider images generated in the game Warcraft II (Guyomarch,

2017) as illustrated in Figure 3.3. Each tile corresponds to some terrain such as water, desert, grass, or rock

with a fixed reward (grass> desert> water> rock). As long as the rewards can directly be observed, this

task can be solved by dynamic programming. In this experiment, the rewards are not directly observed;

they are computed as the transformation of the raw pixels of each tile by a convolutional neural network.

Our goal is to learn the reward function from a dataset of randommaps with their associated optimal path.

Given a map xwith associated best path y, let denote by ψ(x,y,y′;w) the augmented score of a path
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Figure 3.4: Planning as a structured prediction problem. We plot the Hamming loss, which measures

how good the predicted path is to the actual shortest path on unseen grids. From left to right: µ =
1/n, 10−2/n, 10−4/n

y′
parameterized by w; see Section 2.1 for a detailed description of structured prediction. Our objective

is to solve the max-margin structured prediction formulation (2.7) of Chapter 2 with non-linear score

functions. Concretely, the objective is

min
w∈Rd

1

n

n∑

i=1

max
y′∈Y

ψ(xi,yi,y
′;w) +

µ

2
∥w∥22, (3.25)

where (xi)
n
i=1 are the maps, (yi)

n
i=1 are their respective best paths, and µ ≥ 0 is some regularization

parameter.

Recall from Section 2.3 that subgradients for (3.25) can be computed by estimating the highest reward

path y′
associated with a given sample (xi,yi) for a feature map parameterized by the current parameters

w. We smooth the objective in (3.25) by the top-K oracle (cf. Definition 2.5). That is, we consider an

inf-convolution of the max by a squared ℓ2 norm, and approximated using the top-K shortest paths for

the given score function.

The methods we consider are (i) stochastic subgradient methods (Davis and Drusvyatskiy, 2019), de-

noted SGD, with various learning rates strategies γt = γ0, γt = γ0/
√
t and γt = γ0/t, (ii) a variance

reduced stochastic sub-gradient method, denoted SVRG (Johnson and Zhang, 2013), (iii) Casimir-SVRG,

an accelerated algorithm on the Moreau-envelope of the objective as described in Chapter 2, (iv) a mod-

ified Gauss-Newton algorithm as described in (3.4), denoted PL. Both Casimir-SVRG and PL require to

smooth the objective, i.e., using a top-K oracle, as we discussed in Chapter 2.

In Figure 3.4, we observe that SGD with constant step-size carefully tuned can perform as well as

more sophisticated methods such as the modified Gauss-Newton method. Most importantly, for a small

regularization parameter (µ = 10−4/n), SGD yields the best test Hamming loss, which in this task is the

target metric.

Stochastic Nonlinear Equations. Gauss-Newton-type methods can be applied to stochastic non-linear
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Figure 3.5: Solving stochastic nonlinear equations. We plot the “test loss”, which is the objective value on

a separate testing set. Left: ijccn1 dataset. Right: covtype dataset

equations of the form

min
w∈Rd

h

(
1

n

n∑

i=1

gi(w)

)
(3.26)

where h is a convex, possibly non-smooth, Lipschitz function such as ∥ · ∥1 and the inner mappings are

smooth and typically of the form gi(w) = g(xi,w) − yi (Tran-Dinh et al., 2020; Zhang and Xiao, 2020).

Problem (3.26) can be interpreted as ensuring that, on average, the non-linear mapping g(·,w) maps the

inputs xi to the targets yi.

Algorithms. Denoting g(w) = 1
n

∑n
i=1 gi(w), a natural baseline algorithm is to compute iterates as

wk+1 = wk − γ∇̂g(w)⊤∇h(ĝ(wk))), (3.27)

where ∇̂g(w) and ĝ(w) are approximations of ∇g(w) and g(w) respectively that can be approximated

from a mini-batch (Wang et al., 2017); we call this “SGD”. Note that the minibatch subgradient estimates

can be biased since the outer function h can be non-linear. A modified Gauss-Newton or Prox-Linear

method adapted to the inner finite-sum performs the iterations

wk+1 = argmin
w∈Rd

{
h
(
ĝ(wk) + ∇̂g(wk)(w −wk)

)
+
M

2
∥w −wk∥22

}
(3.28)

where each sub-problem can be solved by incremental algorithms such as the accelerated dual proximal

gradient ascent (Tran-Dinh et al., 2020; Zhang and Xiao, 2020).

Experiment. We consider the experimental setting of (Tran-Dinh et al., 2020). The objective is to solve (3.26)

where h is the Huber loss, a smooth surrogate of the nonsmooth ℓ1 norm, and inner mappings g are the

concatenation of four different losses, i.e., gi(w) = (ℓ1(x
⊤
i w,yi), . . . , ℓ4(x

⊤
i w,yi)), where the formu-

lations of the losses can be found in (Tran-Dinh et al., 2020). The samples (xi,yi) are drawn from the

datasets ijcnn1 or covtype from the LIBSVM repository (Chang and Lin, 2011).

We consider (i) a gradient descent denoted GD, (ii) a modified Gauss-Newton or prox-linear method de-

noted PL, (iii) a baseline of the form (3.27), denoted SGD, (iv) an incremental Gauss-Newton or prox-linear

method as described in (3.28), denoted PLI for consistency. In Figure 3.5, we observe that PL outperforms
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GD as expected in the batch setting. However, this advantage is longer present in the incremental set-

ting. The analogue of gradient descent, namely the SGD baseline (3.27), often performs better than its

Gauss-Newton counterpart PLI.

72



Chapter 4

MAUVE: Measuring the Gap Between

Neural Text and Human Text

As a consequence of the explosion of scale, large-scale text generation models show an ability to produce

human-like text of remarkable quality and coherence in open-ended generation (Radford et al., 2019; Zellers

et al., 2019; Brown et al., 2020). In this setting, a text generation model forms a distribution over natural

language sequences, induced by an autoregressive neural sequence model (e.g., GPT-3 (Brown et al., 2020))

paired with a decoding algorithm (e.g., nucleus sampling (Holtzman et al., 2020)). While we cannot always

compute the exact probability assigned to each sequence, we can easily sample text from this distribution.

The goal of generative modeling is to obtain samples that resemble those from the “true” distribution of

human-written text.

To evaluate how close a generation model’s distribution is to that of human-written text, we must

consider two types of errors: (I) where themodel assigns high probability to sequences that do not resemble

human-written text, and, (II) where the model distribution does not cover the human distribution, i.e., it

fails to yield diverse samples. However, quantifying these aspects in a principled yet computationally

tractable manner is challenging, as the text distributions are high-dimensional and discrete, accessed only

through samples or expensive model evaluations (Holtzman et al., 2020; Zhang et al., 2021).

We develop MAUVE, a comparison measure for open-ended text generation. The proposed measure is

efficient, interpretable, and practical for evaluating modern text generation models. It captures both types

of errors (Figure 4.1) by building upon information divergence frontiers (Sajjadi et al., 2018; Kynkäänniemi

et al., 2019; Djolonga et al., 2020), so far underexplored in natural language processing. The key idea for

making the proposed measure computationally tractable, yet effective, is to reduce its measurement to

computing Kullback-Leibler divergences in a quantized, low-dimensional space after embedding samples

from each distribution with an external language model. From an end user’s perspective, MAUVE has a

simple interface: given neural text and human text, it yields a scalar measure of the gap between them.

We summarize the contributions of this chapter. First, we introduce MAUVE, a comparison measure

between neural text and human text. Second, we empirically show that MAUVE is able to quantify known

properties of generated text with respect to text length, model size, and decoding more correctly and with

fewer restrictions than existing distributional evaluation metrics. Third, we find through a human evalua-

tion that MAUVE better correlates with human quality judgments of text. Finally, we find that MAUVE can

be highly robust to the choice of quantization, embeddings, and scaling. We open-source a pip-installable

Python package to compute MAUVE.1

1

Available from https://github.com/krishnap25/mauve.
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Figure 4.1: Left: MAUVE compares the machine text distribution Q to that of human text P by using the family

of mixtures Rλ = λP + (1− λ)Q for λ ∈ (0, 1). Right: Illustration of Type I errors, where Q produces degenerate,

repetitive text which is unlikely under P , and, Type II errors, where Q cannot produce plausible human text due to

truncation heuristics (Holtzman et al., 2020). MAUVE measures these errors softly, by using the mixture distribution

Rλ. Varying λ in (0, 1) gives a divergence curve and captures a spectrum of soft Type I and Type II errors. MAUVE

summarizes the entire divergence curve in a single scalar as the area under this curve.

4.1 Background

We begin by discussing the basics of open-ended text generation. We start with neural autoregressive

language models since these form the backbone of prevailing approaches to text generation.

Language Modeling. Consider sequences x = (x1, · · · ,x|x|) of natural language text, where each xi
belongs to a finite vocabulary V (e.g., characters or words). As discussed in Chapter 1, a language model

P̂ (· |x1:t)models the conditional distribution over the next token xt+1 following the sequencex1:t. Neural

language models are those language models parameterized by a neural network with parameters denoted

by θ ∈ Rd, so we write it as P̂θ(· |x1:t) when we wish to make this dependence explicit. Contemporary

neural language models are based on the transformer architecture (Vaswani et al., 2017), which is summa-

rized in Figure 4.2 (left). We refer to Chapter 1 for a discussion on the history of language modeling.

The usual training objective for neural language modeling is via supervised multi-class classification of

the next token. We assume that there is an underlying distribution P (· |x1:t) for the next token xt+1 hu-

mans would write in continuation to a prefix x1:t. The training procedure aims to minimize the Kullback-

Liebler (KL) divergence between the distributions P (· |x1:t) and P̂ (· |x1:t) assigned by humans and the

language model respectively over the next token xt+1 in continuation to a context x1:t ∼ Pt coming from

human-written text:

min
θ

Et∼Unif([T−1])Ex1:t∼Pt

[
KL
(
P (· |x1:t)

∣∣∣P̂θ(· |x1:t)
)]

, (4.1)

where T is the maximum sequence length. Since neither the distribution Pt over prefixes of length t nor
the distributionP (· |x1:t) over the next token is known in practice, plug-in estimates of both are employed

in practice.

Autoregressivemodels also yield an estimate of the joint probability P̂ (x) of a sequencex = (x1, · · · , x|x|)
as

P̂ (x) =

|x|−1∏

t=0

P̂ (xt+1 |x1:t) .

Note that this parameterization is in contrast to those of Chapter 2, where we limited the length of the

context akin to Hidden Markov Models (HMMs) for tractable inference.
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Figure 4.2: Left: Transformer architecture. Right: Illustration of how decoding algorithms reshape the

next-token distribution.

Open-Ended Text Generation. The open-ended text generation task asks us to output text x̂s+1:|x̂|
in continuation of a given context x1:s. In contrast to directed text generation tasks such as translation,

summarization, and question-answering, the task here is open-ended in that the context size s ≪ |x̂| is
typically small and does not really constrain the output space. Unlike directed text generation tasks such

as translation, summarization, and question-answering, the goal here is to generate text that is coherent,

fluent, creative, and engaging. Since these criteria are hard to make mathematically precise, we instead

consider the surrogate goal of generating text which is human-like, such that generated text samples can

pass for samples from the distribution P over human written text sequences.

We model a text generation system as a probability distributionQ(· |x1:s) such that its generated text

x̂s+1:|x̂| is an i.i.d. sample from Q. Given a neural autoregressive language model P̂ , we can generate

open-ended text in a serial, left-to-right fashion, by sampling x̂s+1 ∼ P̂ (·|x1:s), x̂s+2 ∼ P̂ (·|x1:s, x̂s+1),
etc. This is also known as ancestral sampling, and the induced distribution Q over sequences is

Qsamp(x1:s, x̂s+1:|x̂|) =
s∏

t=1

P (xt|x1:t−1)

|x̂|∏

t=s+1

P̂ (x̂t|x1:s, x̂s+1:t−1) ,

where we assume that the prefix x1:s ∼ Ps is drawn from the human distribution.

Decoding Algorithms. Assuming the language model learning has succeeded, we have that P̂ (· |x1:t) ≈
P (· |x1:t) for prefixes x1:t ∼ Pt drawn from the distribution of human-written text, in the sense that the

objective of (4.1) is bounded above by some ε > 0. However, for x̂1:t drawn from a distribution Qt
which is different from the human distribution Pt, the model’s next-token distribution P̂ (· | x̂1:t) can be

quite different from P (· | x̂1:t) of humans. In the iterative process of ancestral sampling, the gap between

P (x̂1:t) andQsamp(x̂1:t) keep increasing as the generation length t grows larger, so thatQsamp is quite far

from P . This leads to decoding algorithms which produce samples

x̂t+1 ∼ Q(· |x1:s, x̂s+1:t) ,
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where Q(· |x1:t) is a reshaping of the language model P̂ (· |x1:t) in order to promote more conservative

outputs. We now define a few popular decoding algorithms; see also Figure 4.2 (right) for an illustration.

Temperature rescaling (Ackley et al., 1985) applies to language models parameterized with a softmax

function:

P̂ (xt+1 |x1:t) =
exp

(
ϕ(xt+1|x1:t)

)
∑

x∈V exp
(
ϕ(x|x1:t)

) ,

for some unnormalized scoring function ϕ(· |x1:t) : V → R. This decoding algorithm rescales the term

inside the exponential with a “temperature” parameter τ > 0:

Qtemp,τ (xt+1 |x1:t) =
exp

(
1
τ ϕ(xt+1|x1:t)

)
∑

x′t+1∈V
exp

(
1
τ ϕ(x

′
t+1|x1:t)

) .

When τ < 1, the distribution Qtemp,τ (· |x1:t) becomes more peaked around the most likely next tokens,

making the distribution more conservative.

For an integerK < |V |, top-K sampling (Fan et al., 2018) applies the transformation

Qtop-K(xt+1|x1:t) =

{
1
Z P̂ (xt+1|x1:t) , if xt+1 ∈ Vtop-K ,
0 , else,

where Z is a normalizing constant, and Vtop-K = {z(1), · · · , z(K)} ⊂ V is the set of theK highest scoring

tokens satisfying

P̂ (z(1)|x1:t) ≥ · · · ≥ P̂ (z(K)|x1:t) ≥ max
z∈V \Vtop-K

P̂ (z|x1:t) .

The extreme K = |V | corresponds to ancestral sampling. The other extreme K = 1 is known as greedy
decoding, which corresponds to choosing the most likely next token iteratively. Greedy decoding is often

used to approximate the most likely sequence argmaxx P (x|x1:t). This is exactly the inference problem

of Chapter 2, which cannot be efficiently solved with an exact algorithm in this case.

Nucleus sampling (Holtzman et al., 2020), similar to top-K sampling, returns a sparse distribution.

Given a parameter p ∈ (0, 1), it applies the transformation

Qnuc,p(xt+1 | x1:t) =

{
1
Z P̂nuc,p(xt+1 | x1:t), if xt+1 ∈ Vnuc,p,
0, else,

where the top-p vocabulary Vnuc,p is defined as the smallest set V ′ ⊂ V such that

∑
x∈V ′ P̂ (x|x1:t) ≥ p,

and Z is the normalizing constant

Z =
∑

x∈Vnuc,p

P̂ (x|x1:t) .

4.2 MAUVE

In this section, we introduce MAUVE for measuring the divergence between machine-generated text and

human text.
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Figure 4.3: Divergence curves for different models (GPT-2 (Radford et al., 2019), Grover (Zellers et al., 2019))

and decoding algorithms (greedy decoding, ancestral and nucleus sampling). MAUVE is computed as the area of

the shaded region, and larger values of MAUVE indicate that Q is closer to P . In general, MAUVE indicates that

generations from larger models and nucleus sampling are closer to human text. Rightmost: Nucleus sampling has

a slightly smaller Type I error than ancestral sampling but a higher Type II error, indicating that ancestral sampling

with Grover base produces more degenerate text while nucleus sampling does not effectively cover the human text

distribution.

4.2.1 Definition of MAUVE

Sources of Error in Text Generation. Our goal is to measure the gap between the model distributionQ
and the target distribution P of human text. As highlighted in Figure 4.1, this gap arises from two sources

of error:

(Type I) Q places high mass on some text which is unlikely under P ,

(Type II) Q cannot generate text which is plausible under P .

The Type I errors are false positives, including the common failure case where a model generates text

with semantic repetitions (Dinan et al., 2019; Holtzman et al., 2020; Welleck et al., 2020b) that are highly

unlikely to be written by humans.
2
The Type II errors are false negatives, which can occur, for instance,

because some pieces of plausible human text cannot be generated by truncation-based decoding algorithms

such as nucleus sampling (Holtzman et al., 2020). The gap between P and Q is small only if both of these

errors are small.

Quantifying the Errors. We formalize the Type I and II errors with the Kullback-Leibler (KL) diver-

gences KL(Q|P ) and KL(P |Q), respectively (see e.g. Han and Kobayashi, 2007, for a background). The

divergence KL(Q|P ) penalizes Q if there exists text x such that Q(x) is large but P (x) is small, so it

quantifies the Type I error. Likewise, KL(P |Q) quantifies the Type II error.

Unfortunately, one or both of the KL divergencesKL(P |Q) andKL(Q|P ) are infinite if the supports of
P andQ are not identical, which is often the case in open-ended generation. This makes the KL divergence

itself unsuitable as an evaluation metric. We overcome this issue by softlymeasuring the two errors using

the mixture distribution Rλ = λP +(1−λ)Q for some λ ∈ (0, 1). In particular, we define the (soft) Type

I error at level λ as KL(Q|Rλ) and the (soft) Type II error as KL(P |Rλ).

Summarizing the Errors with a Divergence Curve. Since the mixture weight λwas arbitrary, we con-

sider a family of Type I and II error values by varying λ between 0 and 1, in the same spirit as information

2

Let text x with P (x) ≫ 0 be the positive class and P (x) ≈ 0 be the negative class. IfQ(x) ≫ 0 for some negative x, then
the model incorrectly considers it a positive, so it is a false positive.
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culated from the area A of the orange region by Eq. (4.3). MAUVE, on the other hand, is the area under the

entirety of the divergence curve.

divergence frontiers (Sajjadi et al., 2018; Djolonga et al., 2020). This yields a divergence curve,

C(P,Q) =
{(

exp(−cKL(Q|Rλ)), exp(−cKL(P |Rλ))
)
: Rλ = λP + (1− λ)Q, λ ∈ (0, 1)

}
, (4.2)

where c > 0 is a hyperparameter for scaling. The divergence curve formalizes and encodes information

about the trade-off between Type I and II errors. Figure 4.3 illustrates the divergence curves for different

models and decoding algorithms.

Our proposed measure, MAUVE(P,Q), is the area under the divergence curve C(P,Q). It provides a
scalar summary of the trade-off between Type I and Type II errors. MAUVE(P,Q) lies in (0, 1], with a

larger value meaning that Q is closer to P . Further, MAUVE(P,Q) = 1 if and only if Q = P . The area
under the curve is a common summary of trade-off curves in machine learning (Cortes and Mohri, 2005;

Clémençon and Vayatis, 2009; Clémençon and Vayatis, 2010; Flach, 2012).

4.2.2 Properties of MAUVE

Connections to Common Divergences. The divergence curve encodes more information than the

KL divergence KL(P |Q), which can be obtained from the second coordinate of the curve C(P,Q) as

λ → 0, and the reverse KL divergence KL(Q|P ) which can be obtained from the first coordinate of the

curve C(P,Q) as λ → 1. Further, the Jensen-Shannon (JS) divergence JS(P,Q) =
(
KL(P |R1/2) +

KL(Q|R1/2)
)
/2, can be obtained from the two coordinates of C(P,Q) at λ = 1/2. Indeed, the JS diver-

gence can be obtained as the area A of the axis-parallel rectangle between the point on the divergence

curve corresponding to λ = 1/2 and the origin; cf. Figure 4.4. In particular, we have,

JS(P,Q) =
1

2

(
KL(P |R1/2) + KL(Q|R1/2)

)
=

1

2c
log

1

A
. (4.3)

In contrast to these divergences, MAUVE summarizes all of the divergence curve C(P,Q).

Pareto Optimality of Divergence Curves. We now show that the divergence curve C(P,Q) encodes
the Pareto frontier of

(
KL(P |R),KL(Q|R)

)
for all distributions R, not just mixtures of the form Rλ.
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Proposition 4.1. Consider two distributions P,Q with finite support and a scaling constant c > 0. Let
Rλ be such that

(
e−cKL(Q|Rλ), e−cKL(P |Rλ)

)
∈ C(P,Q). Then, Rλ is Pareto-optimal for the pair of objec-

tives
(
KL(Q|·),KL(P |·)

)
. In other words, there does not exist any distribution R such that KL(Q|R) <

KL(Q|Rλ) and KL(P |R) < KL(P |Rλ) simultaneously.

Proof. Let F(P,Q) be the Pareto frontier of

(
KL(Q|·),KL(P |·)

)
. The convexity of KL(Q|·),KL(P |·)

allows us to compute the Pareto frontier F(P,Q) exactly by minimizing linear combinations of the objec-

tives. Concretely, we have from (Miettinen, 2012, Theorems 3.4.5, 3.5.4) that

F(P,Q) =
{(

KL(P |R⋆λ),KL(P |R⋆λ)
)
: λ ∈ [0, 1]

}
, where, R⋆λ ∈ argmin

R
{λKL(Q|R) + λ̄KL(P |R)} ,

and λ̄ = 1− λ. By adding and subtracting

∑
iRλ,i log(Rλ,i), we get the identity

λKL(P |R) + λ̄KL(Q|R) = λKL(P |Rλ) + λ̄KL(Q|Rλ) + KL(Rλ|R) .

The first two terms of the right-hand side are independent ofR and the last term is minimized atR = Rλ.
Therefore, R⋆λ = Rλ.

Proposition 4.1 reveals the connection between MAUVE and divergence frontiers (Djolonga et al., 2020).

In particular, the inclusive KL divergence frontier, defined as the Pareto frontierF(P,Q) of
(
KL(Q|·),KL(P |·)

)

(see the proof of Proposition 4.1), is connected to the divergence curve C(P,Q) as

F(P,Q) =
{(
c−1 log t−1

1 , c−1 log t−1
2

)
: (t1, t2) ∈ C(P,Q)

}
.

Statistical Estimation. In practice, we do not have access to the population distribution P over human

text or the complete distribution Q over machine text. These quantities must be estimated from i.i.d.

samples each from P and Q, and this incurs a statistical estimation error. We bound here the statistical

estimation error of a close relative of MAUVE, namely the Jensen-Shannon divergence (cf. Figure 4.4).

Theorem 4.2. Consider two discrete distributions P,Q ∈ ∆k−1, and i.i.d. samples Y1, · · · , Yn ∼ P and
Y1, · · · , Y ′

n ∼ Q. Denote P̂n = (1/n)
∑n

i=1 δYi and Q̂n = (1/n)
∑n

i=1 δY ′
i
denote the corresponding empir-

ical distributions. We have,

E
∣∣∣JS(P̂n, Q̂n)− JS(P,Q)

∣∣∣ ≤ log n

2

(
αn(P ) + αn(Q)

)
+

1

2

(
βn(P ) + βn(Q)

)
,

where αn(P ) =
∑k

i=1

√
n−1Pi and βn(P ) = E

[∑
i:P̂n,i=0 Pi log 1/Pi

]
. We also have the distribution-free

bound

E
∣∣∣JS(P̂n, Q̂n)− JS(P,Q)

∣∣∣ ≤ log n

2

(√
k

n
+
k

n

)
.

The bound captures a parametric rate of convergence, i.e.,O(n−1/2), up to a logarithmic factor. In fact,

this rate is not improvable in a related problem of estimating KL(P |Q), even with the assumption that

P/Q is bounded (Bu et al., 2018).

A key component of this result is the missing mass problem, first studied by Good (1953), in the context

of estimating the probability of a new observation drawn from a fixed distribution that has not previously

appeared, in other words, is missing in the current sample. Their Good-Turing estimator has been widely
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used in language modeling (e.g., Katz, 1987) and studied in theory (McAllester and Schapire, 2000; Orlitsky

et al., 2003; Orlitsky and Suresh, 2015).

This proof technique is fairly general and can be applied for a wide range of f -divergences, cf. (Liu
et al., 2021a). We only sketch the proof here and give the full proof in Appendix B.

Proof Sketch of Theorem 4.2. The proof relies on a careful analysis of the derivatives of the Jensen-Shannon
divergence while accounting for the missing mass. Define the bivariate scalar function

ψ(p, q) =
p

2
log

(
2p

p+ q

)
+
q

2
log

(
2q

p+ q

)
,

so that JS(P,Q) =
∑k

i=1 ψ(Pi, Qi). By the triangle inequality, we have,

∣∣∣JS(P̂n, Q̂n)− JS(P,Q)
∣∣∣ ≤

k∑

i=1

∣∣∣ψ(P̂n,i, Q̂n,i)− ψ(Pi, Q̂n,i)
∣∣∣

︸ ︷︷ ︸
=:∆i

+
∣∣∣ψ(P̂i, Q̂n,i)− ψ(Pi, Qi)

∣∣∣
︸ ︷︷ ︸

=:∆′
i

.

We bound ∆i in terms of |P̂n,i − Pi| so that summing over all coordinates gives a bound on the total

variation distance ∥P̂n − P∥TV =
∑k

i=1 |P̂n,i − Pi|. A first order Taylor expansion gives the bound

∆i ≤ max
λ∈[0,1]

|ψp(λPi + (1− λ)P̂n,i, Qi)| |Pi − P̂n,i| ,

where ψp denotes the partial derivative of ψ w.r.t. its first argument. Unfortunately, as p → 0 for fixed

q ̸= 0, we have that |ψp(p, q)| ≤ (1/2) log(q/p)→∞.

We use a two-pronged approach to overcome this issue. First, we take a second order Taylor expansion

and carefully bound the second order remainder term to get

∆i ≤
1

2
log

1

max{Pi, P̂n,i}
|P̂n,i − Pi| .

Secondly, because P̂n is an empirical measure, we can only have two possibilities: P̂n,i ≥ 1/n or P̂n,i = 0.
The first case gives an additional log n dependence on the total variation distance, while the second case

is the missing mass. Based on results from the missing mass literature (Berend and Kontorovich, 2012;

Mcallester and Ortiz, 2003), we show that

βn(P ) = E

[
k∑

i=1

I(P̂n,i = 0) Pi log
1

Pi

]
≤ k log n

n
.

Finally, we bound the total variation term with repeated applications of Jensen’s inequality as

E∥P̂n − P∥TV ≤
k∑

i=1

√
E(P̂n,i − Pi)2 =

k∑

i=1

√
Pi(1− Pi)

n
≤ αn(P ) ≤

√
k

n
.
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Figure 4.5: Illustration of the quantization. Left: A continuous two-dimensional distribution P . Right: A parti-

tioning of the Euclidean plane R2
and the corresponding quantized distribution P̃ .

4.2.3 Computing MAUVE for Open-Ended Text Generation

Each point on the divergence curve C(P,Q) consists of a coordinate

KL(P |Rλ) =
∑

x

P (x) log
P (x)

Rλ(x)
, (4.4)

and a similarly defined coordinate KL(Q|Rλ). We cannot compute the summation as written in Eq. (4.4),

as we do not know the ground-truth probabilities P (·) and the support of a typical model distribution is

prohibitively large since it is the space of all sequences of tokens. As a result of these two issues, MAUVE

cannot be tractably computed in closed form.

We estimate MAUVE from samples xi ∼ P and x′
i ∼ Q to overcome the fact that ground-truth

probabilities P (·) are unknown. We circumvent the intractable support size by computing MAUVE in

a quantized embedding space that is sensitive to important features of text.

The overall estimation procedure is as follows. First, we sample human text xi ∼ P and machine text

x′
i ∼ Q. We then embed each text sequence using an external language model M (e.g., GPT-2 (Radford

et al., 2019)) to obtain embeddings {M(xi)}Ni=1 and {M(x′
i)}N

′
i=1. Each embedding is now a vectorM(x) ∈

Rd. Next, we jointly quantize the embedded samples (e.g. with k-means clustering (Manning and Schütze,

2001)) and count the cluster assignments to form histograms, giving low-dimensional discrete distributions

that approximate each high-dimensional text distribution. In particular, the distribution P of human text

is approximated by the discrete distribution P̃ of support size k, which is defined as,

P̃ (j) =
1

N

N∑

i=1

I
(
ϕ(xi) = j

)
, (4.5)

where ϕ(x) ∈ {1, · · · , k} returns the cluster id of x. The model distribution Q is approximated as Q̃
similarly. Here, P̃ and Q̃ can be interpreted as piecewise constant approximations of P and Q, similar to

a histogram; see Figure 4.5 for an illustration. Computing the divergence curve is now tractable, as each

coordinate is a KL divergence between the k-element discrete distributions.

The full divergence curve (4.2) is a continuously parameterized curve for λ ∈ (0, 1). For computational

tractability, we take a discretization Λ of [0, 1]:

Ĉ(P,Q) =

{
(
exp(−cKL(Q|Rλ)), exp(−cKL(P |Rλ))

)
:
Rλ = λP + (1− λ)Q,

λ ∈ Λ

}
. (4.6)
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Algorithm 4.1. Pseduocode to compute MAUVE

Input: Human text {xPi }Ni=1, model text {xQi }N
′

i=1, number of clusters k, embedding modelM , discretiza-

tion Λ of [0, 1].

1: {M(xPi )}Ni=1, {M(xQi )}N
′

i=1 ← embed
(
M, {xPi }Ni=1, {xQi }N

′
i=1

)
▷ Embed the samples

2: CP , CQ = quantize
(
{M(xPi )}Ni=1, {M(xQi )}N

′
i=1

)
▷ Cluster embeddings jointly

3: P̃ ← count(CP )/N , Q̃← count(CQ)/N ′ ▷ Count cluster assignment

4: Compute Ĉ(P̃ , Q̃) from (4.6) for λ ∈ Λ ▷ Build the divergence curve

5: return MAUVE(P,Q) = area
(
Ĉ(P̃ , Q̃)

)
▷ Compute MAUVE using numerical quadrature

We take a uniform grid Λ = {1/n, 2/n, · · · , (n− 1)/n} with n points. Finally, we estimate MAUVE as the

area under Ĉ(P̃ , Q̃) using numerical quadrature. We summarize the overall procedure in Algorithm 4.1.

To recap, our proposed measure MAUVE(P,Q) is the area under the divergence curve C(P,Q), pro-
viding a summary of all Type I and Type II errors through an efficient approximation designed for text

generation. Next, we discuss how MAUVE compares to prior comparison measures for text (Section 4.3),

then present empirical results with MAUVE (Section 4.4).

4.3 Related Work

Divergence Measures for Text. Prior measures of similarity/divergence between machine text and

human text come in three broad categories: (a) reference-based, (b) statistics-based, and (c) language mod-

eling. Table 4.1 summarizes the latter two categories, and contrasts them with MAUVE.

Reference-based measures evaluate generated text with respect to a (small set of) reference text sam-

ple(s), rather than comparing full sequence distributions. These include classical metrics forn-grammatch-

ing (Papineni et al., 2002; Lin, 2004; Banerjee and Lavie, 2005), which are designed to capture similarities in

the surface form of the generated text and the human references, making them fundamentally ill-suited for

open-ended generation. Moreover, it has been recently shown in (Novikova et al., 2017) that these classical

metrics only weakly agree with human judgments.

More recent reference-based metrics are capable of comparisons in a high dimensional space (Shi-

manaka et al., 2018; Zhang et al., 2020; Sellam et al., 2020; Clark et al., 2019), thereby capturing distribu-

tional semantics beyond superficial n-gram statistics. For instance, Moverscore (Zhao et al., 2019) relies

on the Word Mover’s distance (Kusner et al., 2015), and is an instance of an optimal transportation dis-

tance (Villani, 2021). It computes the minimum cost of transforming the generated text to the reference

text, taking into account the Euclidean distance between vector representations of n-grams, as well as their

document frequencies. The paradigm of reference-based measures is useful for targeted generation tasks

such as translation and summarization where matching a set of references is paramount. It is, however,

unsuitable for open-ended generation where there typically are several plausible continuations for each

context and creative generations are desirable.

Statistics-based measures compare the model distribution Q with respect to the human distribution P
on the basis of some statistic T (P ) and T (Q). Property-specific statistics such as the amount of repetition

(Holtzman et al., 2020; Welleck et al., 2020b), verifiability (Massarelli et al., 2019), or termination (Welleck

et al., 2020a) are orthogonal to MAUVE, which provides a summary of the overall gap between P and Q
rather than focusing on an individual property. Another statistic is the generation perplexity (Fan et al.,
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Type Metric Measures Approximates

Statistics

Zipf Coefficient

(Holtzman et al.,

2020)

Unigram rank-frequency statis-

tics

–

Self-BLEU (Zhu et al.,

2018)

N-gram diversity –

Generation Perplex-

ity (Fan et al., 2018)

Generation quality via external

model R
|EQ[logR(x)]−EP [logR(x)]|
(a single point inside C(P,Q))

Language

Modeling

Perplexity Test-set perplexity EP [logQ(x)]

ε-perplexity (Martins

et al., 2020)

Perplexity w/ Laplace smoothing EP [Q̃(x)]

Sparsemax Score

(Martins et al., 2020)

LM quality (sparsemax

loss (Martins and Astudillo,

2016))

EP [Q̃(x)]

Token JS-Div. (Mar-

tins et al., 2020)

LM quality (JS divergence) EP [Q̃(x)]

Divergence

Curve

MAUVE (this work)

Quality & diversity via

the divergence curve

C(P,Q) at all λ

Table 4.1: Summary of automatic distributional metrics for evaluating open-ended text generation. MAUVE pro-

vides a summary of all points along the divergence curve, rather than a single point. The summary is based on

comparisons in a joint embedding space, rather than a statistic computed independently on each distribution. Q̃
informally refers to a quantity related to Q.

2018; Holtzman et al., 2020), which compares the perplexity of the model text x ∼ Q with that of human

text x′ ∼ P under an external model R. By virtue of T (·) being a scalar, generation perplexity cannot

trade-off the Type I and Type II errors like MAUVE. In fact, the generation perplexity can be derived from

a single point enclosed between the divergence curve and the axes.

Language modeling metrics calculate how (un)likely human text x ∼ P is under the model distribution

Q, for instance, using the probability Q(x). These metrics are related to a single point on the divergence

curve, rather than a full summary. Examples include the perplexity of the test set (which is a sample from

P ) under the model Q and its generalizations to handle sparse distributions (Martins et al., 2020). Unlike

MAUVE, these metrics never see model text samples x′ ∼ Q, so they cannot account for how likely the

model text is under the human distribution P . Moreover, they cannot be used for decoding algorithms

such as beam search which do not define a token-level distribution.

Automatic metrics have been proposed for specific domains such as generation of dialogues (Tao et al.,

2018), stories (Guan and Huang, 2020), and others (Opitz and Frank, 2021). They capture task-specific

properties; see the surveys (Celikyilmaz et al., 2020; Sai et al., 2020). In contrast, MAUVE compares machine

and human text in a domain-agnostic manner. Other related work has proposed metrics that rely on

multiple samples for quality-diversity evaluation (Caccia et al., 2020), and Bayesian approaches to compare

the distribution of statistics in machine translation (Eikema and Aziz, 2020).

Non-automatic Metrics. HUSE (Hashimoto et al., 2019) aims to combine human judgments of Type I

errors with Type II errors measured using perplexity under Q. Due to the costs of human evaluation,

we consider HUSE, as well other metrics requiring human evaluation, such as single-pair evaluation, as

complementary to MAUVE, which is an automatic comparison measure. As a separate technical caveat, it

is unclear how to use HUSE for sparseQ that assigns zero probability to a subset of text, which is the case
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Task Domain Model Finetuning Dataset

Prompt

Length

Max. Generation

Length

Number of

Generations

Web text GPT-2 (all sizes) Pretrained Webtext 35 tokens 1024 tokens 5000
News Grover (all sizes) Pretrained RealNews varying 1024 tokens 5000
Stories GPT-2 medium Finetuned WritingPrompts 50 tokens 512 tokens 5000

Table 4.2: Dataset and task summary. Note that 1024 tokens correspond to ∼ 750 words on average.

with state-of-the-art decoding algorithms (Holtzman et al., 2020; Martins et al., 2020).

Evaluation of Generative Models. Evaluation of generative models is an active area of research in

computer vision, where generative adversarial networks (Goodfellow et al., 2014) are commonly used.

However, metrics such as Inception Score (Salimans et al., 2016) are based on large-scale supervised clas-

sification tasks, and thus inappropriate for text generation. The Fréchet Distance (Heusel et al., 2017;

Semeniuta et al., 2018) and its unbiased counterpart, the Kernel Inception Distance (Bińkowski et al., 2018)

are both used for evaluating generative models, but unlike MAUVE, do not take into account a trade-off

between different kinds of errors between the learned and a reference distribution. Sajjadi et al. (2018) and

Kynkäänniemi et al. (2019) both proposed metrics based on precision-recall curves. Djolonga et al. (2020)

proposed information divergence frontiers as a unified framework encompassing both these works as spe-

cial cases. MAUVE extends the above line of work and is operationalized for open-ended text generation,

applicable for data generated by large-scale neural language models. Complementary to this work, Liu

et al. (2021a) study the theory of information divergence frontiers, proving non-asymptotic bounds on the

estimation and quantization error.

4.4 Experiments

We perform three sets of experiments to validate MAUVE. Our first set of experiments (Section 4.4.1)

examine how known properties of generated text with respect to generation length, decoding algorithm,

and model size can be identified and quantified by MAUVE. Next, in Section 4.4.2 we demonstrate that

MAUVE is robust to various embedding strategies, quantization algorithms, and hyperparameter settings.

Finally, in Section 4.4.3 we find that MAUVE correlates with human judgments. The code as well as the

scripts to reproduce the experiments are available online.
3

Tasks. We consider open-ended text generation using a text completion task (Holtzman et al., 2020;

Welleck et al., 2020b) in three domains: web text, news, and stories. Each domain consists of a sequence

dataset split into (context, continuation) pairs. Given a context x1:k, the task is to generate a continuation

x̂k+1:T ∼ Q(· | x1:k), forming a completion. Each ground-truth completion x1:T is considered a sample

from the true distribution P , while the completion (x1:k, x̂k+1:T ) is considered a sample from Q. The

datasets, context, completion lengths, and number of completions used for each domain are shown in

Table 4.2.

Models. As the language model P̂ (·), we use GPT-2, a large-scale transformer (Vaswani et al., 2017)

pretrained on the web text dataset (see (Radford et al., 2019)), that is representative of state-of-the-art

3https://github.com/krishnap25/mauve-experiments.
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Figure 4.6: Generation quality versus maximum generation length according to MAUVE and three alternative

measures (web text, GPT-2). MAUVE is the only comparison measure that identifies that generation quality decreases

monotonically with increasing text length. The shaded area shows one standard deviation over generations from 5

random seeds.

autoregressive language models. As the embedding modelM(·) we use GPT-2 Large, and compare others

in Section 4.4.2.

Decoding Algorithms. We consider three common decoding algorithms: ancestral sampling, greedy

decoding, and nucleus sampling. We refer to Section 4.1 for their definitions.

We also consider an adversarial sampling procedure, designed to generate low-quality text that nev-

ertheless matches the perplexity of human text. Adversarial perplexity sampling proceeds in two phases:

(1) we generate the first 15% of tokens in a sequence uniformly at random from the vocabulary, and (2) we

generate the remaining tokens greedily to make the running perplexity of the generated sequence as close

as possible to the perplexity of human text.

4.4.1 Quantifying Properties of Generated Text

To study MAUVE’s effectiveness as a measure for comparing text distributions, we first examine how

MAUVE quantifies known properties of generated text: a good measure should meet expected behavior

that is known from existing research on each property. Specifically, we investigate how MAUVE behaves

under changes in generation length, decoding algorithm, and model size.

MAUVE quantifies quality differences due to generation length. Although large transformer-based

models can generate remarkably fluent text, it has been observed that the quality of generation deteriorates

with text length: as the generation gets longer, the model starts to wander, switching to unrelated topics

and becoming incoherent (Rashkin et al., 2020). As a result, an effective measure should indicate lower

quality (e.g. lower MAUVE) as generation length increases.

Figure 4.6 shows MAUVE as the generation length increases, along with three alternative metrics:

generation perplexity, sparsemax score, and Fréchet distance (Heusel et al., 2017; Semeniuta et al., 2018).

MAUVE reflects the desired behavior, showing a decrease in quality (lower MAUVE) as generation length

grows, with the trend consistent across model sizes. The other three metrics, however, show less favorable

trends. Fréchet distance indicates improving quality as the length increases, while generation perplexity

shows non-monotonic quality trends for the small and large models. Finally, language modeling metrics

such as the sparsemax score (Martins et al., 2020) remain constant, since they do not depend on the samples

generated.
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MAUVE identifies quality differences between decoding algorithms. Recent work has identified

two clear trends in open-ended text generation with standard autoregressive models: (1) using greedy

decoding results in repetitive, degenerate text (Holtzman et al., 2020; Welleck et al., 2020b;a); (2) nucleus

sampling (and related truncated sampling methods) yields higher quality text than ancestral sampling (Fan

et al., 2018; Holtzman et al., 2020).
4
An effective measure should thus indicate the quality relationship

greedy ≺ ancestral ≺ nucleus.

Table 4.3 summarizes MAUVE’s quality measures of greedy decoding, ancestral sampling, and nucleus

sampling, along with alternative automatedmetrics and a human quality score. MAUVE correctly identifies

the expected quality relationship, assigning the lowest quality to greedy decoding (.016) followed by an-

cestral sampling (.882), and the highest quality to nucleus sampling (.940). Other commonly-used metrics

fail to identify this relationship: generation perplexity rates the highly degenerate greedy-decoded text as

better than ancestral sampling (11.324 vs. 19.284), while the language-modeling metrics (SP, JS, ε-PPL)
rate nucleus-decoded text as equal to or worse than greedy decoding or ancestral sampling. Further, as

we show in Appendix B (in particular, Section B.3), MAUVE rightly identifies degeneracy of beam search,

thus quantifying the qualitative observations of Holtzman et al. (2020). Finally, generation perplexity falls

victim to the adversarial decoder (Adv.), unlike MAUVE.5

MAUVE quantifies quality differences due tomodel size. Scaling the model size has been a key driver

of recent advances in NLP, with larger models leading to better language modeling and higher quality

generations in open-ended settings (Radford et al., 2019; Brown et al., 2020). An effective metric should

capture the relationship between model size and generation quality, which we verify with human quality

scores.

Table 4.4 shows MAUVE’s quality measures as the model size increases, along with alternatives and

human quality scores. MAUVE increases as model size increases, agreeing with the human quality mea-

sure and the expectation that larger models should have higher quality generations. The widely-used

generation perplexity, however, incorrectly rates the large model’s text as the best. Although the language

modeling metrics (SP, JS, and ε-PPL) capture the size-quality relationship, they are constant with respect

to length (Figure 4.6), and did not correctly quantify decoding algorithm quality (Table 4.3).

Table B.1 in Section B.3 shows additional results with ancestral sampling. In this case, human evalu-

ators rate generations from the small model as better than those from the medium model. Interestingly,

MAUVE also identifies this relationship, agreeingwith the human ratings, in contrast to the other automatic

metrics we surveyed.

Summary. MAUVE identifies properties of generated text that a good measure should capture, related

to length, decoding algorithm, and model size. In contrast, commonly used language modeling and sta-

tistical measures did not capture all of these properties. Unlike these alternatives, which capture a single

statistic or relate to a single point on the divergence curve, MAUVE’s summary measure incorporates type

I errors that quantify the degenerate text produced by greedy decoding (recall Figure 4.1), while capturing

distribution-level information that describes quality changes from generation length, model size, and the

nuanced distinction between ancestral and nucleus sampling.

4

In general this relationship depends on the nucleus hyperparameter p and task. Here, we follow the same settings as Holtzman

et al. (2020) and additionally include a human-assessed measure of quality.

5

The results are consistent across model sizes and random seeds (see Section B.3).
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Adv. Greedy Sampling Nucleus

Gen. PPL (↓) 0.05 11.3 19.3 1.54

Zipf (↓) 0.03 0.02 0.02 0.01

Self-BLEU (↓) 0.07 0.03 0.02 0.03

SP (↑) – 0.50 0.69 0.69

JS (↓) – 0.35 0.37 0.36

ε-PPL (↓) – 497 11.4 13.7

MAUVE (↑) 0.06 0.02 0.88 0.94

Human (↑) – – 9.0 15.7

Table 4.3: Generation quality w.r.t different decod-

ing algorithms (web text, GPT-2 xl) under various

metrics, and humans. MAUVE correctly captures the

relationship greedy ≺ ancestral ≺ nucleus, and rates

the adversarial decoder’s text as low quality. Results

are consistent across model sizes and random seeds.

The arrow ↑ (resp. ↓) denotes that a larger (resp.

smaller) value of the metric represents a smaller gap

between model text and human text, and the bold-

faced/highlighted entries denote the best decoding al-

gorithm under each metric. The human ratings (last

row) are described in Section 4.4.3 (Adv./Greedy are

omitted because their text is degenerate).

Small Medium Large XL

Gen. PPL (↓) 11.2 8.5 0.9 1.5

Zipf (↓) 0.06 0.00 0.02 0.01

Self-BLEU (↓) 0.05 0.02 0.03 0.03

SP (↑) 0.65 0.67 0.68 0.69

JS (↓) 0.41 0.39 0.37 0.36

ε-PPL (↓) 25.9 18.8 14.9 13.7

MAUVE (↑) 0.878 0.915 0.936 0.940

Human (↑) −15.9 −3.4 12.6 15.7

Table 4.4: Generation quality w.r.t different model

sizes (web text, nucleus sampling) under various met-

rics, as well as human evaluators. MAUVE captures the

relationship between model size and generation qual-

ity, agreeing with human-evaluated quality. Results

are consistent across random seeds and decoding al-

gorithms. The arrow ↑ (resp. ↓) denotes that a larger

(resp. smaller) value of the metric represents a smaller

gap between model text and human text, and the bold-

faced/highlighted entries denote the best model size

under each metric. The human ratings (last row) are

described in Section 4.4.3.

4.4.2 Approximations in MAUVE

MAUVE summarizes the divergence between two text distributions with an approximation that relies on

two components: an embedding modelM(x) and a quantization algorithm A (Section 4.2, Eq. (4.5)). We

study the effects of these two components.

MAUVE works with alternative embedding models. Figure 4.7 (left) shows that MAUVE with features

from RoBERTa-large (Liu et al., 2019) gives qualitatively similar trends across model size and decoding

as MAUVE with features from GPT-2 large. Quantitatively, the Spearman rank correlation between them

across all models and decoders is 0.993. We observe that RoBERTa penalizes smaller models more than

GPT-2 but rates greedy decoding higher. We leave a further study of inductive biases in the different

embedding models to future work.

MAUVE is robust to quantization. We compare three different quantization algorithms:

(a) k-Means: We cluster the hidden representations using k-means, and represent them by their cluster

membership to get a discrete distribution with size equal to the number of clusters.

(b) Deep Residual Mixture Models (DRMM): As a generalization of k-means, we train a deep generative

model known as DRMM (Hämäläinen and Solin, 2020). We convert the soft clustering returned by

DRMM into a hard clustering by assigning each point to its most likely cluster, and quantize the data

using the cluster membership. We use DRMM with 3 layers and 10 components per layer for a total of

103 clusters, and train it for 20 epochs.
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Figure 4.7: Left: MAUVE computed using GPT-2 (default) and RoBERTa (Liu et al., 2019) embeddings, across model

sizes and decoding algorithms; see Table B.7 in the Appendix for further results. The Spearman rank correlation

between the two is 0.993 across model sizes and decoding algorithms. Right: Effect of the scaling constant c on
MAUVE. The choice of c does not affect the relative order of the curves but only the numerical value. We use c = 5
to get interpretable values with both nucleus and greedy decoding.

(c) Lattice Quantization: We learn a 4-dimensional feature representation of the vectors M(x) using a

deep network that maintains the neighborhood structure of the data while encouraging the features

to be uniformly distributed on the unit sphere (Sablayrolles et al., 2019). We quantize the data on a

uniform lattice into 744 bins.

We compare different choices of the quantization to k-means with k = 500, which is our default.

The Spearman rank correlation between MAUVE computed with k-means for k ranging from 100 to 5000
correlates nearly perfectly with that of k = 500. In particular, the Spearman correlation is exactly 0.99
or 1.00. Likewise, MAUVE computed with DRMM or lattice quantization has a near-perfect Spearman

correlation of at least 0.99 with k-means. While the actual numerical value of MAUVE could vary with

the quantization algorithm, these results show that the rankings induced by various variants of MAUVE are
nearly identical.

Practical recommendation for scaling parameter. Figure 4.7 (right) shows the effects of adjusting

the scaling parameter c, which does not affect the relative order of the divergence curve but adjusts the

numerical value returned by MAUVE. As a practical recommendation, we found c = 5 to yield interpretable
values.

4.4.3 Correlation with Human Judgments

An effective metric should yield judgments that correlate highly with human judgments, assuming that

human evaluators represent a gold-standard.
6
We evaluate how MAUVE’s quality judgments correlate with

human quality judgments. In our study, a quality judgment means choosing a particular (model, decoder)

setting based on the resultant generations.

Evaluation Protocol. To obtain human judgments, we employ a pairwise setup: at each round, an an-

notator receives a context and continuations from two different (model, decoder) settings, and selects the

continuation they foundmore natural using a 5-point Likert scale. Our interface for collecting annotations,

as well as further details and additional results are provided in Appendix B.

6

Concurrent work has shown that human evaluation might not always be consistent (Clark et al., 2021; Karpinska et al., 2021);

however human judgments continue to be the gold standard for evaluating open-ended text generation.
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Metric Task Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU MAUVE

Human-like/BT Web text 0.810 0.833 −0.167 0.738 0.595 0.952
Interesting/BT Web text 0.643 0.524 −0.143 0.524 0.405 0.810
Sensible/BT Web text 0.738 0.690 −0.071 0.595 0.524 0.857
% Disc. Acc. News 0.468 0.595 0.792 0.653 0.516 0.956
% Disc. Acc. Stories 0.643 0.643 0.250 0.750 0.857 0.893

Table 4.5: Correlation of various similarity measures with human judgments when available, and the

accuracy of a trained discriminator otherwise. “BT” denotes the Bradley-Terry score for a pairwise human

evaluation (Section 4.4.3). Boldfaced/highlighted numbers indicate the highest correlation in each row. We

observe that MAUVE has the highest correlation with human evaluation and discriminator accuracy.

We collect these annotations for web text generation with 8 different (model, decoder) settings plus

a ninth setting for human-written continuations. Each setting is a GPT-2 model size paired with either

ancestral or nucleus sampling. This gives us a total of 36 pairs of settings. Given the known difficulties

with human evaluation of longer texts (Ippolito et al., 2020), we use a maximum completion length of 256
tokens. We obtain 90 preference ratings for each pair of settings, coming from a total of 214 crowd-workers
from the Amazon Mechanical Turk platform. The evaluators were paid USD 0.40 per evaluation based on

an estimated wage of USD 16 per hour.

We convert these pairwise preferences to a ranking by fitting a Bradley-Terry model (Marden, 1995),

a parametric model used to predict the outcome of a head-to-head comparison. In particular, we obtain a

scorewi for each setting i so that the log odds of humans preferring setting i to setting j in a head-to-head

comparison is given by the differencewi−wj . For a given comparison measure, we compute the Spearman

rank correlation between the comparison measure and the fitted Bradley-Terry coefficients wi for each of

the (model, decoder) settings. The end result is a correlation score in [−1, 1], with higher values meaning

that quality judgments using the comparison measure correlate with quality judgments made by human

evaluators.

MAUVE correlates with human judgments. Table 4.5 shows the correlation between human judgments

and five automatic evaluation metrics obtained using our evaluation protocol on the web text domain.

MAUVE correlates highly with human judgments of how human-like (0.952), interesting (0.810), and sen-
sible (0.857) the machine text is. MAUVE’s correlations with human judgments are substantially higher

than those for the other automated measures; for instance, the commonly-used generation perplexity has

correlations that are 0.12 to 0.17 lower than MAUVE’s. The results suggest that MAUVE may act as an

effective, automatic surrogate for costly human judgments.

MAUVE correlates with learned discriminators. We also measure the quality of generations by how

well a trained model (a discriminator) can distinguish between real and generated text (Lopez-Paz and

Oquab, 2017). We report the test accuracy of a binary classifier trained to discriminate between machine

and human text; a lower discrimination accuracy implies that the generation is harder to distinguish from

human text. We report the accuracy of Grover mega as the discriminator for the news generations as it

produced the highest discrimination accuracy (Zellers et al., 2019) while we use GPT-2 large for the story

domain. As seen in Table 4.5, MAUVE correlates the highest with the discrimination accuracy (0.96 for

news and 0.89 for stories) among all comparison measures. Computing the discrimination accuracy for

each (model, decoder) pair requires fine-tuning a separate model, which is particularly expensive for large
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models such as Grover-mega. MAUVE, on the other hand, does not require any training.

4.5 Discussion and Conclusion

We presented MAUVE, an automatic measure of the gap between neural text and human text for open-

ended text generation. MAUVE measures the area under a divergence curve, formalizing and summarizing

a spectrum of errors that capture phenomena present in machine and human-generated text. MAUVE

correlated with human judgments and identified quality differences due to generation length, decoding

algorithm, and model size, which prior metrics struggle to capture. Automated metrics have driven ad-

vances in computer vision and many other machine learning domains. MAUVE’s principled foundation

and strong empirical performance offers a similar path forward for open-ended text generation systems.

MAUVE introduces a paradigm of distributional comparison for text generation. It is fundamentally

different from typical reference-based measures used in closed-ended text generation tasks such as trans-

lation and summarization. MAUVE is a promising alternative to reference-based measures in the settings

wheremultiple references are available, or no references are available. The latter is particular important for

most of 7000 or so recognized languages without massive datasets that power models in English. Continu-

ing the example of translation, the Assamese language is spoken by over 15 million people worldwide but

lacks any large scale corpora.
7
Adapting MAUVE to this setting while leveraging multi-lingual embedding

models (e.g., Conneau et al., 2020) could be an impactful direction for future work.

Enormous languagemodels are pretrained on uncurated data from crawling the internet and have been

shown to output insensitive, hateful, racist, and otherwise biased text (e.g., Gehman et al., 2020); see also

Chapter 1. While cleaning up the training corpus is challenging due to the massive scale of the data, it is

more realistic to be able to obtain small samples of unbiased data. A useful extension for MAUVE is to be

able to identify and flag biased text from generation models when compared against the clean data. More

generally, instead of comparing MAUVE(P,Q) between a model Q and human distribution P , it could be

beneficial to compute MAUVE(P ′, Q), where P ′
is an automatic modification of P based on additional

desiderata such as fairness.

More generally, controllable text generation has emerged as an important field of research to deal with

the unpredictability of enormous language models (see e.g., Prabhumoye et al., 2020; Hartvigsen et al.,

2022). Apart from the criteria we considered in this chapter, we must also evaluate the effectiveness of

the applied controls in order to assess controllable generation. A particular interesting direction for future

work is to integrate gradient-based controls (e.g. Qin et al., 2022) into MAUVE for controllable generation.

The issue of misinformation, disinformation, and fake news on the internet is a major open problem.

A potential solution to make social networks robust to adversarial actors propagating misinformation is

by attributing authorship to news articles and empowering users to make informed decisions about the

authenticity of the information they consume. Approaches based on MAUVE are promising avenues to

address this problem of credit attribution.

7

The largest monolingual corpus of the Assamese language contains roughly 32 million tokens ( 0.5 GB in size) (Kakwani

et al., 2020), while English language models are trained on terabytes of of data; cf. Chapter 1.
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Chapter 5

RFA: Robust Aggregation for Federated

Learning

In this chapter and the next, we turn to the revolution of federated learning. Recall that federated learning is

a key paradigm for machine learning and analytics on mobile, wearable and edge devices (McMahan et al.,

2017; Kairouz et al., 2021b). It has found widespread applications ranging from mobile apps deployed on

millions of devices (Yang et al., 2018; Ammad-ud din et al., 2019), to sensitive healthcare applications (Pan-

telopoulos and Bourbakis, 2009; Huang et al., 2019).

As we discussed in Chapter 1, federated learning consists of a number of devices with privacy-sensitive

data collaboratively optimizing a machine learningmodel under the orchestration of a central server, while

keeping the data fully decentralized and private. Recent work has looked beyond supervised learning to

domains such as data analytics but also semi-, self- and un-supervised learning, transfer learning, meta

learning, and reinforcement learning (Kairouz et al., 2021b; Ren et al., 2019; Lin et al., 2020; Zhuang et al.,

2021).

We study a question relevant in all these areas: robustness to corrupted updates. Federated learning

relies on the aggregation of updates contributed by participating devices, where the aggregation is privacy-

preserving. Sensitivity to corrupted updates, caused either by adversaries intending to attack the system or

due to failures in low-cost hardware, is a vulnerability of the usual approach. The standard arithmetic mean

aggregation in federated learning is not robust to corruptions, in the sense that even a single corrupted

update in a round is sufficient to degrade the global model for all devices. In one dimension, the median

is an attractive aggregate for its robustness to outliers. We adopt this approach to federated learning by

considering a classical multidimensional generalization of the median, known variously as the geometric

or spatial or L1 median (Maronna et al., 2006).

Our robust approach preserves the privacy of the device updates by iteratively invoking the secure

multi-party computation primitives used in typical non-robust federated learning (Bonawitz et al., 2017;

Bell et al., 2020). A device’s updates are information-theoretically protected in that they are computa-

tionally indistinguishable from random noise and the sensitivity of the final aggregate to the contribution

of each device is bounded. Our approach is scalable since the underlying secure aggregation algorithms

are implemented in production systems across millions of mobile users across the planet (Bonawitz et al.,

2019). The approach is communication-efficient, requiring a modest 3× the communication cost of the

non-robust setting to compute the non-linear aggregate in a privacy-preserving manner.

Contributions. This chapter makes the following original contributions:
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(a) Robust Aggregation: We design a novel robust aggregation oracle based on the classical geometric

median. We analyze the convergence of the resulting federated learning algorithm, RFA, for least-

squares estimation and show that the proposed method is robust to update corruption in up to half

the devices in federated learning with bounded heterogeneity. We also describe an extension of the

framework to handle arbitrary heterogeneity via personalization.

(b) Algorithmic Implementation: We show how to implement this robust aggregation oracle in a practical

and privacy-preserving manner. This relies on an alternating minimization algorithm which empir-

ically exhibits rapid convergence. This algorithm can be interpreted as a numerically stable version

of the classical algorithm of Weiszfeld (Weiszfeld, 1937), thus shedding new light on it.

(c) Numerical Simulations: We demonstrate the effectiveness of our framework for data corruption and

parameter update corruption, on federated learning tasks from computer vision and natural language

processing, with linear models as well as convolutional and recurrent neural networks. In particular,

our results show that the proposed RFA algorithm (i) outperforms the standard FedAvg (McMahan

et al., 2017), in high corruption and (ii) nearly matches the performance of the FedAvg in low corrup-

tion, both at 1-3 times the communication cost. Moreover, the proposed algorithm is agnostic to the

actual level of corruption in the problem instance.

We open source an implementation of the proposed approach in TensorFlow Federated (rfa, 2019b). The

Python code and scripts used to reproduce experimental results are publicly available online (rfa, 2019a).

Overview. We give an overview of federated learning in Section 5.1. Section 5.2 describes the problem

formulation and tradeoffs of robustness. Section 5.3 proposes a robust aggregation oracle and presents

a convergence analysis of the resulting robust federated learning algorithm. Finally, Section 5.4 gives

comprehensive numerical simulations demonstrating the robustness of the proposed federated learning

algorithm compared to standard baselines.

5.1 Background: Federated Learning

Federated learning consists of client devices which collaboratively train a machine learning model under

the orchestration of a central server (McMahan et al., 2017; Kairouz et al., 2021b). The data remains local

to the client devices while the job of the server is to orchestrate the training.

Federated learning comes in two flavors. Cross-device federated learning refers to the setting with a

massive number of clients (in the millions or billions) such as mobile phones and other smart devices;

this is already run at a global scale by major service providers, such as the keyboard for Android mobile

phones (Hard et al., 2018). Here, the amount of data and compute available per client device is limited,

the clients are unreliable, and only a small fraction of the clients might be available for training. Cross-silo
federated learning refers to the setting with a small number of clients (2 to 100) such as hospitals, which

have huge amounts of data and compute power, and are always available for training. Across both these

scenarios, a special emphasis is placed on user privacy and data heterogeneity. The methods proposed in

this dissertation are broadly applicable in both scenarios, but we will tailor the discussion to the cross-

device setting.

We consider the supervised learning setting to make the setup precise. Suppose that we have n client

devices, where each device i has a distributionDi over some data space such that the data on the client is

sampled i.i.d. fromDi. Let the vector w ∈ Rd denote the parameters of a (supervised) learning model and

let f(w; z) denote the loss of model w on input-output pair z, such as the mean-squared-error loss. Then,

the objective function of device i is Fi(w) = Ez∼Di [f(w; z)].
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Next, we turn to the two components of the “learning” aspect, i.e., the overall objective function and

the optimization algorithm.

Objective Function. In federated learning, we aim to find a model w⋆ by minimizing some objective

function and then deploy it on each of the devices, including those not seen during training. Ideally, we

would want w⋆ to achieve good performance on each test client device simultaneously. However, this is a
difficult multiobjective optimization problem which might not even admit a simultaneous minimizer. The

usual approach is to construct an objective function of the form

min
w∈Rd

h
(
F1(w), · · · , Fn(w)

)
(5.1)

where h : Rn → R combines the losses on each of the n devices into a single objective. The dominant

approach (McMahan et al., 2017) corresponds to h(f1, · · · , fn) = (1/n)
∑n

i=1 fi, so that the objective is

simply the average of the per-device objectives. More generally, we assign device i a weight by αi > 0 to

arrive at the objective

min
w∈Rd

[
F (w) :=

n∑

i=1

αi Fi(w)

]
. (5.2)

In practice, the weight αi is chosen proportional to the amount of data on device i. For instance, in an

empirical risk minimization setting, each Di is the uniform distribution over a finite set {zi,1, · · · , zi,Ni}
of sizeNi. It is common practice to choose αi = Ni/N whereN =

∑n
i=1Ni so that the objective F (w) =

(1/N)
∑n

i=1

∑Ni
j=1 f(w; zi,j) is simply the unweighted average over all samples from all n devices.

Federated Learning Algorithms. Typical federated learning algorithms run in synchronized rounds

of communication between the server and the devices with some local computation on the devices based

on their local data, and aggregation of these updates to update the server model. The de facto standard

training algorithm is FedAvg (McMahan et al., 2017), which runs as follows.

(a) The server samples a set St of m clients from [n] and broadcasts the current model w(t)
to these

clients.

(b) Staring from w
(t)
i,0 = w(t)

, each client i ∈ St makes τ local gradient or stochastic gradient descent

steps for k = 0, · · · , τ − 1 with a learning rate γ:

w
(t)
i,k+1 = w

(t)
i,k − γ∇Fi(w

(t)
i,k) . (5.3)

(c) Each device i ∈ St sends to the server a vector w
(t+1)
i which is simply the final iterate, i.e., w

(t+1)
i =

w
(t)
i,τ . The server updates its global model using the weighted average

w(t+1) =

∑
i∈St

αiw
(t+1)
i∑

i∈St
αi

. (5.4)

The only local computation on client devices takes place in step (b), where the server model is updated

on the local data available on-device with stochastic gradient steps. The server-to-client communication

takes place via model broadcast in step (a), while the client-to-server communication takes place in step

(c) via aggregation.
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5.1.1 Key Factors of Federated Learning

The design of a federated learning objective and optimization algorithm are determined by the follow-

ing factors (Kairouz et al., 2021b; Li et al., 2020a; Gafni et al., 2022): communication efficiency, privacy,

robustness, and statistical heterogeneity.

Communication Efficiency. Besides the computation cost, the communication cost is an important

parameter in distributed optimization. While communication is relatively fast in the datacenter, that is

not the case of federated learning. The repeated exchange of massive models between the server and

client devices over resource-limited wireless networks makes communication over the network more of

a bottleneck in federated learning than local computation on the devices. Therefore, training algorithms

should be able to trade-off more local computation for lower communication, similar to step (b) of FedAvg

above. While the exact benefits (or lack thereof) of local steps is an active area of research, local steps

have been found empirically to reduce the amount of communication required for a moderately accurate

solution (McMahan et al., 2017; Wang et al., 2021).

Accordingly, we set aside the local computation cost for a first order approximation, and compare algo-

rithms in terms of their total communication cost (Kairouz et al., 2021b). Since typical federated learning

algorithms proceed in synchronized rounds of communication, we measure the complexity of the algo-

rithms in terms of the number of communication rounds.

Privacy. While the privacy-sensitive data z ∼ Di is kept local to the device, the model updates w
(t+1)
i

might also leak privacy. To add a further layer of privacy protection, the server is not allowed to inspect

individual updates w
(t+1)
i in the aggregation step (c); it can only access the aggregate w(t+1)

.

We make this precise through the notion of a secure average oracle. Givenm devices with each device i
containingwi ∈ Rd and a scalar βi > 0, a secure average oracle computes the average

∑m
i=1 βiwi/

∑m
i=1 βi

at a total communication of O(md+m logm) bits such that no wi or βi are revealed to either the server

or any other device.

In practice, a secure average oracle is implemented using cryptographic protocols based on secure

multi-party computation (Bonawitz et al., 2017; Bell et al., 2020). These require a communication overhead

of O(m logm) in addition to O(md) cost of sending them vectors. We postpone a detailed description to

Section 5.1.2, and summarize it here.

First, the vector βiwi is dimension-wise discretized on the ring ZdM of integers modulo M in d-
dimensions. Then, a noisy version w̃i is sent to the server, where the noise is designed to satisfy:

• correctness up to discretization, by ensuring

∑m
i=1 w̃i mod M =

∑m
i=1 βiwi mod M with proba-

bility 1, and,

• privacy preservation from honest-but-curious devices and server in the information theoretic sense,

by ensuring that w̃i is computationally indistinguishable from ζi ∼ Uniform(ZdM ), irrespective of wi
and βi.

As a result, we get the correct average (up to discretization) while not revealing any further information

about a wi or βi to the server or other devices, beyond what can be inferred from the average. Hence, no

further information about the underlying data distribution Di is revealed either. Unless stated otherwise,

we assume for simplicity that the secure average oracle returns the exact update, i.e., we ignore the effects

of discretization on the integer ring and modular wraparound. This assumption is reasonable for a large

enough value ofM . Finally, we note that a secure average oracle can also be used as a primitive designing

a differentially private aggregation mechanism (Kairouz et al., 2021a).
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Robustness. We would like a federated learning algorithm to be robust to corrupted updates contributed

by malicious devices or hardware/software failures. FedAvg uses an arithmetic mean to aggregate the

device updates in (5.4), which is known to not be robust (Huber, 1964). This can be made precise by the

notion of a breakdown point (Donoho and Huber, 1983), which is the smallest fraction of the points which

need to be changed to cause the aggregate to take on arbitrary values. The breakdown point of the mean

is 0, since only one point needs to changed to arbitrarily change the aggregate (Maronna et al., 2006).

This means in federated learning that a single corrupted update, either due to an adversarial attack or a

failure, can arbitrarily change the resulting aggregate in each round. We will give examples of adversarial

corruptions in Section 5.2. The focus of this chapter is to improve the robustness of FedAvg.

Statistical Heterogeneity. The training objective (5.2) fits a model to minimize the loss on the average

training distributionDα :=
∑n

i=1 αiDi, since the equality F (w) = Ez∼Dα [f(w; z)] holds. Since the data
is generated by a diverse set of users, the distributionD of a new test device might be quite different from

that of the training distributionDα; in other words, federated learning suffers from a train-test mismatch.
In particular, the resulting model w can sacrifice performance on “difficult” clients in order to perform

well on average. Therefore, a model which works well on average over all devices might not work well on

each individual device whose distribution D might be quite different from Dα. We will address the this

train-test mismatch in Chapter 6.

5.1.2 Secure Aggregation

Secure Aggregation refers to a class of algorithms where a group of mutually distrustful users {1, · · · , n}
each hold a private value xi ∈ Rd and collaborate to compute an aggregate value, such as the sum s =∑n

i=1 xi. Such algorithms are more broadly studied by cryptographers under the name “Secure Multi-

Party Computation” (Evans et al., 2018). The key security requirement of secure aggregation is that the

computation must proceed without revealing to one another any information about their private value

except what is learnable from the aggregate value s itself. We focus here on the sum s, since other related
quantities such as the weighted and unweighted averages can be implemented from the sum. Secure

aggregation is used as a communication primitive in federated learning (Bonawitz et al., 2017).

We now define a secure summation oracle. Recall that Z denotes the set of integers and ZM denotes

the ring of integers moduloM ∈ Z.

Definition 5.1. For a fixed integer M ∈ Z+ and a dimension d ∈ Z+, the secure summation oracle is

a map S : (ZdM )n → ZM which returns S(x1, · · · , xn) = (
∑n

i=1 xi) mod M . The secure summation

oracle reveals no further information about each xi to a privacy adversary.

Implementation of a Secure Summation Oracle. We assume that each pair of users have access to

a secure communication channel. In the context of federated learning, these messages are encrypted and

routed via the coordinating server. Consider the following scheme, illustrated in Figure 5.1:

• Each pair i, j of users communicate over their secure channel to sample (dependent) random variables

ξi,j , ξj,i such that each of their marginal distributions is uniform over ZdM but ξi,j + ξj,i ≡ 0 mod M .

• Each client sends yi to the server, which is computed as

yi =


xi +

∑

j ̸=i
ξi,j


 mod M . (5.5)
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x′ 1 = x1 + ξx1

x2

x′ 2 = x2 − ξ

x1
ξ

x2
−ξ

x′ 1

x′ 2

ξ ∼ Unif(◯)

Client 1

Client 2

x′ 1

x′ 2

∑

x′ 1 + x′ 2 = x1 + x2

Server

Figure 5.1: Illustration of secure summation of two integers x1, x2 ∈ ZM . The modular ring ZM is denoted by

⃝ and visualized as a circle, and elements of the ring are represented by angular offsets because of the wraparound

property of modular arithmetic. Secure summation is implemented by adding pairwise canceling noise ξ ∼ Unif(⃝)
such that the transmitted vectors x′1 = x1 + ξ and x′2 = x2 − ξ appear to be uniformly distributed on the modular

ring, while their summation is correct, i.e., x′1 + x′2 = x1 + x2.

• The server computes and returns the estimate

ŝ =

(
n∑

i=1

yi

)
mod M . (5.6)

This procedure returns the correct sum and is privacy-perserving in that the communicated quantity

appears uniformly random to the server.

Property 5.2. Consider the quantities {yi}ni=1 and ŝ from (5.5) and (5.6). We have the following:
(a) The output ŝ of the protocol satisfies ŝ = (

∑n
i=1 xi) mod M .

(b) For any xi ∈ ZdM , we have that the random variable yi is uniformly distributed over ZdM .

Proof. The first property follows because the pairwise noise cancels out: ξi,j + ξj,i ≡ 0 mod M . The

second property follows because an offset does not modify the uniform distribution over a finite ring.

Indeed, if U,U ′ ∼ Uniform(ZM ) then both (U + c) mod M and (U + U ′) mod M are uniformly

distributed on ZM for any c ∈ ZM .

A number of improvements are necessary to make an implementation of a secure summation oracle

scalable and robust to industrial use-cases, such as gracefully handling clients who dropout of the protocol.

We refer to Bonawitz et al. (2017) for a thorough account.

FromSecure Summation overRings of Integers to SecureAveraging overReals. Secure summation

over reals S ′ : (Rd)n → Rd involves scaling, clipping and quantization to a ring of integers of size M
followed by secure summation.

The hyperparameters are those of the clipping and quantization. Concretely, these are the clipping

threshold r > 0, and the modulo baseM , which is also the size of the ring of integers.
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• Clip each coordinate to [−r, r]. Mathematically, we apply the map Cr : R → [−r, r] coordinate-wise
given by

Cr(u) =

{
u, if u ∈ [−r, r],
sign(u) r, else.

(5.7)

• We linearly map the interval [−r, r] to [0, (M − 1)/n]. This ensures no modular wraparound after

quantization. Concretely, the map and inverse map are given by

ϕ(u) =

(
M − 1

2rn

)
u+

M − 1

2n
, and, ϕ−1(v) =

(
2rn

M − 1

)
v − r . (5.8)

• Quantization: This involves rounding real numbers to their nearest smallest integers as u 7→ ⌊u⌋.
• Invert maps: We now invert the scaling operation, i.e., we apply ϕ−1

.

We extend each of the above operations from u ∈ R to x ∈ Rd by applying them coordinate-wise on

x. All together, this gives us the following implementation of the secure summation oracle for reals:

S ′(x1, · · · , xn) = ϕ−1 (S (⌊ϕ ◦ Cr(x1)⌋, · · · , ⌊ϕ ◦ Cr(xn)⌋)) . (5.9)

This clipping scheme satisfies the same privacy properties as in the integer rings. Moreover, the error

incurred in the sum can be bounded as follows.

Proposition 5.3. Fix parameters r ∈ R+ and M ∈ Z+ and consider the secure summation oracle S ′
defined in (5.9) and consider inputs x1, · · · , xn ∈ Rd. Denote the jth component of xi by xi,j . Let Nc =∑n

i=1 |{j : xi,j ≤ r}| be the number of coordinates clipped by the map Cr across all n points. We have the
squared error bound on the output of S ′:

∥∥∥∥∥
n∑

i=1

xi − S ′(x1, · · · , xn)
∥∥∥∥∥

2

≤ 3nd

(
2rn

M − 1

)2

+Nc

(
max
i,j

xi,j − r
)2

.

Proof. Since ϕ and ϕ−1
are linear maps on reals, we have,

∥∥∥∥∥
n∑

i=1

xi − S ′(x1, · · · , xn)
∥∥∥∥∥

2

=

∥∥∥∥∥
n∑

i=1

xi − ϕ−1

(
n∑

i=1

⌊ϕ ◦ Cr(xi)⌋
)∥∥∥∥∥

2

=

∥∥∥∥∥
n∑

i=1

xi −
n∑

i=1

ϕ−1 (⌊ϕ ◦ Cr(xi)⌋)
∥∥∥∥∥

2

≤ γ2
n∑

i=1

d∑

j=1

(
ϕ−1(ϕ(xi,j))− ϕ−1 (⌊ϕ ◦ Cr(xi,j)⌋)

)2

= γ2
(

2rn

M − 1

)2 n∑

i=1

d∑

j=1

(
ϕ(xi,j)− ⌊ϕ ◦ Cr(xi,j)⌋

)2
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When xi,j is not clipped by Cr , the term inside the square is at most 1. If not, we have,

(
ϕ(xi,j)− ⌊ϕ ◦ Cr(xi,j)⌋

)2 ≤ 2
(
1 + ϕ(xi,j)− ϕ ◦ Cr(xi,j)

)2

= 2 + 2(ϕ(xi,j)− ϕ(r))2

≤ 2 + 2

(
M − 1

2rn

)2(
max
i,j

xi,j − r
)2

.

Plugging this in completes the proof.

Example of Secure Aggregation: FedAvg. We consider how secure aggregation can concretely be used

for FedAvg (McMahan et al., 2017). Each round of FedAvg includes the aggregation of per-client updates

to update the server model in (5.4). The client-to-server communication required for this step can be

performed using secure aggregation to avoid the privacy risks of directly sending the per-client updates

to the server.

Suppose we wish to aggregate updates w1, · · · , wm ∈ Rd fromm selected clients with equal weights

α1 = · · · = αm = 1/m. Assume that the updates satisfy maxi∥wi∥∞ ≤ 1 and we choose r = 1 in (5.7)

to avoid clipping. The error in the estimation of the mean (1/m)
∑m

i=1wi to update the server model is,

from Proposition 5.3, ∥∥∥∥∥
1

m

m∑

i=1

wi −
1

m
S ′(w1, · · · , wm)

∥∥∥∥∥

2

≤ 12md

(M − 1)2
.

Larger M reduces the error but increases the communication cost, which scales as O(md log2M). This
comes from the total number of bits of all coordinates of the noisy quantized updates yi ∈ ZdM from (5.5)

for each i = 1, · · · ,m.

Let us instantiate this bound concretely. In typical federated learning scenarios, the number of clients

per round m is around 103, while the model dimensionality d is of the order 107 to 108 (i.e., 10 to 100
million model parameters). Considering 32-bit floating point numbers, if we chooseM ≈ 232 ≈ 1010, the
squared error is at most 10−8

.

5.2 Problem Setup: Federated Learning with Corruptions

In this work, we aim to address the lack of robustness of FedAvg. We formally describe our corruption

model and discuss the trade-offs introduced by requiring robustness to corrupted updates.

A popular robust aggregation of scalars is the median rather than the mean. We investigate a mul-

tidimensional analogue of the median while respecting the other two factors: communication efficiency

and privacy. While the non-robust mean aggregation can be computed with secure multi-party computa-

tion via the secure average oracle, it is unclear if a robust aggregate can also satisfy this requirement. We

discuss this as well as other tradeoffs involving robustness in the next section.

We start with the corruption model used in this work. We allow a subset C ⊂ [n] of corrupted devices
to, unbeknownst to the server, send arbitrary vectors w

(t+1)
i ∈ Rd rather than the updated model w

(t)
i,τ

from local data as expected by the server. Formally, we have,

w
(t+1)
i =

{
w

(t)
i,τ , if i /∈ C,

Hi

(
w(t), {(w(t)

j,τ , Dj)}j∈St

)
if i ∈ C, (5.10)
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Table 5.1: Example corruptions and the capability of an adversary they require, as measured along the following

axes: Data write, where a device i ∈ C can replace its local distributionDi by any arbitrary distribution D̃i;Model

read, where a device i ∈ C can read the server model w(t)
and replace its local distribution Di by an adaptive

distribution D̃
(t)
i depending on w(t)

;Model write, where a device i ∈ C can return an arbitrary vector to the server

for aggregation as in (5.10), and, Aggregation, where a device i ∈ C can behave arbitrarily during the computation

of an iterative secure aggregate. The last column indicates whether the proposed RFA algorithm is robust to each

type of corruption.

Corruption Type Data write Model read Model write Aggregation RFA applicable?

Non-adversarial - - - - ✓
Static data poisoning Yes - - - ✓
Adaptive data poisoning Yes Yes - - ✓
Update poisoning Yes Yes Yes - ✓
Byzantine Yes Yes Yes Yes N/A

where Hi is an arbitrary Rd-valued function which is allowed to depend on the global model w(t)
, the

uncorrupted updates w
(t)
j,τ as well as the data distributions Dj of each device j ∈ St.

This encompasses situations where the corrupted devices are individually or collectively trying to “at-

tack” the global model, that is, reduce its predictive power over uncorrupted data. We define the corruption
level ρ as the total fraction of the weight of the corrupted devices:

ρ =

∑
i∈C αi∑n
i=1 αi

. (5.11)

Since the corrupted devices can only harm the global model through the updates they contribute in

the aggregation step, we aim to robustify the aggregation in federated learning. However, it turns out

that robustness is not directly compatible with the two other desiderata of federated learning, namely

communication efficiency and privacy.

The Tension Between Robustness, Communication, and Privacy. We first argue that any feder-

ated learning algorithm can only have two out of the three of robustness, communication, and privacy

under the existing techniques of secure multi-party computation. The standard approach of FedAvg is

communication-efficient and privacy-preserving but not robust, as we discussed earlier. In fact, any aggre-

gation schemeA(w1, · · · , wm)which is a linear function ofw1, · · · , wm is similarly non-robust. Therefore,

any robust aggregate A must be a non-linear function of the vectors it aggregates.

The approach of sending the updates to the server at a communication cost of O(md) and utilizing

one of the many robust aggregates studied in the literature (e.g. Chen et al., 2017; Yin et al., 2018; Al-

istarh et al., 2018) has robustness and communication efficiency but not privacy. If we try to make it

privacy-preserving, however, we lose communication efficiency. Indeed, the secure multi-party compu-

tation primitives based on secret sharing, upon which privacy-preservation is built, are communication

efficient only for linear functions of the inputs (Evans et al., 2018). The additionalO(m logm) overhead of
secure averaging for linear functions becomes Ω(md logm) for general non-linear functions required for

robustness; this makes it impractical for large-scale systems (Bonawitz et al., 2017). Therefore, one cannot

have both communication efficiency and privacy preservation along with robustness.
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In this work, we strike a compromise between robustness, communication, and privacy. We will ap-

proximate a non-linear robust aggregate as an iterative secure aggregate, i.e., as a sequence of weighted

averages, computed with a secure average oracle with weights being adaptively updated.

Definition 5.4. A functionA : (Rd)m → Rd is said to be an iterative secure aggregate ofw1, · · · , wm with

R communication rounds and initial iterate v(0) if for r = 0, · · · , R− 1, there exist weights β
(r)
1 , · · · , β(r)m

such that

(i) β
(r)
i depends only on v(r) and wi,

(ii) v(r+1) =
∑m

i=1 β
(r)
i wi/

∑m
i=1 β

(r)
i , and,

(iii) A(w1, · · ·wm) = v(R)
.

Further, the iterative secure aggregate is said to be s-privacy preserving for some s ∈ (0, 1) if

(iv) β
(r)
i /

∑m
j=1 β

(r)
j ≤ s for all i ∈ [m] and r ∈ [R].

If we have an iterative secure aggregate with R communication rounds which is also robust, we gain

robustness at a R-fold increase in communication cost. Condition (iv) ensures privacy preservation be-

cause it reveals only weighted averages with weights at most s, so a user’s update is only available after

being mixed with those from a large cohort of devices.

The Tension Between Robustness and Heterogeneity. Heterogeneity is a key property of federated

learning. The distribution Di of device i can be quite different from the distribution Dj of some other

device j, reflecting the heterogeneous data generated by a diverse set of users.

To analyze the effect of heterogeneity on robustness, consider the simplified scenario of robust mean

estimation in Huber’s contamination model (Huber, 1964). Here, we wish to estimate the mean µ ∈ Rd
given samples w1, · · · , wm ∼ (1 − ρ)N (µ, σ2I) + ρQ, where Q denotes some outlier distribution that

ρ-fraction of the points (designated as outliers) are drawn from. Any aggregate w̄ must satisfy the lower

bound ∥w̄ − µ∥2 ≥ Ω
(
σ2max{ρ2, d/m}

)
with constant probability (Chen et al., 2018b, Theorem 2.2).

In the federated learning setting, more heterogeneity corresponds to a greater variance σ2 among the

inlier points, implying a larger error in mean estimation. This suggests a tension between robustness and

heterogeneity, where increasing heterogeneity makes robust mean estimation harder in terms of ℓ2 error.
In this work, we strike a compromise between robustness and heterogeneity by considering a family

D of allowed data distributions such that any device iwithDi /∈ D will be regarded as a corrupted device,

i.e., i ∈ C. We will be able to guarantee convergence up to the degree of heterogeneity in D; we call this
width(D) and make it precise in Section 5.3. In the i.i.d. case, D is a singleton and width(D) = 0.

Examples. Next, we consider some examples of update corruption — see (Kairouz et al., 2021b) for a

comprehensive treatment. Corrupted updates could be non-adversarial in nature, such as sensor malfunc-

tions or hardware bugs in unreliable and heterogeneous devices (e.g., mobile phones) that are outside the

control of the orchestrating server. On the other hand, we could also have adversarial corruptions of the

following types:

(a) Static data poisoning: The corrupted devices C are allowed to modify their training data prior to the

start of the training and the data is fixed thereafter. Formally, the objective function of device i ∈ C is
now F̃i(w) = Ez∼D̃i

[f(w; z)] where D̃i has been modified from the originalDi. These devices then

participate in the local updates (5.3) with ∇F̃i rather than ∇Fi. We consider device i to contribute

corrupted updates only if D̃i /∈ D (for instance, D is the set of natural RGB images).

(b) Adaptive data poisoning: The corrupted devices C are allowed to modify their training data in each

round of training depending on the current model w(t)
. Concretely, the objective function of device
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Algorithm 5.1. The RFA Algorithm

Input: Initial iterate w(0)
, number of communication rounds T , number of clients per roundm, number

of local updates τ , local step size γ, approximation threshold ε
1: for t = 0, 1, · · · , T − 1 do

2: Samplem clients from [n] without replacement in St
3: for each selected client i ∈ St in parallel do

4: Initialize w
(t)
i,0 = w(t)

5: for k = 0, · · · , τ − 1 do

6: Sample data z
(t)
i,k ∼ Di

7: Update w
(t)
i,k+1 = w

(t)
i,k − γ∇f(w

(t)
i,k; z

(t)
i,k)

8: Set w
(t+1)
i = w

(t)
i,τ

9: w(t+1) = GM
(
(w

(t+1)
i )i∈St , (αi)i∈St , ε

)
(Algo. 5.2)

10: return wT

i ∈ C in round t is F̃
(t)
i (w) = E

z∼D̃(t)
i

[f(w; z)] where D̃
(t)
i has been modified from the original Di

using knowledge of w(t)
. As previously, these devices then participate in the local updates (5.3) with

∇F̃ (t)
i rather than ∇Fi in round t.

(c) Update Poisoning: The corrupted devices can send an arbitrary vector to the server for aggregation, as

described by (5.10) in its full generality. This setting subsumes all previous examples as special cases.

The corruption model in (5.10) precludes the Byzantine setting (e.g., Kairouz et al., 2021b, Sec. 5.1),

which refers to the worst-case model where a corrupted client device i ∈ C can behave arbitrarily, such as

for instance, changing the weights β
(r)
i or the vector wi between each of the rounds of the iterative secure

aggregate, as defined in Definition 5.4. It is provably impossible to design a Byzantine-robust iterative

secure aggregate in this sense. The examples listed above highlight the importance of robustness to the

corruption model under consideration.

Table 5.1 compares the various corruptions in terms of the capability of an adversary required to induce

the corruption.

5.3 Robust Aggregation and the RFA Algorithm

In this section, we design a robust aggregation oracle and analyze the convergence of the resulting feder-

ated algorithm.

Robust Aggregation with the Geometric Median. The geometric median (GM) of w1, · · · , wm ∈ Rd
with weights α1, · · · , αm > 0 is the minimizer of

g(v) :=

m∑

i=1

αi∥v − wi∥ , (5.12)

where ∥·∥ = ∥·∥2 is the Euclidean norm. As a robust aggregation oracle, we use an ε-approximate mini-

mizer v̂ of g which satisfies g(v̂)−minz g(v) ≤ ε. We denoted it by v̂ = GM((wi)
m
i=1, (αi)

m
i=1, ε). Further,
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Algorithm 5.2. The Smoothed Weiszfeld Algorithm

Input: w1, · · · , wm ∈ Rd with wi on device i, α1, · · · , αm > 0, ν > 0, budget R, v(0) ∈ Rd, secure
average oracle A

1: for r = 0, 1, · · · , R− 1 do

2: Server broadcasts v(r) to devices 1, · · · ,m
3: Device i computes β

(r)
i = αi/(ν ∨ ∥v(r) − wi∥)

4: v(r+1) ←
(∑m

i=1 β
(r)
i wi

)
/
∑m

i=1 β
(r)
i using A

return v(R)

when αi = 1/m, we write GM((wi)
m
i=1, ε). We assume that w1, · · ·wm are non-collinear, which is rea-

sonable in the federated setting. Then, g admits a unique minimizer v⋆. Further, we assume

∑
i αi = 1

w.l.o.g.
1

The breakdown point is a popular notion of robustness (Donoho and Huber, 1983). It is the smallest

fraction of points that must be changed to get an aggregate to equal an arbitrary point, as we define below.

Definition 5.5 (Breakdown Point). Consider a collectionW = {w1, · · · , wm} ⊂ Rd of m points in Rd.
The breakdown point of an estimator ψ : (Rd)m → Rd is defined as

BP(ψ,W ) := min
k∈[m]

{
k

m
: sup

{
∥ψ(W )− ψ(W ′)∥ : W ′ ⊂ Rd, |W ′| = m, |W ′ ∩W | = m− k

}
=∞

}
.

The GM is robust in the sense that it has an optimal breakdown point of 1/2, as we formalize below.

In other words, to get the geometric median to equal an arbitrary point, at least half the points (in total

weight) must be modified. The result is originally due to Lopuhaa and Rousseeuw (1991, Thm. 2.2).

Property 5.6. Consider a collection of pointsW = {w1, · · · , wm} ⊂ Rd and denote v∗ = GM(W ) as its
geometric median. For all v ∈ Rd and S ⊂ [m] with |S| = k < m/2, we have,

∥v − v∗∥ ≤ 2

(
n− k
n− 2k

)
max
i/∈S
∥v − wi∥ .

In other words, the breakdown point of the geometric median is BP(GM,W ) = 1/2.

Robust Federated Aggregation (RFA). The RFA algorithm is obtained by replacing the mean aggrega-

tion of FedAvg with this GM-based robust aggregation oracle – the full algorithm is given in Algorithm 5.1.

Similar to FedAvg, RFA also trades off some communication for local computation by running multiple lo-

cal steps in line 5. The communication efficiency and privacy preservation of RFA follow from computing

the GM as an iterative secure aggregate, which we turn to next. Note that RFA is agnostic to the actual
level of corruption in the problem and the aggregation is robust regardless of the convexity of the local

objectives Fi.

Geometric Median as an Iterative Secure Aggregate. While the GM is a natural robust aggregation

oracle, the key challenge in the federated setting is to implement it as an iterative secure aggregate. Our

approach, given inAlgorithm 5.2, iteratively computes a newweight β
(r)
i ∝ 1/∥v(r)−wi∥, up to a tolerance

1

One could apply the results to g̃(v) := g(v)/
∑m

i=1 αi.
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Figure 5.2: Left two: Convergence of the smoothed Weiszfeld algorithm. Right two: Visualization of the re-

weighting βi/αi, where βi is the weight of wi in GM((wi), (αi)) =
∑

i βiwi. See Appendix C.3 for details.

ν > 0, whose role is to prevent division by zero. This endows the algorithm with greater stability. We call

it the smoothed Weiszfeld algorithm as it is a variation of Weiszfeld’s classical algorithm (Weiszfeld, 1937).

The smoothed Weiszfeld algorithm satisfies the following convergence guarantee. Its full proof may be

found in (Pillutla et al., 2022a, Appendix III).

Proposition 5.7. The iterate v(R) of Algorithm 5.2 with input v(0) ∈ conv{w1, · · · , wm} and ν > 0 satisfies

g(v(R))− g(v⋆) ≤ 2∥v(0) − v⋆∥2
νR

+
ν

2
,

where v⋆ = argmin g and ν = minr∈[R],i∈[m] ν ∨ ∥v(r−1) − wi∥ ≥ ν. Furthermore, if 0 < ν ≤
mini=1,··· ,m∥v⋆ − wi∥, then it holds that g(v(R))− g(v⋆) ≤ 2∥v(0) − v⋆∥2/νR .

For a ε-approximate GM, we set ν = O(ε) to get a O(1/ε2) rate. However, if the GM v⋆ is not too
close to any wi, then the same algorithm automatically enjoys a faster O(1/ε) rate. The algorithm enjoys

plausibly an even faster convergence rate locally, and we leave this for future work.

The proof relies on constructing a jointly convex surrogate G : Rd × Rm++ → R defined using η =
(η1, · · · , ηm) ∈ Rm as

G(v, η) :=
1

2

m∑

k=1

αk

(∥v − wk∥2
ηk

+ ηk

)
.

Instead of minimizing g(v) directly using the equality g(v) = infη>0G(v, η), we impose the constraint

ηi ≥ ν instead to avoid division by small numbers. The following alternating minimization leads to

Algorithm 5.2:

η(r) = argmin
η≥ν

G(v(r), η) , and, v(r+1) = argmin
v∈Rd

G(v, η(r)) .

Numerically, we find in Figure 5.2 that Algorithm 5.2 is rapidly convergent, giving a high quality

solution in 3 iterations. This ensures that the approximate GM as an iterative secure aggregate provides

robustness at a modest 3× increase in communication cost over regular mean aggregation in FedAvg.

Privacy Preservation. While we can compute the geometric median as an iterate secure aggregate,

privacy preservation also requires that the effective weights β
(r)
i /

∑
j β

(r)
j are bounded away from 1 for

each i. We show this holds form large.
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Proposition 5.8. Consider β(r), v(r) produced by Algorithm 5.2 when given w1, · · ·wm ∈ Rd with weights
αi = 1/m for each i as inputs. Denote B = maxi,j∥wi −wj∥ and ν̄ as in Proposition 5.7. Then, we have for
all i ∈ [m] and r ∈ [R] that

β
(r)
i∑m

j=1 β
(r)
j

≤ B

B + (m− 1)ν̄
.

Proof. Since v(r) ∈ conv{w1, · · · , wm}, we have ν̄ ≤ ∥v(r) − wi∥ ≤ B. Hence, αi/B ≤ β
(r)
i ≤ αi/ν̄ for

each i and r and the proof follows.

5.3.1 Convergence Analysis of RFA

We now present a convergence analysis of RFA under two simplifying assumptions. First, we focus on

least-squares fitting of additive models, as it allows us to leverage sharp analyses of SGD (Bach and

Moulines, 2013; Jain et al., 2017a;b) and focus on the effect of the aggregation. Second, we assume w.l.o.g.

that each device is weighted by αi = 1/n to avoid technicalities of random sums

∑
i∈St

αi. This assump-

tion can be lifted with standard reductions; see Remark 5.10.

Setup. We are interested in the supervised learning setting where zi ≡ (xi, yi) ∼ Di is an input-output

pair. We assume that the output yi satisfies E[yi] = 0 and E[y2i ] < ∞. Denote the marginal distribution

of input xi as DX,i. The goal is to estimate the regression function x 7→ E[yi|xi = x] from a training

sequence of independent copies of (xi, yi) ∼ Di in each device. The corresponding objective is the square

loss minimization

F (w) =
1

n

n∑

i=1

Fi(w) , where (5.13)

Fi(w) =
1

2
E(x,y)∼Di

(
y − w⊤ϕ(x)

)2
for all i ∈ [n] . (5.14)

Here, ϕ(x) = (ϕ1(x), . . . , ϕd(x)) ∈ Rd where ϕ1, . . . , ϕd are a fixed basis of measurable, centered func-

tions. The basis functions may be nonlinear, thus encompassing random feature approximations of kernel

feature maps and pre-trained deep network feature representations.

We state our results under the following assumptions: (a) the feature maps are bounded as ∥ϕ(x)∥ ≤ R
with probability one underDX,i for each device i; (b) each Fi is µ-strongly convex; (c) the additive model

is well-specified on each device: for each device i, there exists w⋆i ∈ Rd such that yi = ϕ(xi)
⊤w⋆i +

ζi where ζi ∼ N (0, σ2). The second assumption is equivalent to requiring that Hi = ∇2Fi(w) =
Ex∼DX,i

[ϕ(x)ϕ(x)⊤], the covariance of x on device i, has eigenvalues no smaller than µ.

QuantifyingHeterogeneity. Wequantify the heterogeneity in the data distributionsDi across devices in

terms of the heterogeneity of marginalsDX,i and of the conditional expectation E[yi|xi = x] = ϕ(x)⊤w⋆i .
LetH = ∇2F (w) = (1/n)

∑n
i=1Hi be the covariance of x under the mixture distribution across devices,

whereHi is the covariance of xi in device i. We measure the dissimilarities ΩX ,ΩY |X of the marginal and

the conditionals respectively as

ΩX = max
i∈[n]

λmax(H
−1/2HiH

−1/2) , (5.15)

ΩY |X = max
i,j∈[n]

∥w⋆i − w⋆j∥ , (5.16)
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where λmax(·) denotes the largest eigenvalue. Note that ΩX ≥ 1 and it is equal to 1 iff each Hi = H .

It measures the spectral misalignment between each Hi and H . The second condition is related to the

Wasserstein-2 distance (Panaretos and Zemel, 2020) between the conditionalsDY |X,i asW2(DY |X,i, DY |X,j) ≤
RΩY |X . We define the degree of heterogeneity between the various Di = DX,i ⊗DY |X,i as width(D) =
ΩXΩY |X =: Ω. That is, if the conditionals are the same (ΩY |X = 0), we can tolerate arbitrary hetero-

geneity in the marginals DX,i.

Convergence. Wenow analyze RFAwhere the local SGD updates are equippedwith “tail-averaging” (Jain

et al., 2017b) so thatw
(t+1)
i = (2/τ)

∑τ
k=τ/2w

(t)
i,k is averaged over the latter half of the trajectory of iterates

instead of line 8 of Algorithm 5.1. We show that this variant of RFA converges up to the dissimilarity level

Ω = ΩXΩY |X when the corruption level ρ < 1/2.

Theorem 5.9. Consider F defined in (5.13) and suppose the corruption level satisfies ρ < 1/2. Consider Al-
gorithm 5.1 run for T outer iterations with a learning rate γ = 1/(2R2), and the local updates are run for τt
steps in outer iteration t with tail averaging. Fix δ > 0 and θ ∈ (ρ, 1/2), and set the number of devices per
iteration,m as

m ≥ log(T/δ)

2(θ − ρ)2 . (5.17)

Define Cθ := (1 − 2θ)−2, w⋆ = argminF , F ⋆ = F (w⋆), κ := R2/µ and ∆0 := ∥w(0) − w⋆∥2. Let
τ ≥ 4κ log (128Cθκ). We have that the event E =

⋂T−1
t=0 {|St ∩ C| ≤ θm} holds with probability at least

1− δ. Further, if τt = 2tτ for each iteration t, then the output w(T ) of Algorithm 5.1 satisfies,

E
[
∥w(T ))− w⋆∥2

∣∣∣ E
]
≤ ∆0

2T
+ CCθ

(
dσ2T

µτ2T
+

ε2

m2
+Ω2

)

where C is a universal constant. If τt = τ instead, then, the noise term above reads dσ2/µτ .

Theorem 5.9 shows near-linear convergence O(T/2T ) up to two error terms in the case that ρ is

bounded away from 1/2 (so that θ and Cθ can be taken to be constants). The increasing local compu-

tation τt = 2tτ required by this rate is feasible since local computation is assumed to be cheaper than

communication.

The first error term is ε2/m2
due to approximation ε in the GM, which can be made arbitrarily small by

increasing the numberm of devices sampled per round. The second error term Ω2
is due to heterogeneity.

Indeed, exact convergence as T → ∞ is not possible in the presence of corruption: lower bounds for

robust mean estimation (e.g. Chen et al., 2018b, Theorem 2.2) imply that ∥w(T ) − w⋆∥2 ≥ Cρ2Ω2
Y |X w.p.

at least 1/2. Consistent with our theory, we find in real heterogeneous datasets in Section 5.4 that RFA can

lead to marginally worse performance than FedAvg in the corruption-free regime (ρ = 0). Finally, while
we focus on the setting of least squares, our results can be extended to the general convex case.

Remark 5.10. For unequal weights, we can perform the reduction F̃i(w) = nαiFi(w), so the theory applies
under the substitution (R2, σ2, µ,ΩX) 7→ (c1R

2, c1 σ2, c2 µ, (c1/c2)ΩX), where c1 = nmaxi αi and c2 =
nmini αi.

We use the following convergence result of SGD (Jain et al., 2017a, Theorem 1), (Jain et al., 2017b, Corol-

lary 2).
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Theorem 5.11 (Jain et al. (2017b;a)). Consider a Fk from (5.13). Then, defining κ := R2/µ, the output vτ
of τ steps of tail-averaged SGD starting from v0 ∈ Rd using learning rate (2R2)−1 satisfies

E∥vτ − w⋆∥2 ≤ 2κ exp
(
− τ

4κ

)
∥v0 − w⋆∥2 +

8dσ2

µτ
.

Proof of Theorem 5.9. Define the event Et = {|St∩C| ≤ θm} so that E =
⋂T−1
t=0 Et. Hoeffding’s inequality

gives P(Et) ≤ δ/T for each t so that P(E) ≤ δ using the union bound. Below, let Ft denote the sigma

algebra generated by w(t)
.

Consider the local updates on an uncorrupted device i ∈ St\C, starting fromw(t)
. Theorem 5.11 gives,

upon using τt ≥ τ ≥ 4κ log(128Cθκ),

E
[
∥w(t+1)

i − w⋆i ∥2
∣∣∣ E ,Ft

]
≤ 1

64Cθ
∥w(t) − w⋆i ∥2 +

8dσ2

µτt
.

Note that w⋆ = (1/n)
∑n

j=1H
−1Hjw

⋆
j , so that

∥w⋆ − w⋆i ∥ ≤
1

n

n∑

j=1

∥H−1Hj(w
⋆
j − w⋆i )∥ ≤ Ω .

Using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we get,

E
[
∥w(t+1)

i − w⋆∥2
∣∣ E ,Ft

]
≤ 2E

[
∥w(t+1)

i − w⋆i ∥2
∣∣∣ E ,Ft

]
+ 2Ω2

≤ 1

32Cθ
∥w(t) − w⋆i ∥2 +

16dσ2

µτt
+ 2Ω2

≤ q

16Cθ
∥w(t) − w⋆∥2 + 16dσ2

µτt
+ 4Ω2 .

We now apply the robustness property of the GM ((Lopuhaa and Rousseeuw, 1991, Thm. 2.2) or (Wu et al.,

2020, Lem. 3)) to get,

E
[
∥w(t+1) − w⋆∥2

∣∣∣ E ,Ft
]
≤ 1

2
∥w(t) − w⋆∥2 + 128Cθdσ

2

µτt
+ Γ ,

where Γ = 2Cθ(ε
2/m2 + 16Ω2). Taking an expectation conditioned on E and unrolling this inequality

gives

E
[
∥w(T ) − w⋆∥2

∣∣∣ E
]
≤ ∆0

2T
+

128Cθdσ
2

µ

T∑

t=1

1

2T−tτt
+ 2Γ .

When τt = 2tτ , the series sums to 2−(T−1)T/τ , while for τt = τ , the series is upper bounded by 2/τ .

We now consider RFA in connection with the three factors mentioned in Section 5.1.

(i) Communication Efficiency: Similar to FedAvg, RFA performs multiple local updates for each ag-

gregation round, to save on the total communication. However, owing to the trade-off between com-

munication, privacy, and robustness, RFA requires a modest 3×more communication for robustness

per aggregation. In the next section, we present a heuristic to reduce this communication cost to one

secure average oracle call per aggregation.
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Algorithm 5.3. One-step Smoothed Weiszfeld Algorithm

Input: Same as Algorithm 5.2

1: Device i sets βi = αi/(ν ∨ ∥wi∥)
2: return (

∑m
i=1 βiwi) /

∑m
i=1 βi using A

Algorithm 5.4. RFA with Personalization

Replace lines 4 to 8 of Algorithm 5.1 with the following:

1: Set u
(t)
i,0 = u

(t)
i and w

(t)
i,0 = w(t)

2: for k = 0, · · · , τ − 1 do

3: u
(t)
i,k+1 = u

(t)
i,k − γ∇f(w(t) + u

(t)
i,k; z

(t)
i,k) with z

(t)
i,k ∼ Di

4: for k = 0, · · · , τ − 1 do

5: w
(t)
i,k+1 = w

(t)
i,k − γ∇f(w

(t)
i,k + u

(t)
i,τ ; z̃

(t)
i,k) with z̃

(t)
i,k ∼ Di

6: Set w
(t+1)
i = w

(t)
i,τ and u

(t+1)
i = u

(t)
i,τ

(ii) Privacy Preservation: Algorithm 5.2 computes the aggregation as an iterative secure aggregate.

This means that the server only learns the intermediate parameters after being averaged over all the

devices, with effective weights bounded away from 1 (Proposition 5.8). The noisy parameter vectors

sent by individual devices are uniformly uninformative in information theoretic sense with the use

of secure multi-party computation.

(iii) Robustness: The geometric median has a breakdown point of 1/2 (Lopuhaa and Rousseeuw, 1991,

Theorem 2.2), which is the highest possible (Lopuhaa and Rousseeuw, 1991, Theorem 2.1). In the

federated learning context, this means that convergence is still guaranteed by Theorem 5.9 when

up to half the points in terms of total weight are corrupted. RFA is resistant to both data or update

poisoning while being privacy-preserving. On the other hand, FedAvg has a breakdown point of 0,

where a single corruption in each round can cause the model to become arbitrarily bad.

5.3.2 Extensions to RFA

We now discuss two extensions to RFA to reduce the communication cost (without sacrificing privacy) and

better accommodate statistical heterogeneity in the data with model personalization.

One-step RFA: Reducing the Communication Cost. Recall that RFA results in a 3-5× increase in the

communication cost over FedAvg. Here, we give a heuristic variant of RFA in an extremely communication-

constrained setting, where it is infeasible to run multiple iterations of Algorithm 5.2. We simply run

Algorithm 5.2 with v(0) = 0 and a communication budget of R = 1; see Algorithm 5.3 for details. We find

in Section 5.4.3 that one-step RFA retains most of the robustness of RFA.

Personalized RFA: Offsetting Heterogeneity. We now show RFA can be extended to better handle

heterogeneity in the devices with the use of personalization. The key idea is that predictions are made

on device i by summing the shared parameters w maintained by the server with personalized parameters

U = {u1, · · · , un} maintained individually on-device. In particular, the optimization problem we are
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Table 5.2: Dataset description and statistics.

Dataset Task #Classes #Train #Test #Devices #Train per Device

Median Max Min

EMNIST Image Classification 62 204K 23K 1000 160 418 92

Shakespeare Character-level Language Modeling 53 2.2M 0.25M 628 1170 70600 90

Sent140 Sentiment Analysis 2 57K 15K 877 55 479 40
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Figure 5.3: Comparison of robustness of RFA and FedAvg under data corruption (top) and update corrup-

tion (bottom). The left three plots for update corruption show omniscient corruption while the rightmost

one shows Gaussian corruption. The shaded area denotes minimum and maximum over 5 random seeds.

interested in solving is

min
w,U

[
F (w,U) :=

n∑

i=1

αk Ez∼Di [f(w + ui; z)]

]
.

We outline the algorithm in Algorithm 5.4. We train the shared and personalized parameters on each

other’s residuals, following the residual learning scheme of (Agarwal et al., 2020). Each selected device first

updates its personalized parameters ui while keeping the shared parameters w fixed. Next, the updates

to the shared parameter are computed on the residual of the personalized parameters. The updates to the

shared parameter are aggregated with the geometric median, identical to RFA. Experiments in Section 5.4.3

show that personalization is effective in combating heterogeneity.

5.4 Experiments

We now conduct simulations to compare RFA with other federated learning algorithms. The simulations

were run using TensorFlow and the data was preprocessed using LEAF (Caldas et al., 2018). We first

describe the experimental setup in Section 5.4.1, then study the robustness and convergence of RFA in
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Section 5.4.2. We study the effect of the extensions of RFA in Section 5.4.3. The full details from this

section and more simulation results are given in Appendix C.1. The code and scripts to reproduce these

experiments can be found online (rfa, 2019a).

5.4.1 Setup

We consider three machine learning tasks. The datasets are described in Table 5.2. As described in Sec-

tion 5.1, we take the weight αi of device i to be proportional to the number of datapointsNi on the device.

(a) Character Recognition: We use the EMNIST dataset (Cohen et al., 2017), where the input x is a 28×28
grayscale image of a handwritten character and the output y is its identification (0-9, a-z, A-Z). Each

device is a writer of the handwritten character x. We use twomodels — a linear modelφ(x;w) = w⊤x
and a convolutional neural network (ConvNet). We use as objective f(w; (x, y)) = ℓ(y, φ(x;w)),
where ℓ is the multinomial logistic loss ℓ. We evaluate performance using the classification accuracy.

(b) Character-Level Language Modeling: We learn a character-level language model over the Complete

Works of Shakespeare (Shakespeare). We formulate it as a multiclass classification problem, where

the input x is a window of 20 characters and the output y is the next (i.e., 21st) character. Each device is
a role from a play (e.g., Brutus from The Tragedy of Julius Caesar). We use a long-short term memory

model (LSTM) (Hochreiter and Schmidhuber, 1997) together with the multinomial logistic loss. The

performance is evaluated with the classification accuracy of next-character prediction.

(c) Sentiment Analysis: We use the Sent140 dataset (Go et al., 2009) where the input x is a tweet and the

output y = ±1 is its sentiment. Each device is a distinct Twitter user. We use a linear model using

an average of the GloVe embeddings (Pennington et al., 2014) of the words of the tweet. It is trained

with the binary logistic loss and evaluated with the classification accuracy.

Corruption Models. We consider the following corruption models for corrupted devices C, cf. Sec-

tion 5.2:

(a) Data Poisoning: The distribution Di on a device k ∈ C is replaced by some fixed D̃i. For EMNIST,

we take the negative of an image so that D̃i(x, y) = Di(1 − x, y). For the Shakespeare dataset, we
reverse the text so that D̃i(c1, · · · c20, c21) = Di(c21, · · · c2, c1). In both these cases, the labels are

unchanged. For the Sent140 dataset, we flip the label while keeping x unchanged.

(b) Update poisoning with Gaussian corruption: Each corrupted device i ∈ C returns w(t+1)
i = w

(t)
i,τ + ζ

(t)
i ,

where ζ
(t)
i ∼ N (0, σ2I), where σ2 is the variance across the components of w

(t)
i,τ − w(t)

.
2

(c) Update poisoning with omniscient corruption: The parameters w
(t+1)
i returned by devices i ∈ C are

modified so that the weighted arithmetic mean

∑
i∈St

αiw
(t+1)
i over the selected devices St is set to

−∑i∈St
αiw

(t)
i,τ , the negative of what it would have been without the corruption. This is designed to

hurt the weighted arithmetic mean aggregation.

Hyperparameters. The hyperparameters are chosen similar to the defaults of (McMahan et al., 2017). A

learning rate schedule was tuned on a validation set for FedAvg with no corruption. The same schedule

was used for RFA. The aggregation in RFA is implemented using the smoothed Weiszfeld algorithm with a

budget ofR = 3 calls to the secure average oracle, thanks to its rapid empirical convergence (cf. Figure 5.2),

and ν = 10−6
for numerical stability. Each simulation was repeated 5 times and the shaded area denotes

the minimum and maximum over these runs. We give further details and sensitivity analyses in Chapter C.

2

Model updates w
(t)
i − w(t)

are aggregated, not the models w
(t)
i directly (Kairouz et al., 2021b).
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Figure 5.4: Comparison of RFAwith other robust aggregation algorithms on Sent140 with data corruption.

5.4.2 Robustness and Convergence of RFA

First, we compare the robustness of RFA as opposed to vanilla FedAvg to different types of corruption

across different datasets in Figure 5.3. We make the following observations.

RFA gives improved robustness to linear models with data corruption. For instance, consider the

EMNIST linear model at ρ = 1/4. RFA achieves 52.8% accuracy, over 10% better than FedAvg at 41.2%.

RFA performs similarly to FedAvg in deep nets with data corruption. RFA and FedAvg are within

one standard deviation of each other for the Shakespeare LSTM model, and nearly equal for the EMNIST

ConvNet model. We note that the behavior of the training of a neural network when the data is corrupted

is not well-understood in general (e.g., Zhang et al., 2017).

RFA gives improved robustness to omniscient corruptions for all models. For the omniscient

corruption, the test accuracy of the FedAvg is close to 0% for the EMNIST linear model and ConvNet,

while RFA still achieves over 40% at ρ = 1/4 for the former and well over 60% for the latter. A similar

trend holds for the Shakespeare LSTM model.

RFA almost matches FedAvg in the absence of corruption. Recall from Section 5.2 that robustness

comes at the cost of heterogeneity; this is also reflected in the theory of Section 5.3. Empirically, we find

that the performance hit of RFA due to heterogeneity is quite small: 1.4% for the EMNIST linear model

(64.3% vs. 62.9%), under 0.4% for the Shakespeare LSTM, and 0.3% for Sent140 (65.0% vs. 64.7%). Further,

we demonstrate in Section C.2 that, consistent with the theory, this gap completely vanishes in the i.i.d.

case.

RFA is competitive with other robust aggregation schemes while being privacy-preserving. We

now compare RFA with: (a) coordinate-wise median (Yin et al., 2018) and ℓ2 norm clipping (Sun et al.,

2019) which are agnostic to the actual corruption level ρ like RFA, and, (b) trimmed mean (Yin et al., 2018)

and multi-Krum (Blanchard et al., 2017), that require exact knowledge of the level of corruption ρ in the

problem. We find that RFA is more robust than the two agnostic algorithms coordinate-wise median and

norm clipping. Perhaps surprisingly, RFA is also more robust than the trimmed mean which uses perfect

knowledge of the corruption level ρ. We note that multi-Krum is more robust than RFA. That being said,

RFA has the advantage that it is fully agnostic to the actual corruption level ρ and is privacy-preserving,

while the other robust approaches are not.
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Figure 5.5: Comparison of methods plotted against the number of calls to a secure average oracle for

different corruption settings. For the case of omniscient corruption, FedAvg and SGD are not shown in the

plot if they diverge. The shaded area denotes the maximum and minimum over 5 random seeds.
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Figure 5.6: Robustness of one-step RFA.

Summary: robustness of RFA. Overall, we find that RFA is no worse than FedAvg in the presence of

corruption and is often better while being almost as good in the absence of corruption. Furthermore, RFA

degrades more gracefully as the corruption level increases.

RFA requires only 3× the communication of FedAvg. Next, we plot in Figure 5.5 the performance

versus the number of rounds of communication as measured by the number of calls to the secure average

oracle. We note that in the low corruption regime of ρ = 0 or ρ = 10−2
under data corruption, RFA

requires 3× the number of calls to the secure average oracle to reach the same performance. However, it

matches the performance of FedAvg when measured in terms of the number of outer iterations, with the

additional communication cost coming from multiple Weiszfeld iterations for computation of the average.

RFA exhibits more stable convergence under corruption. We also see from Figure 5.5 (ρ = 1/4,
Data) that the variability of accuracy across random runs, denoted here by the shaded region, is much

smaller for RFA. Indeed, by being robust to the corrupted updates sent by random sampling of corrupted

clients, RFA exhibits a more stable convergence across iterations.
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Figure 5.7: Effect of personalization on the robustness of RFA and FedAvg under data corruption.

5.4.3 Extensions of RFA

We now study the proposed extensions: one-step RFA and personalization.

One-step RFA gives most of the robustness with no extra communication. From Figure 5.6, we

observe that for one-step RFA is quite close in performance to RFA across different levels of corruption for

both data corruption on an EMNIST linear model and omniscient corruption on an EMNIST ConvNet. For

instance, in the former, one-step RFA gets 51.4% in accuracy, which is 10% better than FedAvg while being

almost as good as full RFA (52.8%) at ρ = 0.25. Moreover, for the latter, we find that one-step RFA (67.9%)

actually achieves higher test accuracy than full RFA (63.0%) at ρ = 0.25.

Personalization helps RFA offset effects of heterogeneity. Figure 5.7 plots the effect of RFA with

personalization. First, we observe that personalization leads to an improvement with no corruption for

both FedAvg and RFA. For the EMNIST linear model, we get 70.1% and 69.9% respectively from 64.3%

and 62.9%. Second, we observe that RFA exhibits greater robustness to corruption with personalization.

At ρ = 1/4 with the EMNIST linear model, RFA with personalization gives 66.4% (a reduction of 3.4%)

while no personalization gives 52.8% (a reduction of 10.1%). The results for Sent140 are similar, with the

exception that FedAvg with personalization is nearly identical to RFA with personalization.

5.5 Related Work

We now survey some related work.

Federated Learning was introduced in (McMahan et al., 2017) as a distributed optimization approach to

handling on-device machine learning, with secure multi-party averaging algorithms given in (Bonawitz

et al., 2017; Balle et al., 2020). Extensions were proposed in (Smith et al., 2017b; Mohri et al., 2019; Li

et al., 2020c; Karimireddy et al., 2020; Dinh et al., 2020; Fallah et al., 2020; Laguel et al., 2021a; Avdiukhin

and Kasiviswanathan, 2021; Reddi et al., 2021); see also the recent surveys (Li et al., 2020a; Kairouz et al.,

2021b). We address robustness to corrupted updates, which is broadly applicable in these settings.

Distributed optimization has a long history (Bertsekas and Tsitsiklis, 1989). Recent work includes

primal-dual frameworks (Smith et al., 2018; Ma et al., 2017) and variants suited to decentralized (He et al.,

2018), and asynchronous (Leblond et al., 2018) settings.
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From the lens of learning in networks (Sayed, 2014), federated learning comprises a star network where

agents (i.e., devices) with private data are connected to a server with no data, which orchestrates cooper-

ative learning. Further, for privacy, model updates from individual agents cannot be shared directly, but

must be aggregated securely.

Robust estimation was pioneered by Huber (Huber, 1964; 2011). Robust median-of-means were intro-

duced in (Nemirovski and Yudin, 1983), with follow-ups in (Minsker, 2015; Hsu and Sabato, 2016; Lugosi

and Mendelson, 2019a; Lecué and Lerasle, 2020; Lugosi and Mendelson, 2019b). Robust mean estimation,

in particular, received much attention (Diakonikolas et al., 2016; Minsker, 2018; Cheng et al., 2019). Ro-

bust estimation in networks was considered in (Al-Sayed et al., 2017; Yu et al., 2019; Chen et al., 2019).

These works consider the statistics of robust estimation in the i.i.d. case, while we focus on distributed

optimization with privacy preservation.

Byzantine robustness, resilience to arbitrary behavior of some devices (Lamport et al., 1982), was stud-

ied in distributed optimization with gradient aggregation (Blanchard et al., 2017; Chen et al., 2017; 2018a;

Yin et al., 2018; Alistarh et al., 2018; Cao and Lai, 2019). Byzantine robustness of federated learning is a

priori not possible without additional assumptions because the secure multi-party computation protocols

require faithful participation of the devices. Thus, we consider a more nuanced and less adversarial cor-

ruption model Section 5.2; here, devices participate faithfully in the aggregation loop. Further, it is unclear

how to securely implement the nonlinear aggregation algorithms of these works. Lastly, the use of, e.g.,

secure enclaves (Subramanyan et al., 2017) in conjunction with our approach could guarantee Byzantine

robustness in federated learning. We aggregatemodel parameters in a robust manner, which is more suited

to the federated setting. We note that (Li et al., 2019) also aggregate model parameters rather than gra-

dients by framing the problem in terms of consensus optimization. However, their algorithm requires

devices to be always available and participate in multiple rounds, which is not practical in the federated

setting (Kairouz et al., 2021b).

Weiszfeld’s algorithm (Weiszfeld, 1937) to compute the geometric median, has received much attention

(Kuhn, 1973; Vardi and Zhang, 2001; Beck and Sabach, 2015). The Weiszfeld algorithm is also known to

exhibit asymptotic linear convergence (Katz, 1974). However, unlike these variants, ours is numerically

stable. A theoretical proposal of a near-linear time algorithm for the geometric median was recently ex-

plored in (Cohen et al., 2016).

Frameworks to guarantee privacy of user data include differential privacy (Dwork et al., 2006b; Kairouz
et al., 2021a) and homomorphic encryption (Gentry, 2010). These directions are orthogonal to ours, and

could be used in conjunction. See (Bonawitz et al., 2017; Li et al., 2020a; Kairouz et al., 2021b) for a broader

discussion.

5.6 Discussion and Conclusion

We presented a robust aggregation approach, based on the geometric median and the smoothed Weiszfeld

algorithm to efficiently compute it, to make federated learning more robust to settings where a fraction of

the devices may be sending corrupted updates to the orchestrating server. The robust aggregation oracle

preserves the privacy of participating devices, operatingwith calls to securemulti-party computation prim-

itives enjoying privacy preservation theoretical guarantees. RFA is available in several variants, including

a fast one with a single step of robust aggregation and one adjusting to heterogeneity with on-device per-

sonalization. All variants are readily scalable while preserving privacy, building off secure multi-party

computation primitives already used at a planetary scale.

The bound we proved for RFA in Theorem 5.9 is not the best possible. Lower bounds for robust mean
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estimation (e.g. Chen et al., 2018b, Theorem 2.2) imply that the error ∥w(T ) − w⋆∥2 ≳ ρ2 scales as the

square of corruption level ρ. However, Theorem 5.9 has a non-zero additive error term independent of ρ.
Since it is impractical for an adversary to control even a constant fraction of clients in a production system

at a global scale, it is desirable to prove tight bounds under the low corruption regime of ρ→ 0. Another
interesting open problem lies in designing robust aggregation approaches that obtain tight rates in theory

and satisfy the key requirements of federated learning (Section 5.1.1).

While we focused on corrupted updates that aim to degrade the quality of the global model for all

clients. There is another family of corruptions, known as backdoor attacks, whose goal is to corrupt

the performance of the trained model on specific sub-tasks (Bhagoji et al., 2019; Bagdasaryan et al., 2020).

Backdoor attacks essentially leverage the fact that most deep networks are overparameterized to overcome

robust aggregation. In fact, recent evidence suggests that it is unlikely to have a federated learning method

that is certifiably robust to backdoors (Wang et al., 2020a). An open problem in this space is to identify a

subset of backdoor attacks for which one can develop certifiably robust federated learning methods, and

to ensure the developed method satisfies the key requirements of federated learning (Section 5.1.1).

Recent works have studied personalization in federated learning for its ability to better handle hetero-

geneity (Agarwal et al., 2020; Dinh et al., 2020; Pillutla et al., 2022b). In this chapter, we have combined

robustness with personalization. Recent work suggests that personalization without explicit robust ag-

gregation can also retain robustness properties (Li et al., 2021b). Precisely characterizing the robustness

benefits of personalization is an interesting open problem.
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Chapter 6

∆-FL: A Superquantile Optimization

Approach for Federated Learning with

Heterogeneous Devices

We previously studied the robustness of federated learning to corrupted updates in Chapter 5. In this chap-

ter, we turn to another key feature of federated learning, namely statistical heterogeneity. The client data

distributions are not identically distributed (Kairouz et al., 2021b; Li et al., 2020a). In typical cross-device

federated learning scenarios, each client corresponds to a user. The diversity in the data they generate

reflects the diversity in their unique personal, cultural, regional, and geographical characteristics.

This data heterogeneity in federated learning manifests itself as a train-test distributional shift. Indeed,

the usual approach minimizes the prediction error of the model on average over the population of clients

available for training (McMahan et al., 2017), while at test time, the same model is deployed on individual

clients. This approach can be liable to fail on clients whose data distribution is far from most of the

population or who may have less data than most of the population. It is highly desirable, therefore, to

have a federated learning method that can robustly deliver good predictive performance across a wide

variety of natural distribution shifts posed by individual clients.

We present in this chapter a robust approach to federated learning that guarantees a minimum level

of predictive performance to all clients even in situations where the population is heterogeneous. The

approach we develop addresses these issues by minimizing a learning objective based on the notion of a

superquantile (Rockafellar and Uryasev, 2002; Rockafellar et al., 2008), a risk measure that captures the tail

behavior of a random variable.

Training models with a learning objective involving the superquantile raises challenges. The su-

perquantile is a non-smooth functional with sophisticated properties. Furthermore, the superquantile

function can be seen as a kind of nonlinear expectation that we would like to blend well with averag-

ing mechanisms. We show how to address the former by leveraging the dual formulation and the latter by

leveraging the tail-domain viewpoint. As a result, we can obtain an algorithm that can be implemented in a

similar way to FedAvg (McMahan et al., 2017) yet offers important benefits to heterogeneous populations.

The approach we propose, ∆-FL, allows one to control higher percentiles of the distribution of errors

over the heterogeneous population of clients. We show in the experiments that our approach is more

efficient than a direct approach simply seeking to minimize the worst error over the population of clients.

Compared to FedAvg, ∆-FL delivers improved prediction to data-poor or non-conforming clients. We

present finite time theoretical convergence guarantees for the∆-FL algorithm when used to train additive

115



Trajectories of model parameters over time

Iteration →

M
o
d
el

p
ar
am

.
→

θ1 θ2 θ3 θ4

wθ1

wθ2

wθ3

wθ4

w0

In iteration t of training

Server

+
Sec.Agg.

selected
devices

At test time

Server

test devices select their level of conformity θ

Figure 6.1: Schematic summary of the ∆-FL framework. Left: The server maintains multiple models wθj , one

for each level of conformity θj . Middle: During training, selected clients participate in training each model wθj .

Individual updates are securely aggregated to update the server model. Right: Each test user is allowed to select

their level of conformity θ, and are served the corresponding model wθ .

models or deep networks and show how to implement it in a way that is compatible and modular with

secure aggregation and distributed differential privacy.

Contributions. We make the following concrete contributions in this chapter.

• The ∆-FL Framework: We introduce the ∆-FL framework, summarized in Figure 6.1, which seeks to

guarantee a minimal level of predictive performance on nonconforming clients. The framework relies

on a nonsmooth superquantile-based objective to minimize the tail statistics of the prediction errors on

the client data distributions. The objective is parameterized by the conformity level, which is a scalar

summary of how closely a client conforms to the population.

• Optimization Algorithm, Convergence, and Privacy Analysis: To optimize the∆-FL objective, we present

a federated optimization algorithm that interleaves differentially private client reweighting steps with

federated averaging steps. We establish bounds on its rate of convergence in the convex and nonconvex

cases. Further, we provided an analysis of the differential privacy of the proposed algorithm.

• Numerical Experiments: We perform numerical experiments using neural networks and linear models,

on tasks including image classification, and sentiment analysis based on public datasets. The exper-

iments demonstrate the superior performance of ∆-FL over state-of-the-art baselines on the upper

quantiles of the error on test clients, with particular improvements on data-poor clients, while being

competitive on the mean error.

Outline. We start with some background in Section 6.1. Section 6.2 describes the general setup, recalls

the FedAvg algorithm for federated learning, and formalizes the notions of conformity and heterogene-

ity. Section 6.3 presents a federated optimization algorithm for ∆-FL. We analyze its convergence in the

convex and non-convex cases, as well as its differential privacy properties in Section 6.4. We discuss

an extension to other risk measures and relations to fair allocation in Section 6.5, and review some re-

lated work in Section 6.6. Section 6.7 presents experimental results, comparing the proposed approach

to existing ones, on benchmark datasets for federated learning. Detailed proofs and additional details

are deferred to Chapter D. The code and the scripts to reproduce results are made publicly available

at https://github.com/krishnap25/simplicial-fl.

Notation. The norm ∥·∥ denote the Euclidean norm ∥·∥2 inRd. We use∆n−1 =
{
π ∈ Rn+ :

∑n
i=1 πi = 1

}
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to denote the probability simplex in Rn.

6.1 Background

Central to our developments in this chapter is the superquantile (Rockafellar and Uryasev, 2000). It is a

measure of the tail of a random variable and has also been known variously as the conditional value at

risk (CVaR), tail value at risk, mean excess loss, and mean shortfall. We review the motivation, definition,

and basic properties of the superquantile here. For further details and proofs of these properties, we refer

to (Laguel et al., 2021b).

Superquantiles and Sensitivity to ExtremeOutcomes. Consider real-valued random variablesZ1 and

Z2 that denote an outcome, such that larger values denote more extreme outcomes. The loss of a model

on a randomly sampled datapoint is such an example, where large values represent poor predictions. The

mean of a random variable does not capture extreme outcomes. For instance, Z1 and Z2 can have the same

mean but exhibit vastly different tail behaviors, as shown in Figure 6.2 (left). In a number of applications,

such as the learning setting, it might be preferable to be risk averse, i.e., prefer to avoid extremely large loss

values over the potential for a smaller-than-average loss. Indeed, extreme losses could potentially lead to

catastrophic failures of learning systems, as we discussed in Chapter 1.

A risk-averse scalar summary of a random variable would quantify its “worse-than-average-case” be-

havior, i.e., give more importance to the behavior of the right tail over the left tail. The upper quantiles of

a random variable measure its tail behavior and extreme outcomes. Formally, for θ ∈ (0, 1), the (1 − θ)-
quantile of Z , denoted by Qθ(Z), is the inverse of the cumulative distribution function of Z :

Qθ(Z) ≤ t ⇐⇒ P(Z ≤ t) ≥ 1− θ , (6.1)

for all t ∈ R. When θ = 1/2, this corresponds to the median value of the random variable Z . For θ > 1/2,
it quantifies the right tail of the random variable Z — see Figure 6.2 (right) for an example.

Unfortunately, the quantile functions are difficult to work with, as they are piecewise constant for

discrete random variables. A better-behaved measure of the tail behavior of a random variable is its su-
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perquantile, which is defined as an average of all quantiles larger than the (1 − θ) quantile. Formally, for

any θ ∈ (0, 1], the (1− θ)-superquantile of Z is given by

Sθ(Z) =
1

θ

∫ θ

0
Qθ′(Z) dθ

′ . (6.2)

When θ = 1, the superquantile simply reduces to the expected value: S1(Z) = E[Z]. On the other hand,

limθ→0 Sθ(Z) is the essential supremum of Z , i.e., Z is almost surely smaller than this quantity. If Z is a

continuous random variable (i.e., its cumulative distribution function t 7→ P(Z ≤ t) is continuous), the
superquantile is simply its tail expectation Sθ(Z) = E[Z | Z > Qθ(Z)]; this is illustrated in Figure 6.3

(left). The superquantile is thus a natural measure of the worse-than-average-case behavior of a random

variable.

More generally, the following variational form is applicable to both discrete and continuous random

variables (Rockafellar and Uryasev, 2000)

Sθ(Z) = min
η∈R

{
η +

1

θ
E [max{0, Z − η}]

}
.

In this expression, the quantile Qθ(Z) is obtained as the left end-point of the argmin over η.

Learning with Superquantiles. We now formalize the learning setting alluded to previously. Consider

a a loss function f such that f(w; z) gives the loss of w on data z, and a data distribution p over the

data. Given samples z1, · · · , zn ∼ p, the usual approach aims to minimize the population loss F (w) =
Ez∼p [f(w; z)]. Given a new sample z ∼ p, a minimizer of the population loss F guarantees small loss on

average, but it is not risk averse. To protect against extreme outcomes such as catastrophic failures, one

might choose to minimize the superquantile of the losses instead: Fθ(w) = [Sθ]z∼p [f(w; z)]. The goal of
this chapter is to instantiate and operationalize this approach to federated learning.

In practice, one does not have access to the data generating distribution p. Rather, we only have access
to samples z1, · · · , zn from p. In the risk-neutral setting, the empirical risk minimization approach uses the

empirical distribution pn = (1/n)
∑n

i=1 δzi over the samples; here, δa denotes a point mass at a. Likewise,
we consider the empirical counterpart to the superquantile Fθ as [Sθ]z∼pn [f(w; z)].
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Superquantile of Empirical Measures. We now review some of the properties of the superquantile of

empirical measures. Let Zn denote the uniform distribution over a finite set {a1, · · · , an} ⊂ R of size n.
In this case, (6.1) can be written as

Sθ(a1, · · · , an) := Sθ(Zn) =
1

nθ

∑

i∈I>

ai +
c

θ
Qθ(Zn) , where I>= {i : ai > Qθ(Zn)} . (6.3)

This expression involves the distance c from θ to the next discontinuity point of the quantile function

θ′ 7→ Qθ′(Zn)

c = θ − P(Zn > Qθ(Zn)) = θ − |I>|
n

. (6.4)

See Figure 6.3 (right) for an illustration. This gives a recipe for computing the superquantile similar to the

tail mean for continuous random variables — we first compute the corresponding quantile in O(n) time,

followed by averaging values greater than the quantile as per (6.3).

The empirical superquantile (a1, · · · , an) 7→ Sθ(a1, · · · , an) is a closed, convex function with full

domain Rn for each θ ∈ (0, 1]. Its (convex) subdifferential is given by the expression

∂ Sθ(a1, · · · , an) =


 1

nθ

∑

i∈I>

ei


+

c

θ
conv{ei : i ∈ I=} ,

where ei is the i
th
canonical basis vector, I= = {i : ai = Qθ(Zn)} is the set of indices i such that ai

equals the (1−θ)-quantile, I> is as given in (6.3) and c in (6.4) and Figure 6.3 (right). From this expression,

we see that the empirical superquantile is differentiable if I= is a singleton.

6.2 Problem Setup

We work with the same federated learning setup as in Chapter 5. We review the notation here and refer

to Section 5.1 for details.

Let the vector w ∈ Rd denote the d model parameters. We assume that each client has a distribution

q over some data space such that the data on the client is sampled i.i.d. from q. The loss incurred by the

model w ∈ Rd on this client is F (w; q) := Ez∼q[f(w; z)], For a given distribution q, smaller values of

F (·; q) denote a better fit of the model to the data. There are n clients available for training. We number

these clients as 1, . . . , n and denote the distribution on training client i by qi. We denote the loss on client

i by Fi(w) := F (w; qi).

The goal of federated learning is to train amodelw so that it achieves good performancewhen deployed

on each test client, including those which are unseen during training. The usual learning objective in

federated learning, which we refer to as the vanilla FL objective, is

min
w∈Rd

[
F (w) :=

1

n

n∑

i=1

Fi(w) +
λ

2
∥w∥22

]
. (6.5)

This is a special case of (6.5) with equal weights αi = 1/n with added regularization with parameter

λ. Owing to the statistical heterogeneity in federated learning, the distribution p of a specific test client

could be different from the average distribution (1/n)
∑n

i=1 qi that the model is trained on. However, the

vanilla FL objective places a limit on how well statistical heterogeneity can be addressed. By minimizing
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1

Figure 6.4: The set of mixture weights π = (π1, π2, π3) of conformity conf(pπ) ≥ θ is given by the intersection

of the box constraints 0 ≤ πi ≤ (3θ)−1
for i = 1, 2, 3, with the simplex constraint π1 + π2 + π3 = 1.

the average training loss, the resulting model w can sacrifice performance on “difficult” clients in order to

perform well on average. In other words, it is not guaranteed to perform well on individual test clients,
whose distribution p might be quite different from the average training distribution (1/n)

∑n
i=1 qi. Our

goal in this chapter is to design an objective function, to better handle statistical heterogeneity and the

associated train-test mismatch. We also design a federated optimization algorithm similar to FedAvg to

optimize it.

Conformity and Heterogeneity. In this chapter, we consider test clients whose distribution p can be

written as a mixture pπ :=
∑n

i=1 πiqi of the training distribution qi of the clients with weights π ∈ ∆n−1
.

Here, ∆n−1
denotes the probability simplex in Rn. The test distribution pπ is different from the average

training distribution ptrain = (1/n)
∑n

i=1 qi if the mixture weights π are different from 1/n at training

time.

We now define conformity of a mixture pπ to the training distribution ptrain, as a measure of the degree

of similarity between pπ and ptrain.

Definition 6.1. The conformity conf(pπ) ∈ [n−1, 1] of a mixture distribution pπ with weights π is defined

as

(
n maxi∈[n] πi

)−1
. The conformity of a client refers to the conformity of its data distribution.

When π coincides with the uniform distribution over [n], we have that conf(pπ) = 1, and this is the

largest possible value of conf(pπ). On the other extreme, suppose that πi = 1 for some i, so that π is very

different from the uniform distribution. Here, conf(pπ) = 1/n, which is the smallest value it takes. In

other words, the conformity measures how similar the mixture weights π of pπ are to the original weights
(1/n, · · · , 1/n).

More generally, a mixture distribution pπ with conf(pπ) ≥ θ must satisfy πi ≤ 1/(θn) for each i. In
other words, the set of all mixture weights {π ∈ ∆n−1 : conf(pπ) ≥ θ} lie in an axis-parallel box around

(1/n, · · · , 1/n), as shown in Figure 6.4. We do not directly impose a lower bound on πi because it is not
realistic to assume that the distribution on a test client must necessarily contain a component of every

training distribution qi.
Assuming that the training clients are a representative sample of the population of clients, every client’s

distribution can be well-approximated by a mixture pπ for some π ∈ ∆n−1
. The conformity of a client is a

scalar summary of how close it is to the population. A test client with conformity θ ≈ 1 closely conforms to
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the population. Then, a model trained on the population ptrain is expected to have high predictive power.

In contrast, a test client with θ ≈ 0would be vastly different from the population ptrain, and the predictive
power of a model trained on ptrain could be poor. The inverse of the conformity 1/conf(pπ) is a measure

of how much pπ is shifted relative to ptrain.

There is a trade-off between fitting the population and supporting non-conforming test clients. The

conformity θ presents a natural way to encapsulate this tradeoff in a scalar parameter. That is, given a

conformity θ ∈ (0, 1), we choose to only support test distributions pπ with conf(pπ) ≥ θ.

6.3 Handling Heterogeneity with ∆-FL

In this section, we introduce the ∆-FL framework in Section 6.3.1, and propose an algorithm to optimize

in the federated setting in Section 6.3.2.

6.3.1 The ∆-FL Framework

The ∆-FL framework aims to address the train-test distributional mismatch by supplying each test client

with a model appropriate to its conformity. Given a discretization {θ1, . . . , θr} of (0, 1], ∆-FL maintains

r models, one for each conformity level θj . The local data is not allowed to leave a client due to privacy

restrictions; hence, the conformity of a test client cannot be measured. Instead, we allow each test client

to tune their conformity. See the schematic in Figure 6.1 for an illustration.

To train a model for a conformity level θ, we aim to do well on all distributions pπ with conf(pπ) ≥ θ:

min
w∈Rd

[
Fθ(w) := max

π∈Pθ

F (w; pπ) +
λ

2
∥w∥2

]
,

where, Pθ :=
{
π ∈ ∆n−1 : conf(pπ) ≥ θ

}
.

(6.6)

In contrast, the vanilla FL objective optimizes F (w; ptrain), which is defined on the basis of the training

distribution ptrain. We observe that ∆-FL is designed to be robust on all test clients with conformity of at

least θ.

Connection to the Superquantile. The objective function of (6.6) brings the notion of superquantile

into play. In particular, we show that the∆-FL objective is the superquantile of a discrete random variable

with the per-client losses.

Property 6.2. Let Z(w) be a discrete random variable which takes the value Fi(w) with probability 1/n for
i = 1, . . . , n. Then, we have that Fθ(w) = Sθ(Z(w)) + (λ/2)∥w∥2.

Proof. The proof follows from the following equality, which holds due to linear programming duality:

max
π∈Pθ

n∑

i=1

πixi = min
(η,µ)∈M

{
η +

1

θ

n∑

i=1

µi
N

}

withM = {(η, µ) ∈ R× RN+ : µi ≥ xi − η for i ∈ [n]}.
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Algorithm 6.1. The∆-FL Algorithm

Input:

Input: Initial iterate w(0)
, number of communication rounds T , number of clients per roundm, number

of local updates τ , local step size γ
1: for t = 0, 1, · · · , T − 1 do

2: Samplem clients from [n] without replacement in S
3: Estimate the (1 − θ)-quantile of Fi(w

(t)) for i ∈ S with distributed differential privacy (Algo-

rithm 6.2); call this Q(t)

4: for each selected client i ∈ S in parallel do

5: Set π̃
(t)
i = I

(
Fi(w

(t)) ≥ Q(t)
)

6: Initialize w
(t)
k,0 = w(t)

7: for k = 0, · · · , τ − 1 do

8: w
(t)
i,k+1 = (1− γλ)w(t)

i,k − γ∇Fi(w
(t)
i,k)

9: w(t+1) =
∑

i∈S π̃
(t)
i w

(t)
i,τ/

∑
i∈S π̃

(t)
i

10: return wT

6.3.2 Federated Optimization for ∆-FL

We now propose a federated optimization algorithm for the ∆-FL objective (6.6). While there could be

many approaches to optimizing (6.6), we consider algorithms similar to FedAvg for their ability to avoid

communication bottlenecks and preserve the privacy of user data.

The objective function (6.6) is effectively the average loss of the clients in the tail, as visualized in

Figure 6.3. Therefore, a natural algorithm to minimize it first evaluates the loss on all the clients, and only

performs gradient updates on those clients in the tail above the (1 − θ)-quantile. However, a practical

algorithm cannot assume that all the clients are available at a given point in time. Therefore, we perform

the same operation on a subsample of clients.

Concretely, the optimization algorithm for the∆-FL objective (6.6) is given in Algorithm 6.1. It has the

following four steps:

(a) Model Broadcast (line 2): The server samples a set S ofm clients from [n] and sends the current model

w(t)
.

(b) Quantile Computation and Reweighting (lines 3 and 5): Selected clients i ∈ S and the server collaborate

to estimate the (1−θ)-quantile of the losses Fi(w(t))with differential privacy. The clients then update

their weights to be zero if their loss is smaller than the estimated quantile and leave them unchanged

otherwise. This ensures that model updates are only aggregated from the tail clients; cf. Figure 6.3.

(c) Local Updates (loop of line 7): Staring from w
(t)
k,0 = w(t)

, each client i ∈ S makes τ local gradient or

stochastic gradient descent steps with a learning rate γ.
(d) Update Aggregation (line 9): The models from the selected clients are sent to the server and aggregated

to update the server model, with weights from line 5).

Compared to FedAvg, ∆-FL has the additional step of computing the quantile and new weights π̃
(t)
i for

each selected client i ∈ S in lines 3 and 5. Let us consider∆-FL in relation to the key aspects of federated

learning which we introduced in Section 5.1.1.

(1) Communication Bottleneck: Identical to FedAvg,∆-FL algorithmperformsmultiple computation rounds

per communication round.

(2) Statistical Heterogeneity: The ∆-FL objective (6.6) is designed to better handle the statistical hetero-
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Algorithm 6.2. Quantile Computation with Distributed Differential Privacy

Input: Ring sizeM , set S of clients where each client i has a scalar ℓi ∈ [0, B], target quantile 1 − θ ∈
(0, 1), discretization l0, l1, · · · , lb of [0, B], variance proxy σ2, scaling factor c ∈ Z+

1: Each client i computes local histogram xi =
(
I(lj−1 ≤ ℓi < lj)

)b
j=1

2: Each client i samples ξi ∼ NZ(0, σ
2Ib) and sets x̃i = (cxi + ξi) mod M

3: Compute s = (
∑

i∈S x̃i) mod M using a secure summation oracle

4: Set histogram ĥ = s/c
5: return Quantile estimate Qθ(ĥ) of the histogram ĥ from Eq. (6.7).

geneity by minimizing the worst-case over all test distributions with conformity at least θ, while the
vanilla FL objective cannot handle non-conforming clients.

(3) Privacy: Identical to FedAvg,∆-FL does not require any data transfer and the aggregation of line 9 can

be securely performed using securemultiparty communication. The extra step of quantile computation

is also performed with distributed differential privacy, as we describe next.

Quantile EstimationwithDistributedDifferential Privacy. The naïveway to compute the quantile of

the per-client losses in line 3 of Algorithm 6.1 is to have the clients send their losses to the server. To avoid

the privacy risk of leakage of information about the clients to the server, we compute the quantile with

distributed differential privacy (Kairouz et al., 2021a) using the discrete Gaussian mechanism (Canonne

et al., 2020). The key idea behind differential privacy (Dwork et al., 2006a; 2016) is to ensure that the

addition or removal of the data from one client does not lead to a substantial change in the output of an

algorithm. A large change in the output would give a privacy adversary enough signal to learn about the

client which was added or removed.

Distributed differential privacy simulates a trusted central aggregator by using a secure summation

oracle (Bonawitz et al., 2017), which enables the computation of summations

∑
i∈S vi where vi ∈ Rd is

a privacy-sensitive vector residing with client i. Practical implementations of such algorithms are based

on cryptographic techniques such as secure multiparty computation (Evans et al., 2018), which requires

each component of the vectors vi to be discretized to the ring ZM of integers moduloM .
1
As defined in

Definition 5.1 (Chapter 5), a secure summation oracle S : (ZdM )m → ZM returns the sum S
(
(vi)i∈S

)
=(∑

i∈S vi
)

mod M without revealing any further information to a privacy adversary.

Our algorithm is given in Algorithm 6.2. We assume that the losses are bounded as Fi(w) ∈ [0, B] and
that we are given b bin edges 0 ≤ l0 < l1 < · · · < lb = B. Each client i first computes a local histogram

xi ∈ {0, 1}b of b bins as the indicator vector

xi =
(
I
(
Fi(w) ∈ [lj−1, lj)

))b
j=1

.

Each client then adds random discrete Gaussian
2
noise ξi ∼ NZ(0, σ

2Ib) with scale parameter σ2, and
finally sums them up using a secure summation oracle. At the end of all these steps, the server has a

vector ĥ ∈ Rb which approximates the true histogram h =
∑

i∈S xi of per-client losses. While ĥ might

not be a valid histogram due to negative values, we continue to call it a “histogram” with a slight abuse of

terminology.

1

For ease of handling negative integers, we performmodular arithmetic over the ring {−M/2+1, · · · ,−1, 0, 1, 2, · · · ,M/2}
rather than {0, 1, · · · ,M − 1}.

2

See Section D.2 for a formal definition.
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Algorithm 6.3. The∆-FL Algorithm with Exact Reweighting

Input: Same as Algorithm 6.1

1: for t = 0, 1, · · · , T − 1 do

2: Samplem clients from [n] without replacement in S
3: Compute π(t) = argmaxπ∈Pθ,S

∑
i∈S πiFi(w

(t))
4: for each selected client i ∈ S in parallel do

5: Initialize w
(t)
i,0 = w(t)

6: for k = 0, · · · , τ − 1 do

7: w
(t)
i,k+1 = (1− γλ)w(t)

i,k − γ∇Fi(w
(t)
i,k)

8: w(t+1) =
∑

i∈S π
(t)
i w

(t)
i,τ

9: return wT

The final step is to define and return an appropriate notion of a (1− θ)-quantile of ĥ. A non-negative

histogram h ∈ Rb+ can be viewed as a random variable Z(h) with mass function P
(
Z(h) = lj−1

)
∝ hj

for j = 1, · · · , b. The (1− θ)-quantile of the non-negative histogram h is simply the quantile function of

this induced Z(h):

Qθ(h) := Qθ(Z(h)) = min
j∈[b]

{
lj−1 : hj+1 + · · ·+ hb ≤ θ(h1 + · · ·+ hb)

}
.

Similarly, for approximate histograms ĥ that allow negative values, we return the bin edge lj such that the

mass hj+1 + · · ·+ hb to the right of this edge is as close to θ as possible:

Qθ(ĥ) := lj∗θ (ĥ)
where j∗θ (ĥ) = argmin

j∈[b]

∣∣(hj+1 + · · ·+ hb)− θ(h1 + · · ·+ hb)
∣∣ . (6.7)

6.4 Theoretical Analysis

In this section, we analyze the convergence analysis of ∆-FL (Section 6.4.1) and study the differential

privacy properties of the quantile computation (Section 6.4.2).

6.4.1 Convergence Analysis

We study the convergence of Algorithm 6.1 with respect to the objective (6.6) in two cases: (i) the general

non-convex case, and, (ii) when each Fi(w) is convex.

Assumptions. We make some assumptions on the per-client losses Fi, which are assumed to hold

throughout this section. For each client i ∈ [n], the objective Fi is

(a) B-bounded, i.e., 0 ≤ Fi(w) ≤ B for all w ∈ Rd,
(b) G-Lipschitz, i.e., |Fi(w)− Fi(w′)| ≤ G∥w − w′∥ for all w,w′ ∈ Rd, and,
(c) L-smooth, i.e., Fi is continuously differentiable and its gradient ∇Fi is L-Lipschitz.

Equivalent Algorithm. Algorithm 6.1 is not amenable to theoretical analysis as it is stated because the

quantile function of discrete random variables computed in line 3 is piecewise constant and discontinuous.
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To overcome this obstacle, we introduce a near-equivalent algorithm in Algorithm 6.3, which replaces the

reweighting step of Algorithm 6.1 (lines 3 and 5) with the ideal reweighting suggested by the objective (6.6).

Let us start with the case of S = [n]. Ideally, we wish the weights π(t) to achieve the maximum over

π in the objective (6.6). It then follows by the chain rule (Rockafellar and Wets, 2009, Thm. 10.6) that∑n
i=1 π

(t)
i ∇Fi(w(t)) + λw(t) ∈ ∂Fθ(w(t)), where ∂Fθ is the regular subdifferential of Fθ . This allows us

to derive convergence guarantees.

Algorithm 6.3 extends this intuition to the setting where only a subsample S ⊂ [n] of clients are
available in each round. We define the counterpart of the constraint set Pθ from (6.6) defined on a subset

S ⊂ [n] ofm clients as:

Pθ,S =

{
π ∈ ∆|S|−1 : πi ≤

1

θm
, for k ∈ S

}
, (6.8)

where we denote (πi)i∈S ∈ R|S|
by π with slight abuse of notation. With this notation, Algorithm 6.3

computes the new weights of the clients as

π(t) = argmax
π∈Pθ,S

∑

i∈S
πiFi(w

(t)) .

We now analyze how close Algorithm 6.3 is to Algorithm 6.1. Let Z(w) be a discrete random variable

which takes the value Fi(w) with probability 1/n for i = 1, . . . , n, and let Qθ(Z(w)) denote its (1 − θ)-
quantile. The weights π̂ ∈ ∆n−1

considered in Algorithm 6.1 (assuming that Q(t)
is the exact quantile of

{Fi(w(t)) : k ∈ S}) are given by a hard-thresholding based on whether Fi(w) is larger than its (1− θ)-
quantile:

π̃i = I
(
Fi(w) ≥ Qθ(Z(w))

)
, and, π̂i =

π̃i∑n
i′=1 π̃i′

. (6.9)

The objective defined by these weights is F̂θ(w) =
∑n

i=1 π̂iFi(w) + (λ/2)∥w∥2. The next proposition

shows that F̂θ(w) = Fθ(w) under certain conditions, or is a close approximation, in general.

Proposition 6.3. Assume F1(w) < · · · < Fn(w) and let i⋆ = ⌈θn⌉. Then, we have,
(a) π⋆ = argmaxπ∈Pθ

∑n
i=1 πiFi(w) is unique,

(b) Qθ(Z(w)) = Fi⋆(w),
(c) if θn is an integer, then π̂ = π⋆ so that F̂θ(w) = Fθ(w), and,
(d) if θn is not an integer, then

0 ≤ Fθ(w)− F̂θ(w) ≤
B

θn
.

Proof. We assume w.l.o.g. that λ = 0. We apply the property that the superquantile is a tail mean (cf.

Figure 6.3) for discrete random variables (Rockafellar and Uryasev, 2002, Proposition 8) to get

Fθ(w) =
1

θn

n∑

i=i⋆+1

Fi(w) +

(
1− ⌊θn⌋

θn

)
Fi⋆(w) .

Comparing with (6.6), this gives a closed-form expression for π⋆, which is unique because Fi⋆−1(w) <
Fi⋆(w) < Fi⋆+1(w). For (b), note that Qθ(Z(w)) = inf{η ∈ R : P(Z(w) > η) ≤ θ} equals Fi⋆(w) by
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definition of i⋆. Therefore, if θn is an integer, π⋆ coincides exactly with π̂. When θn is not an integer, we

have

F̂θ(w) =
1

n− i⋆ + 1

n∑

i=i⋆

Fi(w) .

The bound on F̂θ(w)−Fθ(w) follows from elementary manipulations together with 0 ≤ Fi(w) ≤ B.

Proposition 6.3 shows that when θm is an integer, Algorithm 6.3 is identical to Algorithm 6.1 where

line 5 exactly computes the quantile of the per-client losses. We record another consequence of Proposi-

tion 6.3, namely, that the reweighting π(t) is sparse.

Remark 6.4. Proposition 6.3 shows that ∆-FL’s reweighting π(t) (line 3 of Algorithm 6.3) is sparse. That is,
π
(t)
i is non-zero only for exactly ⌈θm⌉ clients with the largest losses.

Bias due to Partial Participation. Note that we define the objective (6.6) as the maximum over all

distributions in Pθ , but Algorithm 6.3 only maximizes weights over a set S of m clients in each round

(line Line 3). Therefore, the updates performed by Algorithm 6.3 are not unbiased. In particular, Algo-

rithm 6.3 minimizes the objective:

F θ(w) := ES∼Um [Fθ,S(w)] , where Fθ,S(w) = max
π∈Pθ,S

∑

i∈S
πiFi(w) +

λ

2
∥w∥2

is the analogue of (6.6) defined on a sample S ⊂ [n] of clients, and Um is the uniform distribution over

subsets of [n] of size m. Fortunately, the bias introduced by Line 3 can be bounded as (Levy et al., 2020b,

Prop. 1)

sup
w∈Rd

∣∣F θ(w)− Fθ(w)
∣∣ ≤ B√

θm
. (6.10)

Our general strategy will be to study the convergence (near-stationarity or near-optimality) in terms of

the objective F θ which Algorithm 6.3 actually minimizes, and then translate that to a convergence result

on the original objective Fθ using the bound (6.10).

Convergence: Nonconvex Case. We start with the convergence analysis in the nonconvex case with no

regularization (i.e., λ = 0). Since F θ is nonsmooth and nonconvex, we state the convergence guarantee in

terms of the Moreau envelope of F θ (Hiriart-Urruty and Lemaréchal, 1996) following the idea of (Drusvy-

atskiy and Paquette, 2019; Davis and Drusvyatskiy, 2019). Given a parameter µ > 0, we define the Moreau

envelope of F θ as

Φ
µ
θ (w) = inf

v∈Rd

{
F θ(v) +

µ

2
∥v − w∥2

}
. (6.11)

The Moreau envelope satisfies a number of remarkable properties for µ > L (Drusvyatskiy and Paquette,

2019, Lemma 4.3). It is well-defined, and the infimum on the right-hand side admits a unique minimizer,

called the proximal point of w, and denoted proxF θ/µ
(w). Second, the Moreau envelope is continuously

differentiable with∇Φµθ (w) = µ(w−proxF θ/µ
(w)). Finally, the stationary points of Φ

µ
θ and F θ coincide.

Interestingly, the bound ∥∇Φµθ (w)∥ ≤ ε directly implies a near-stationarity on F θ , and hence the original
Fθ , in the following variational sense: the proximal point z = proxF θ/µ

(w) satisfies (Drusvyatskiy and

Paquette, 2019, Sec. 4.1):
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(a) v is close to w; that is, ∥v − w∥ ≤ ε/µ,
(b) v is nearly stationary on F θ; that is dist

(
0, ∂F θ(v)

)
≤ ε, where ∂F θ refers to the regular subdifferen-

tial, and,

(c) F θ is uniformly close to Fθ as per (6.10).
Thus, we state the convergence guarantee of our algorithm in the nonsmooth nonconvex case in terms of

the Moreau envelope Φ
µ
θ (although it never appeared in the algorithm).

Theorem 6.5. Let the number of rounds T be fixed and set µ = 2L. Denote∆F0 = Fθ(w
(0))−inf F θ . Let ŵ

denote a uniformly random sample from the sequence
(
w(0), · · · , w(T−1)

)
produced by Algorithm 6.3. Then,

there exists a learning rate γ depending on the number of rounds T and problem parameters τ, L,G,∆F0

such that

E
∥∥∇Φµθ (ŵ)

∥∥2 ≤
√

∆0LG2

T
+ (1− τ−1)1/3

(
∆0LG

T

)2/3

+
∆0L

T
.

Proof. Let v(t) = proxF θ/µ
(w(t)) be the proximal point of w(t)

. We expand out the recursion w(t+1) =

w(t) − γ∑i∈S π
(t)
i

∑τ−1
k=0∇Fi(w

(t)
i,k) to get

Φ
µ
θ (w

(t+1)) ≤ F θ(v(t)) +
µ

2

∥∥∥v(t) − w(t+1)
∥∥∥
2

= F θ(v
(t)) +

µ

2

∥∥∥v(t) − w(t)
∥∥∥
2
+ µγ

〈
v(t) − w(t),

∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

〉

+
µγ2

2

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥

2

= Φ
µ
θ (w

(t)) + T1 + T2 .
The term T1 which carries a O(γ)-coefficient controls the rate of convergence while T2 carries a O(γ2)-
coefficient and is a noise term. The latter can be controlled by making the learning rate small. We can

handle the first term T1 by leveraging a property of F θ known as weak convexity, meaning that adding a

quadratic makes it convex. In particular, F θ + (L/2)∥·∥2 is convex, so that

〈
v(t) − w(t),

∑

i∈S
π
(t)
i ∇Fi(w(t))

〉
≤ Fθ,S(v(t))− Fθ,S(w(t)) +

L

2

∥∥∥v(t) − w(t)
∥∥∥
2
.

Next, we take an expectation with respect to the sampling S of clients (i.e., conditioned onF (t) = σ(w(t)),
the σ-algebra generated by w(t)

). Since v(t) is independent of S (i.e., v(t) is F (t)
-measurable), we get F θ

on the right-hand side. Next, we use that v(t) minimizes the strongly convex right hand side of (6.11) to

get

Et

〈
v(t) − w(t),

∑

i∈S
π
(t)
i ∇Fi(w(t))

〉
≤ −(µ− L)

∥∥∥v(t) − w(t)
∥∥∥
2

= −µ− L
µ2

∥∥∥∇Φµθ (w(t))
∥∥∥
2
.

We plug in µ = 2L to get a bound on T1 in terms of

∥∥∇Φµθ (w(t))
∥∥2
. A standard argument to handle the

noise term T2 and telescoping the resulting inequality over t = 0, · · · , T − 1 completes the proof. The full

details are given in Section D.1.1.
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Convergence: Convex Case. We consider the convergence of function values in the case where each Fi
is convex. Owing to the non-smoothness of Fθ and F θ , we consider the following smoothed version of the

objective in (6.6) and the corresponding modification to Algorithm 6.3. First, define the Kullback-Leibler

(KL) divergence between π ∈ ∆|S|−1
and the uniform distribution (1/|S|, · · · , 1/|S|) over S ⊂ [n] as

DS(π) =
∑

i∈S
πi log(πi |S|) .

We simply write D(π) when S = [n]. Inspired by (Nesterov, 2005b; Beck and Teboulle, 2012; Devolder

et al., 2014), we define the smooth counterpart to (6.6) as

F νθ (w) = max
π∈Pθ

{
n∑

i=1

πiFi(w)− νD(π)

}
+
λ

2
∥w∥2 , (6.12)

where ν > 0 is a fixed smoothing parameter. We have that |F νθ (w) − Fθ(w)| ≤ 2ν log n. Finally, we
modify line 3 of Algorithm 6.3 to handle F νθ rather than Fθ as

π(t) = argmax
π∈Pθ,S

{∑

i∈S
πiFi(w

(t))− νDS(π)

}
. (6.13)

Theorem 6.6. Suppose each functionFi is convex and 0 < λ < L. Define a condition number κ = (L+λ)/λ
and fix a time horizon T ≥

√
2κ3. Consider the sequence (w(t))Tt=0 of iterates produced by the Algorithm 6.3

with line 3 replaced by (6.13). Define the averaged iterate

w(t) =

∑t
j=0 βjw

(i)

∑t
i=0 βj

, where βj =

(
1− γλτ

2

)−(1+j)

,

and w⋆ = argminw∈Rd Fθ(w). Then, there exist learning rate γ and smoothing parameter ν depending on
the number of communication rounds T as well as problem parameters τ,G, λ, L,∆0, θ,m, such that the
iterate w(T ) satisfies the bound

EFθ(w(T ))− Fθ(w⋆) ≤ λ∥w(0) − w⋆∥2 exp
(
− T√

2κ3

)
+
G2

λT
+
G2κ2

λT 2
+

B√
θm

,

where we hide absolute constants and factors polylogarithmic in T and problem parameters G,λ, κ.

Remark 6.7 (About the Rate). As soon as T ≳ κ3/2 (ignoring constants and polylog factors), we achieve the
optimal rate of 1/(λT ) rate of strongly convex stochastic optimization up to the bias B/

√
θm.

Further, the biasB/
√
θm due to partial participation can be controlled by choosing the cohort sizem large

enough. In the experiments of Section 6.7, we obtain meaningful numerical results when m is around 50 or
100 and θ around 1/2, indicating that the worst-case bound (6.10) can be pessimistic.

The proof is given in Appendix D.1.

6.4.2 Privacy Analysis

We now analyze the privacy and utility of Algorithm 6.2.

First, we recall the definition of zero-concentrated differential privacy (Bun and Steinke, 2016). A

randomized algorithmA satisfies (1/2)ε2-zero concentrated differential privacy if the Rényi α-divergence
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Dα(A(X)∥A(X ′)) ≤ αε2/2 for allα ∈ (0,∞) and all sequencesX,X ′
of inputs that differ by the addition

or removal of the data of one client. Intuitively, the addition or removal of the data contributed by one

client should not change the output distribution of the randomized algorithm by much, as measured by

the Rényi divergence. A smaller value of ε implies a stronger privacy guarantee. This notion of differential

privacy can be translated back-and-forth with the usual one, cf. (Canonne et al., 2020).

Error Criterion. We approximate the (1 − θ)-quantile of the n per-client losses ℓi = Fi(w) for i =
1, · · · , n by the quantile of a histogram h = (h1, · · · , hb) of client losses with b bins. We assume the

bin edges 0 = l0 < l1 < · · · < lb = B are given so that the entries of the histogram are given by

hj =
∑n

i=1 I(lj−1 ≤ ℓi < lj). The bin edge lj corresponding to index j ∈ [b] approximates the (1 − θ)-
quantile well if hj+1+· · ·+hb ≈ θ(h1+· · ·+hb). Wemeasure this error of approximation by the difference

between the two sides. Formally, we define the error Rθ(h, j) of approximating the (1 − θ)-quantile of
histogram h ∈ Rb with index j ∈ [b] by

Rθ(h, j) =

∣∣∣∣
hj+1 + · · ·+ hb
h1 + · · ·+ hb

− θ
∣∣∣∣ . (6.14)

We define the best achievable error R∗
θ(h) for estimating the (1 − θ)-quantile of histogram h and the

best-approximating index j∗(h) as

R∗
θ(h) = min

j∈[b]
Rθ(h, j) , and j∗θ (h) = argmin

j∈[b]
Rθ(h, j) , (6.15)

where we assume ties are broken in an arbitrary but deterministic manner — note that j∗θ (h) defined here

is identical to (6.7). Lastly, we define the quantile error ∆θ(h, ĥ) of estimating the quantile of h from that

of ĥ as

∆θ(ĥ, h) = Rθ
(
h, j∗θ (ĥ)

)
.

Essentially, if the index j∗θ (ĥ) computed from the estimate ĥ corresponds to the (1− θ′)-quantile of h, the
quantile error satisfies ∆θ(h, ĥ) = |θ − θ′|.

Privacy and Utility Analysis. We now analyze the differential privacy bound of Algorithm 6.2 as well

as the error in the quantile computation.

Theorem 6.8. Fix a δ > 0. Suppose that σ ≥ 1/2 and c > 0 are given, and and the modular arithmetic
is performed on baseM ≥ 2 + 2cn+ 2n

√
2σ2 log(4nb/δ). Then we have the following with probability at

least 1− δ:
(a) Algorithm 6.2 satisfies (1/2)ε2-concentrated DP with

ε = min

{√
c2

nσ2
+
ψb

2
,

c√
nσ

+ ψ
√
b

}
,

where ψ = 10
∑n−1

i=1 exp
(
− 2π2σ2i/(i+ 1)

)
≤ 10(n− 1) exp(−2π2σ2).

(b) The quantile error of histogram ĥ returned by Algorithm 6.2 is at most

∆θ(ĥ, h) ≤ R∗
θ(ĥ)

(
1 +

√
2σ2b

c2n
log

4

δ

)
+ (2− θ)

√
2σ2b

c2n
log

4

δ
,

where R∗
θ(ĥ) is the error in the estimation of (1− θ)-quantile of histogram ĥ.
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Let us interpret the result. The effective noise scale is σ/c. Since the dominant term of the privacy

error is ε ≈ c/(σ
√
n), we choose σ/c ≈ (ε

√
n)−1

, so that the algorithm satisfies (1/2)ε2-concentrated
DP. The role of c is to avoid degeneracy of the discrete Gaussian as σ → 0. In particular, the theorem

requires σ ≥ 1/2. The error resulting quantile error∆θ(ĥ, h) is (ignoring constants and log factors)

∆θ(ĥ, h) ≲ R∗
θ(ĥ)

(
1 +

√
b

εn

)
+ (1 + ρ)

√
b

εn
.

That is, the quantile error scales as

√
b/(εn). The total communication cost isO(bn logM) bits. If we take

σ = O(1) and c = O(ε
√
n), we requireM ≳ n3/2, so that the total communication cost is O(bn log n).

Proof. Define the event

Emod =
n⋂

i=1

b⋂

j=1

{
−M − 2

2n
≤ cxi,j + ξi,j ≤

M − 2

2n

}
. (6.16)

Note that under Emod, no modular wraparound occurs in the algorithm, i.e., x̃i = cxi + ξi and ĥ =∑n
i=1

x̃i
c =

∑n
i=1

(
xi +

ξi
c

)
. It follows from standard concentration arguments that Emod holds with

high probability under the given assumptions (details in Appendix D, Section D.2). For the rest of this

proof, we assume that it holds.

The analysis of the privacy follows from the sensitivity of the sumquery. Namely, letX = (x1, · · · , xn)
be a sequence and define A(X) =

∑n
i=1 cxi as the (rescaled) sum query. In our case, each xi is a canon-

ical basis vector since it is a local histogram constructed from a single scalar. Algorithm 6.2 adds discrete

Gaussian noise to the sum query to make it differentially private. That is, we get the randomized algorithm

A(X) = A(X)+
∑n

i=1 ξi. It was shown in (Kairouz et al., 2021a, Corollary 12) thatA(X) is approximately

distributed asNZ(A(X), nσ2), so the desired privacy guarantee follows from that of the discrete Gaussian

mechanism (Canonne et al., 2020). In particular, for two sequences X and X ′
differing by the addition or

removal of a single basis vector x′, we have that

Dα(A(X)∥A(X ′)) ≈ Dα(NZ(A(X), nσ2)∥NZ(A(X
′), nσ2)) =

αc2

2nσ2
.

A rigorous analysis of the error, following the recipe of (Kairouz et al., 2021a) leads to the first part of the

theorem; the details can be found in Section D.2.

For the second part, we analyze the quantile error. Define n̂ =
∑b

j=1 ĥj , as the analogue to n =∑b
j=1 hj and shorthand ρ = 1− θ. We bound the quantile error as

∆θ

(
ĥ, h

)
=

∣∣∣∣∣∣
1

n

j∗θ (ĥ)∑

j=1

hj − ρ

∣∣∣∣∣∣

≤ 1

n

∣∣∣∣∣∣

j∗θ (ĥ)∑

j=1

hj − ĥj

∣∣∣∣∣∣
+

1

n

∣∣∣∣∣∣

j∗θ (ĥ)∑

j=1

ĥj − n̂ρ

∣∣∣∣∣∣
+
ρ

n
|n̂− n|

≤ max
j′∈[n]

1

cn

∣∣∣∣∣∣

j′∑

j=1

n∑

i=1

ξi,j

∣∣∣∣∣∣
+

(
1 +
|n̂− n|
n

)
R∗
θ(ĥ) +

ρ

n
|n̂− n| .
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Let us define an event Esum under which we can bound each of the terms to get the desired bound:

Esum =



max
j∈[b]

∣∣∣
j∑

j′=1

n∑

i=1

ξk,j′
∣∣∣ ≤

√
2σ2nb log(4/δ)



 . (6.17)

Finally, it remains to bound the probability of Emod and Esum. This can be achieved using standard con-

centration arguments, which we defer to Section D.2.

By using a classical technique to answer range queries known as the hierarchical histogram method or

tree aggregation (Hay et al., 2010; Dwork et al., 2010; Chan et al., 2011; Smith et al., 2017a), the

√
b/εn bound

in Theorem 6.8 can modified to the asymptotically better bound of log22 b/εn at 2× the communication

cost. However, the former bound is smaller for b ≤ 6.56 × 104. In light of the usual settings of cross-

device federated learning (where the number of clients per round is of the order of 50 to 5000 (Kairouz

et al., 2021b)), we opt for the flat histogram method with the

√
b/εn bound.

6.5 Discussion

We discuss connections of∆-FL to risk measures and fair resource allocation.

Connection toRiskMeasures. The framework of riskmeasures in economics and finance formalizes the

notion of minimizing the worst-case cost over a set of distributions (Föllmer and Schied, 2002; Rockafellar

and Uryasev, 2013; Föllmer and Schied, 2016). The superquantile Sθ(·) is a special case of a risk measure.

The ∆-FL framework, which minimizes the superquantile of the per-client losses (Property 6.2), can be

extended to other risk measuresM by minimizing the objective

FM (w) := M(Z(w)) +
λ

2
∥w∥2 ,

where Z(w) is a discrete random variable which takes value Fi(w) with probability 1/n for i ∈ [n].
Another example of a risk measure is the entropic risk measure, which is defined for ν > 0 as Mν

ent(Z) =
E[exp(νZ)]/ν where ν ∈ R+ is a parameter. The entropic risk measure is well defined provided the

moment generating function E[exp(νZ)] exists, for instance, for sub-Gaussian Z . The analogue of ∆-FL

with the entropic risk minimizes

F νent(w) =
1

ν
log

(
1

n

n∑

i=1

exp
(
νFi(w)

)
)

+
λ

2
∥w∥2 .

This objective F νent(w) coincides with the one studied recently in (Li et al., 2021a) under the name Tilted-

ERM subsequent to the first presentation of this work (Laguel et al., 2020b). Finally, we note that F νent is
also related to the smoothed objective F νθ from (6.12) as the limit

F νent(w) = lim
θ→0

F νθ (w) ,
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Maximin Strategy forResourceAllocation. Wewould like to point out an interesting analogy between

distributional robustness and proportional fairness. The superquantile-based objective in Eq. (6.6) is a

maximin-type objective that is reminiscent of maximin objectives used in load balancing and network

scheduling (Kubiak, 2008; Stanczak et al., 2009; Pantelidou and Ephremides, 2011).

We can draw an analogy between the two worlds, federated learning and resource allocation resp., by

identifying errors to rates and clients to users. The maximin fair strategy to resource allocation seeks to

treat all users as fairly as possible by making their rates as large and as close as possible, so that no rate can

be increased without sacrificing other rates that are smaller or equal (Pantelidou and Ephremides, 2011).

Our superquantile-based ∆-FL framework builds off the maximin decision-theoretic foundation to

frame an objective that we optimizewith respect to parameters ofmodels, and this, iteratively, overmultiple

rounds of client-server communication, while preserving the privacy of each client.

This compositional nature of our problem, where we optimize a composition (in the mathematical

sense) of a maximin-type objective and a loss function and model predictions is a difference with resource

allocation in communication networks. Further explorations of the analogy are left for future work.

Model Family and Conformity Levels θ. Using a single global value of the conformity level θ for all
clients could fail to balance supporting clients with low conformity with fitting the population. On the

other hand, measuring the conformity of clients requires a transfer of user data, a violation of privacy.

To circumvent this issue, we use a similar idea to the one of (Li et al., 2020d) where a family of models is

trained simultaneously for various levels, and each test client can then tune its conformity.

6.6 Related Work

Federated learning was introduced by (McMahan et al., 2017) to handle distributed on-client learning; we

refer to the surveys (Kairouz et al., 2021b; Li et al., 2020a; Gafni et al., 2022) for broader context. A plethora

of recent extensions have also been proposed (Yurochkin et al., 2019; Sattler et al., 2020; Mills et al., 2020;

Wei et al., 2020; Mohammadi Amiri and Gündüz, 2020; Shlezinger et al., 2021; Jhunjhunwala et al., 2021;

Sery et al., 2021; Collins et al., 2021). Our approach of addressing the statistical heterogeneity by proposing

a new objective function, is broadly applicable in these settings.

Distributionally robust optimization (Ben-Tal et al., 2013), which aims to train models that perform

uniformlywell across all subgroups instead of just on average, haswitnessed a flurry of recent research (Lee

and Raginsky, 2018; Duchi and Namkoong, 2019; Kuhn et al., 2019). This approach is closely related to the

risk measures studied in economics and finance (Artzner et al., 1999; Rockafellar and Uryasev, 2000; Ben-

Tal and Teboulle, 2007; Föllmer and Schied, 2016). The recent works (Laguel et al., 2020a; Levy et al.,

2020a; Curi et al., 2020) study optimization algorithms for risk measures. More broadly, risk measures

have been successfully utilized in problems ranging from bandits (Sani et al., 2012; Cassel et al., 2018),

reinforcement learning (Chow et al., 2015; Tamar et al., 2015; Chow et al., 2017), and fairness in machine

learning (Williamson and Menon, 2019; Rezaei et al., 2021). The federated learning method here is based

on the superquantile (Rockafellar and Uryasev, 2002), a popular risk measure. We propose a stochastic

optimization algorithm adapted to the federated setting and prove the convergence.

Addressing statistical heterogeneity in federated learning has led to two lines of work. The first in-

cludes algorithmic advances to alleviate the effect of heterogeneity on convergence rates while still mini-

mizing the classical expectation-based objective function of empirical risk minimization. These techniques

include the use of proximal terms (Li et al., 2020b), control variates (Karimireddy et al., 2020) or augmenting

the server updates (Wang et al., 2020b; Reddi et al., 2021); we refer to the recent survey (Wang et al., 2021)
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Table 6.1: Dataset description and statistics.

Task Dataset #Classes Devices #Data per client

Median Max

Image Recognition EMNIST 62 1730 179 447

Sentiment Analysis Sent140 2 877 69 549

for details. More generally, the framework of local SGD has been used to study federated optimization al-

gorithms (Stich, 2019; Zhou and Cong, 2018; Haddadpour et al., 2019; Dieuleveut and Patel, 2019; Li et al.,

2020e; Khaled et al., 2020; Koloskova et al., 2020). Compared to these works which study federated opti-

mization algorithms in the smooth case, we tackle in our analysis the added challenge of nonsmoothness

of the superquantile-based objective in both the general nonconvex and strongly convex cases.

The second line of work addressing heterogeneity involves designing new objective functions by mod-

eling statistical heterogeneity and designing optimization algorithms. The AFL framework to minimize the

worst-case error across all training clients and associated generalization bounds were given in (Mohri et al.,

2019). The concurrent work of (Li et al., 2020d) proposes the q-FFL framework whose objective is inspired

by fair resource allocation to minimize the Lp norm of the per-client losses. Several related works were

also published following the initial presentation of the current work (Laguel et al., 2020b). A federated

optimization algorithm for AFL was proposed and its convergence was analyzed in (Deng et al., 2020).

Distributional robustness to affine shifts in the data was considered in (Reisizadeh et al., 2020) along with

convergence guarantees. Finally, a classical risk measure, namely the entropic risk measure, was consid-

ered in (Li et al., 2021a). We note that no convergence guarantees are currently known for the stochastic

optimization algorithms of (Li et al., 2020d).

6.7 Experiments

In this section, we demonstrate the effectiveness of∆-FL in handling heterogeneity in federated learning.

Our experiments were implemented in Python using automatic differentiation provided by PyTorch while

the data was preprocessed using LEAF (Caldas et al., 2018). The code to reproduce our experiments can be

found online.
3
We start by describing the datasets, tasks, andmodels in Section 6.7.1. We present numerical

comparisons to several recent works – we list them in Section 6.7.2 and present the experimental results

in Section 6.7.3. Finally, we demonstrate that ∆-FL provides the most favorable tradeoff between average

error and the error on nonconforming clients in Section 6.7.4. Full details regarding the experiments as

well as additional results are provided in the supplementary material.

6.7.1 Datasets, Tasks and Models

We consider two learning tasks. The dataset and task statistics are summarized in Table 6.1.

(a) Character Recognition: We use the EMNIST dataset (Cohen et al., 2017), where the input x is a 28× 28
grayscale image of a handwritten character and the output y is its label (0-9, a-z, A-Z). Each client is a

writer of the character x. The weightαi assigned to author i is the number of characters written by this

3https://github.com/krishnap25/simplicial-fl
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Table 6.2: 90th percentile of the distribution of misclassification error (in %) on the test devices. Each

entry is the mean over five random seeds while the standard deviation is reported in the subscript. The

boldfaced/highlighted entries denote the smallest value for each dataset-model pair.

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95

FedAvg-Sub 50.280.77 27.570.81 46.600.38 46.943.84

FedProx 49.150.74 27.011.86 46.830.54 49.864.07

q-FFL 49.900.58 28.020.80 46.390.40 48.664.68

Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27

AFL 51.620.28 45.081.00 47.520.32 57.781.19

∆-FL, θ = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

∆-FL, θ = 0.5 48.440.38 23.690.94 46.640.41 50.488.24

∆-FL, θ = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

author. We train both a linear model and a convolutional neural network architecture (ConvNet). The

ConvNet consists of two 5×5 convolutional layers with max-pooling followed by one fully connected

layer. Outputs are vectors of scores with respect to each of the 62 classes. The multinomial logistic

loss is used to train both models.

(b) Sentiment Analysis: We use the Sent140 dataset (Go et al., 2009) where the input x is a tweet and the

output y = ±1 is its sentiment. Each client is a distinct Twitter user. The weight αi assigned to user

i is the number of tweets published by this user. We train both a logistic regression and a Long-Short

Term Memory neural network architecture (LSTM). The LSTM is built on the GloVe embeddings of

the words of the tweet (Hochreiter and Schmidhuber, 1997). The hidden dimension of the LSTM is the

same as the embedding dimension, i.e., 50. We refer to the latter as “RNN”. The loss used to train both

models is the binary logistic loss.

6.7.2 Algorithms and Hyperparameters

We list here the recent works we perform numerical comparisons with and discuss their hyperparameters.

Algorithms. As discussed in Section 6.2, a federated learning method is characterized by the objective

function as well as the federated optimization algorithm. We compare to the following:

(a) Vanilla FL objective: We consider two methods which attempt to minimize the vanilla FL objective:

FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020b). The latter augments FedAvg with a

proximal term for more stable optimization.

(b) Heterogeneity-aware objectives: We consider Tilted-ERM (Li et al., 2021a), which is the analogue of

∆-FL with the entropic risk measure (cf. Section 6.5) and AFL (Mohri et al., 2019), whose objective is

obtained as the limit limθ→0 Fθ(w) of the ∆-FL objective. We also consider q-FFL (Li et al., 2020d),

which raises the per-client loss Fi to the (q + 1)th power, for some q > 0. We optimize q-FFL and

Tilted-ERM with the federated optimization algorithms proposed in their respective papers. We use
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Table 6.3: Mean of the distribution of misclassification error (in%) on the test devices. Each entry is the

mean over five random seeds while the standard deviation is reported in the subscript. The boldfaced/high-

lighted entries denote the smallest value for each dataset-model pair.

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44

FedAvg-Sub 34.510.47 16.230.23 34.470.03 29.860.46

FedProx 33.820.30 16.020.54 34.740.31 30.200.48

q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25

AFL 39.330.27 33.010.37 35.980.08 37.740.65

∆-FL, θ = 0.8 34.490.26 16.090.40 34.410.22 30.310.33

∆-FL, θ = 0.5 35.020.20 15.490.30 35.290.25 33.592.44

∆-FL, θ = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81

q-FFL with q = 10 in place of AFL, as it was found to have more stable convergence with similar

performance.

We compare one more baseline for the vanilla FL objective. Note that ∆-FL the weight π(t) (see line 3

of Algorithm 6.3) is sparse, i.e., it is non-zero for only some of the m selected clients, cf. Proposition 6.3.

This is equivalent to a fewer number of effective clients per round, which is θm on average. We use as

baseline FedAvg with θm clients per round, wherem is the number of clients per round in ∆-FL; we call

it FedAvg-Sub.

Hyperparameters. We fix the number of clients per round to be m = 100 for each dataset-model pair

with the exception of Sent140-RNN, for which we use m = 50. We fixed an iteration budget for each

dataset during which FedAvg converged. We tuned a learning rate schedule using a grid search to find the

smallest terminal loss averaged over training clients for FedAvg. The same iteration budget and learning

rate schedule were used for all other methods including∆-FL. Each method, except FedAvg-Sub, selected

m clients per round for training, as specified earlier. The regularization parameter λ, and the proximal

weight of FedProx were tuned to minimize the 90th percentile of the misclassification error on a held-out

subset of training clients. We run q-FFL for q ∈ {10−3, 10−2, . . . , 10} and report q with the smallest

90th percentile of misclassification error on test clients. We run Tilted-ERM with a temperature parameter

ν ∈ {0.1, 0.5, 1, 5, 10, 50, 100, 200} and also report ν with the smallest 90th percentile of misclassification

error on test clients. We optimize∆-FL with Algorithm 6.3 for conformity θ ∈ {0.8, 0.5, 0.1}.

6.7.3 Experimental Results

Wemeasure in Table 6.2 the 90th percentile of themisclassification error across the test clients, as ameasure

of the right tail of the per-client performance. We alsomeasure in Table 6.3 themean error, whichmeasures

the average test performance. Our main findings are summarized below.
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Figure 6.5: Histogram of misclassification error on test clients for the EMNIST-ConvNet and Sent140-RNN.

∆-FL consistently achieves the smallest 90th percentile error. ∆-FL achieves a 3.3% absolute (12%
relative) improvement over any vanilla FL objective on EMNIST-ConvNet. Among the heterogeneity aware

objectives, ∆-FL achieves 1.8% improvement over the next best objective, which is Tilted-ERM. We note

that q-FFL marginally outperforms∆-FL on Sent140-Linear, but the difference 0.05% is much smaller than

the standard deviation across runs.

∆-FL is competitive at multiple values of θ. For EMNIST-ConvNet, ∆-FL with θ ∈ {0.5, 0.8} is
better in 90th percentile error than all other methods we compare to, and ∆-FL with θ = 0.1 is tied

with Tilted− ERM , the next best method. We also empirically confirm that ∆-FL interpolates between

FedAvg (θ → 1) and AFL (θ → 0).

∆-FL works best for larger values of conformity levels. We observe that ∆-FL with θ = 0.1 is

unstable for Sent140-RNN. This is consistent with Theorem 6.6, which requiresm to be much larger than

1/θ (cf. Remark 6.7). Indeed, this can be explained by ∆-FL’s sparse re-weighting, which only gives non-

zero weights to θm = 5 clients on average in each round (cf. Remark 6.4).

∆-FL is yet competitive in terms of average error. Perhaps surprisingly, ∆-FL actually gets the best

test error performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test dis-

tribution is shifted relative to the average training distribution pα. In the other cases, we find that the
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reduction in mean error is small relative to the gains in the 90th percentile error compared to Vanilla FL

methods.

Minimizing superquantile loss over all clients performs better thanminimizing worst error over

all clients. Specifically, AFL which aims to minimize the worst error among all clients, as well as other

objectives which approximate it (∆-FL with θ → 0, q-FFL with q → ∞, Tilted-ERM with ν → 0) tend to

achieve poor performance. We find that AFL achieves the highest error both in terms of 90th percentile and
the mean. ∆-FL offers a more nuanced and more effective approach via the constraint set conf(pπ) ≥ θ
than the straight pessimistic approach minimizing the worst error among all clients.

6.7.4 Exploring the Trade-off Between Average and Tail Error

We visualize in Figures 6.5 and 6.6 the distribution of test errors to explore the trade-off various methods

provide between the average error and the error on nonconforming clients.

∆-FL yields improved prediction on non-conforming clients. This can be observed from the his-

togram of ∆-FL in Figure 6.5, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that the

vanilla FL objective of FedAvg sacrifices performance on the nonconforming clients. Tilted-ERM does

improve over FedAvg in this regard, but ∆-FL has a thinner right tail than Tilted-ERM, showing better

handling of heterogeneity.

∆-FL yields improved prediction on data-poor clients. We observe in Figure 6.6 that Tilted-ERM and

q-FFL mainly improve the performance on data-rich clients, that is clients with lots of data. On the other

hand, ∆-FL gives a greater reduction in misclassification error on data-poor clients, that is clients with

little data (< 200 examples per client).

6.8 Discussion and Conclusion

We present the∆-FL framework that operates with heterogeneous clients while still guaranteeing a mini-

mal level of predictive performance to each individual client. We model the similarity between client data

distributions using the conformity, which is a scalar summary of how closely a client conforms to the pop-

ulation. ∆-FL relies on a superquantile-based objective, parameterized by the conformity, to minimize the

tail statistics of the prediction errors on the client data distributions. We present a federated optimization

algorithm compatible with secure aggregation, which interleaves client reweighting steps with federated

averaging steps. We derive finite time convergence guarantees that cover both convex and non-convex

settings. Experimental results on federated learning benchmarks demonstrate superior performance of

∆-FL over state-of-the-art baselines on the upper quantiles of the error on test clients, with particular

improvements on data-poor clients, while being competitive on the mean error.

The predominant approach in federated learning is to assume a set of fixed clients. As the number of

smartphone users increase, an interesting scenario is one where the client pool grows dynamically over

time. In particular, in the context of this chapter, one could consider new training users 1, 2, · · · who
arrive in an online fashion and their training distributions p1, p2, · · · are revealed incrementally over time.

Moreover, it is also interesting to consider a scenario where the incremental population trend distribution

(1/t)
∑t

i=1 pi drifts over time t. In this case, the goal is to track the best tail error minimizer over time,

while minimizing the communication cost.
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Figure 6.6: Scatter plots of misclassification error on test clients against its data size for the EMNIST-ConvNet.

Another avenue for future research is to consider the worst case over different sets of distributions in

(6.6), rather than a conformity constraint. Potential examples include theχ2
-divergence 1/(2n)

∑n
i=1(nπi−

1)2 or the ℓ1 norm ∥π− 1/n∥1. The key challenge in this case is to implement this algorithm with secure

aggregation and differential privacy.

While personalization in federated learning has recently been analyzed for its ability to better handle

heterogeneity (Agarwal et al., 2020; Dinh et al., 2020; Pillutla et al., 2022b), a complete analysis remains

elusive. In the supervised learning setting, the data generating distribution pi on client i can decomposed

as pi = px,i ⊗ py|x,i, where px,i is the marginal distribution over the input, and py|x,i is the conditional
distribution over the output given the input. The exact role of heterogeneity in each of these terms on the

performance of federated learning algorithms remains an open problem. Intuitively, large heterogeneity in

the conditionals py|x,i requires personalization, but it is unclear the extent to which personalization helps

in the case when most of the heterogeneity is in px,i.
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Chapter 7

Conclusion

In this dissertation, we addressed some aspects of the robustness of machine learning models to hetero-

geneous environments across three recent revolutions in machine learning — the move to differentiable

programming, the explosion of scale, and federated learning. There are several promising directions for

future work building upon the material developed in this dissertation.

In Chapter 2, we studied how to incorporate combinatorial algorithms into differentiable programming

pipelines in the context of structured prediction. A promising direction for future research is to incorpo-

rate logical constraints and symbolic reasoning into deep networks to augment their reasoning skills.

While reductions of reasoning to combinatorial algorithms have been studied (Sun, 1994; Dechter, 1999),

incorporating them into enormous language models remains a challenge. With a shift from task-specific

training/finetuning to prompting (e.g., Liu et al., 2021b), designing test-time interventions to incorporate

symbolic logic and reasoning into decoding algorithms is crucial, so that the resulting neurosymbolic ap-

proaches are compatible with enormous pretrained models such as GPT-3. This approach can also be

generalized by basing the decisions of such a decoding algorithm on trainable parameters. These param-

eters can be trained based on data to demonstrate certain desired behavior, while the enormous language

model is treated as fixed. Applications include training a retrieval model to augment a text generator. Fi-

nally, learning the right prompt to leverage the in-context learning of enormous models such as GPT-3 is

a promising direction for future work.

In Chapter 3, we studied the trade-offs between incremental linearization algorithms and stochastic

subgradient methods. We highlight two prominent directions for future work. First-order gradient-based

optimization algorithms have been shown to implicitly bias the solution of the optimization (e.g., Soudry

et al., 2018; Mei et al., 2018, and follow ups). An interesting direction for future work is to understand

what, if any, implicit regularization effect is offered by linearization-based approaches such as the Gauss-

Newton or prox-linear methods. Second, there is a need to bridge the growing divide between theory and

practice in the optimization of deep networks. Prevailing theory cannot explain, for instance, the practical

usefulness of algorithms such as Adam, or the commonly used learning rate decay schemes. Identifying a

subclass of nonconvex functions, as well as assumptions on the structure of the data, for which theoretical

results (lower and upper bounds on the rates of convergence) closely mirror practical observations can be

greatly impactful. For example, the ubiquity of transformer-based models motivates the study of a single

self-attention layer, which resembles classical nonparametric estimators such the k-nearest neighbor or
Nadaraya-Watson kernel regression estimator, where the metric or kernel function depends on trainable

parameters. It would be interesting to study such a model to explain why empirically useful practices such

as using Adam or other adaptive optimizers rather than plain SGD, or starting with a smaller learning rate
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and increasing it (learning rate warm-up) are beneficial.

In Chapter 4, we present MAUVE, a measure of a gap between neural text and human text. MAUVE,

in directly comparing two distributions of text, offers a fundamentally different paradigm from typical

reference-based measures prevalent in natural language processing. A challenging question in this context

is to extend MAUVE to measure the gap between conditional distributions. This would enable automatic

evaluation of dialog generation systems in a multi-round setting, a notoriously hard problem (Liu et al.,

2016; Ghandeharioun et al., 2019). An orthogonal direction of significant practical interest is to reduce

MAUVE’s requirement of samples from the human distribution. This includes reference-free versions of

MAUVE that do not require any samples from the human distribution. At a more fundamental level, the

reason why decoding algorithms are required to generate text from autoregressive sequence models is

not well understood. In particular, a precise and rigorous explanation of how errors accumulate when

sampling text from a language model is lacking. In addition, a theoretical model that could explain how

decoding algorithms mitigate this issue could be hugely influential in the design of better models and

decoding algorithms.

In Chapter 5, we studied how to make the aggregation of federated learning robust to corrupted up-

dates, followed by Chapter 6, where we presented a superquantile approach to guarantee better perfor-

mance on non-conforming clients in federated learning. A more precise understanding of both these prob-

lem settings requires a careful analysis of federated averaging-type algorithms to disentangle the effect

of different types of heterogeneity — that of the the marginal distribution of the inputs, the conditional

distribution of the output given the input and the number of samples per client. A natural approach to

this problem is to assume that the client distributions are sampled i.i.d. from a meta-distribution, where
heterogeneity is characterized as a measure of the spread of the meta-distribution. Measures such as

MAUVE from Chapter 4 can potentially be used to quantify the data heterogeneity. Secondly, evaluation

is integral to learning, and the lack of enough data per client can make federated evaluation challenging.

Techniques such as smoothed estimation methods (Good, 1953) offer a promising approach in this setting.

More broadly, fundamental data science tasks such as hypothesis testing and causal inference remain open

problems in the field of federated analytics and experimentation. Designing communication-efficient and

privacy-preserving routines for this setting is an interesting direction for future work.
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Appendix A

Casimir: Full Proofs

This chapter contains details and proofs from Chapters 2 and 3. The outline is as follows.

• Section A.1: We review the properties of smoothing and prove the local smoothness bound of ℓ22
smoothing.

• Section A.2: We give details of inference oracles with branch and bound search.

• Section A.3: We prove the smoothness of differentiable dynamic programming.

• Section A.4: We give the analytical form of SPIGOT (Peng et al., 2018) in our setting.

• Section A.5: We give the convergence proofs of Casimir from Chapter 2.

• Section A.6: We give the convergence proofs of the prox-linear method with incremental gradient

inner loops, from Chapter 3.

• Section A.7: We give a self-contained proof of the local quadratic convergence of the exact prox-

linear method (Proposition 3.1 from Chapter 3).

A.1 Smoothing Basics

Here, we concretely define the dual form of the infimal convolution smoothing used throughout this

work (Beck and Teboulle, 2012; Nesterov, 2005b), and recall some of its properties.

Definition A.1. For a given closed, proper, convex function h : Rm → R∪ {+∞}, a smoothing function

ω : domh∗ → Rwhich is 1-strongly convex with respect to ∥ ·∥α (for α ∈ {1, 2}), and a parameter µ > 0,
define

hµω(z) = max
u∈domh∗

{⟨u, z⟩ − h∗(u)− µω(u)} .

as the smoothing of h by µω.

We now show how the parameter µ controls both the approximation error and the level of the smooth-

ing (cf. Beck and Teboulle, 2012, Thm. 4.1, Lemma 4.2).
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Property A.2. Consider the setting of Def. A.1. The smoothing hµω is continuously differentiable and its
gradient, given by

∇hµω(z) = argmax
u∈domh∗

{⟨u, z⟩ − h∗(u)− µω(u)}

is 1/µ-Lipschitz with respect to ∥ · ∥∗α. Moreover, letting hµω ≡ h for µ = 0, the smoothing satisfies, for all
µ1 ≥ µ2 ≥ 0,

(µ1 − µ2) inf
u∈domh∗

ω(u) ≤ hµ2ω(z)− hµ1ω(z) ≤ (µ1 − µ2) sup
u∈domh∗

ω(u) .

Proof. The first part showing the gradient and smoothness is (cf. Beck and Teboulle, 2012, Thm. 4.1). The

second part regarding is approximation error is a refinement of Lemma 4.2 of Beck and Teboulle (2012),

which proves the following statement for the special case of µ2 = 0. We successively deduce,

hµ1ω(z) = sup
u∈domh∗

{⟨u, z⟩ − h∗(u)− µ1ω(u)}

= sup
u∈domh∗

{⟨u, z⟩ − h∗(u)− µ2ω(u)− (µ1 − µ2)ω(u)}

≥ sup
u∈domh∗

{
⟨u, z⟩ − h∗(u)− µ2ω(u) + inf

u′∈domh∗

{
−(µ1 − µ2)ω(u′)}

}}

= hµ2ω(z)− (µ1 − µ2) sup
u′∈domh∗

ω(u′) ,

since µ1 − µ2 ≥ 0. The other side follows using instead that

−(µ1 − µ2)ω(u) ≤ sup
u′∈domh∗

{
−(µ1 − µ2)ω(u′)}

}
.

Next, we recall the following equivalent definition of a matrix norm defined in Eq. (2.9).

∥A∥β,α = sup
y ̸=0

∥A⊤y∥∗β
∥y∥α

= sup
x̸=0

∥Ax∥∗α
∥x∥β

= ∥A⊤∥α,β . (A.1)

Now, we consider the smoothness of a composition of a smooth function with an affine map.

LemmaA.3. Suppose h : Rm → R isL-smooth with respect to ∥·∥∗α. Then, for anyA ∈ Rm×d and b ∈ Rm,
we have that the map w 7→ h(Aw + b) is

(
L∥A⊤∥2α,β

)
-smooth with respect to ∥ · ∥β .

We now give a proof of the tight local smoothness bound of Lemma 2.4.

Lemma 2.4. Let h(z) = maxj∈[m] zj be the max function and let hµ ≡ hµℓ22 denote its Euclidean smoothing.
Let gj : Rd → R be Bj-Lipschitz and Lj-smooth w.r.t. ∥ · ∥2 for j ∈ [m] and define g = (g1, · · · , gm) :
Rd → Rm. Further, for any w ∈ Rd, let

S(w) = {j ∈ [m] : [∇hµ(g(w))]j ̸= 0} =
{
j ∈ [m] : [proj∆m−1(g(w)/µ)]j

}
.

Then, we have for any w,w′ ∈ Rd that

∥∇(hµ ◦ g)(w)−∇(hµ ◦ g)(w′)∥2 ≤



( ∑

j∈S(w)∪S(w′)

B2
j

)1/2
+ max
j∈[m]

Lj


 ∥w −w′∥2

≤
(∣∣S(w) ∪ S(w′)

∣∣ max
j∈m

Bj +max
j∈m

Lj

)
∥w −w′∥2 .
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As a consequence, hµ ◦ g is
(

1
µ

∑m
j=1B

2
j +maxj∈[m] Lj

)
-smooth w.r.t. ∥ · ∥2 over Rd.

Proof. Fix w,w′ ∈ Rd and let f := hµ ◦ g. By the chain rule, we have ∇f(w) = ∇g(w)⊤∇hµ(g(w)),
where ∇g(w) ∈ Rm×d

is the Jacobian of g. We have by the triangle inequality,

∥∇f(w)−∇f(w′)∥2
= ∥∇g(w)⊤

(
∇hµ(g(w))−∇hµ(g(w′))

)
+
(
∇g(w)−∇g(w′)

)⊤∇hµ(g(w′))∥2
≤ ∥∇g(w)⊤

(
∇hµ(g(w))−∇hµ(g(w′))

)
∥2 + ∥

(
∇g(w)−∇g(w′)

)⊤∇hµ(g(w′))∥2
(A.1)

≤ ∥A(w,w′)∥2,2∥∇hµ(g(w))−∇hµ(g(w′))∥2 + ∥
(
∇g(w)−∇g(w′)

)⊤∇hµ(g(w′))∥2 ,

where A(w,w′) ∈ Rm×d
is such that its jth row if ∇gj(w) if j ∈ S(w) ∪ S(w′), and is zero otherwise.

We look at each term in turn. Define shorthand S ≡ S(w) ∪ S(w′). Using the triangle inequality of the

fact that gj is Bj-Lipschitz, we get,

∥A(w,w′)∥2,2
(A.1)

= max
∥u∥2≤1

∥A(w,w′)⊤u∥2 = max
∥u∥2≤1

∥∥∥∥∥∥
∑

j∈S
uj∇gj(w)

∥∥∥∥∥∥
2

≤ max
∥u∥2≤1

∑

j∈S
|uj |∥∇gj(w)∥2 ≤ max

∥u∥2≤1

∑

j∈S
|uj |Bj =

√∑

j∈S
B2
j .

Recall∇hµ(u) = proj∆m−1(u/µ). For S ⊂ [m], let gS(w) ∈ Rm be the restriction to g to S, i.e.,

[gS(w)]j = gj(w) I(j ∈ S) .
Using the firm nonexpansiveness of the projection operator, we get for S = S(w) ∪ S(w′) that

∥∇hµ(g(w))−∇hµ(g(w′))∥22 ≤ ⟨∇hµ(g(w))−∇hµ(g(w′)), g(w)/µ− g(w′)/µ⟩
= ⟨∇hµ(g(w))−∇hµ(g(w′)), gS(w)/µ− gS(w

′)/µ⟩

≤ 1

µ
∥∇hµ(g(w))−∇hµ(g(w′))∥2∥gS(w)− gS(w

′)∥2 .

From here, the fact that fj is Bj-Lipschitz gives

∥∇hµ(g(w))−∇hµ(g(w′))∥2 =
1

µ


∑

j∈S

(
gj(w)− gj(w′)

)2



1/2

≤ 1

µ


∑

j∈S
B2
j




1/2

∥w −w′∥2 .

Finally, using the fact that∇hµ(z) ∈ ∆m−1
together with the fact that the maximum of a convex function

over a compact polytope occurs at one of the vertices, we get,

∥
(
∇g(w)−∇g(w′)

)⊤∇hµ(g(w′))∥2 ≤ max
u∈∆m−1

∥
(
∇g(w)−∇g(w′)

)⊤
u∥2

≤ max
j∈[m]

∥∇gj(w)−∇gj(w′)∥2 ≤ max
j∈[m]

Lj∥w −w′∥2 .

Putting these together completes the proof.
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Algorithm A.1. Top-K oracle from top-K outputs

Input: Augmented score function ψ, w ∈ Rd, µ > 0 YK = {y1, · · · ,yK} such that yk =

max
(k)
y∈Y ψ(y;w).

1: Populate z ∈ RK so that zk =
1
µψ(yk;w).

2: Compute u∗ = argminu∈∆K−1 ∥u− z∥22 by a projection on the simplex.

3: return s =
∑K

k=1 u
∗
k ψ(yk;w) and v =

∑K
k=1 u

∗
k∇wψ(yk;w).

Algorithm A.2. Top-K best-first branch and bound search

Input: Augmented score functionψ(·, ·;w), integerK > 0, search spaceY , upper bound ψ̂, split strategy.
1: Initialization: Initialize priority queue with single entry Y with priority ψ̂(Y;w), and solution set S

as the empty list.

2: while |S| < K do

3: Pop Ŷ from the priority queue.

4: if Ŷ = {ŷ} is a singleton then

5: Append (ŷ, ψ(ŷ;w)) to S.
6: else

7: Y1,Y2 ← split(Ŷ).
8: Add Y1 with priority ψ̂(Y1;w) and Y2 with priority ψ̂(Y2;w) to the priority queue.

9: return S .

Shown in Algorithm A.1 is the procedure to compute the outputs of the top-K oracle from theK best

scoring outputs obtained, for instance, from the top-K max-product algorithm.

We now state a lemma about a Euclidean projection on the probability simplex. See (e.g., Held et al.,

1974) for a proof.

LemmaA.4. Fix some z ∈ Rm. The projectionu∗ = argminu∈∆m−1 ∥u−z∥22 satisfies u∗i = (zi/µ+ρ
∗)+,

where ρ∗ is the unique solution of ρ in the equation

m∑

i=1

(zi + ρ)+ = 1 .

A.2 Inference Oracles with Branch and Bound Search

We review the branch and bound algorithm, as well as its top-K extension. Algorithm A.2 with the input

K = 1 is the standard best-first branch and bound search algorithm. Effectively, the top-K oracle is

implemented by simply continuing the search procedure until K outputs have been produced - compare

Algorithm A.2 with inputsK = 1 andK > 1. We now prove the correctness guarantee.

Proposition 2.15. Consider an augmented score function ψ(·, ·,w), an integer K > 0 and a smoothing
parameter µ > 0. Suppose the upper bound function ψ̂(·, ·;w) : X × 2Y → R satisfies the following
properties:

(a) ψ̂(Ŷ;w) is finite for every Ŷ ⊆ Y ,

(b) ψ̂(Ŷ;w) ≥ max
y∈Ŷ ψ(y;w) for all Ŷ ⊆ Y , and,
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(c) ψ̂({y};w) = ψ(y;w) for every y ∈ Y .

Then, we have the following:

(i) Algorithm A.2 withK = 1 is a valid implementation of the max oracle.

(ii) Algorithm A.2 followed by a projection onto the simplex (Algorithm A.1 in Appendix A.1) is a valid im-
plementation of the top-K oracle.

Proof. Suppose at some point during the execution of the algorithm, we have a Ŷ = {ŷ} on Line 4 and

that |S| = k for some 0 ≤ k < K . From the properties of the quality upper bound ψ̂, and using the fact

that {ŷ} had the highest priority in the priority queue (denoted by (∗)), we get,

ψ(ŷ;w) = ψ̂({ŷ};w)

(∗)
≥ max

Y ∈P
ψ̂(Y ;w)

≥ max
Y ∈P

max
y∈Y

ψ(y;w)

(#)
= max

y∈Y−S
ψ(y;w) ,

where the equality (#) followed from the fact that any y ∈ Y exits the priority queue only if it is added

to S . This shows that if a ŷ is added to S , it has a score that is no less than that of any y ∈ Y −S . In other

words, Algorithm A.2 returns the top-K highest scoring y’s.

A.3 Smoothness of Related Methods

Here, we give the proof of Proposition 2.12, an analysis of differentiable dynamic programming.

Proposition 2.12. At a smoothing parameter µ > 0, we have that fDP,µ as defined in (2.22) is 1-Lipschitz
globally. Further, it satisfies,

∥∇fDP,µ(w)−∇fDP,µ(w
′)∥2 ≤

1

µ

N∑

i=1

|P ′
i (w) ∪ P ′

i (w
′)| ∥w −w′∥2 ,

where P ′
i (w) denotes the “active” parents of node i at w, i.e.,

P ′
i (w) =

{
j ∈ Pi : [u

(i)
⋆ (w)]j ̸= 0

}
,

where u(i)
⋆ (w) denotes the argmax in the definition of fi(w) in (2.22). In particular, fDP,µ is

∑N
i=1 |Pi|/µ-

smooth w.r.t. ∥ · ∥2 globally.

Proof. Fix w,w′ ∈ Rd. Let w≤i =
(
wj,i′

)
i′∈[i],j∈Pi′

denote the portion of w corresponding to the scores

of the of edges in the subgraph induced by nodes [n]. We use shorthand P ′
i = P ′

i (w) ∪ P ′
i (w

′) for the
active parents of node i.
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Part 1. We first show that

|fi,µ(w)− fi,µ(w′)| ≤ Bi∥w≤i −w′
≤i∥2 , ∥fi,µ(w)− fi,µ(w′)∥2 ≤ Li∥w≤i −w′

≤i∥2 ,
where the constants Bi, Li satisfy the recursion B1 = 0 = L1 and for i ≥ 2,

Bi ≤ 1 , and, Li ≤
1

µ
|P ′
i |+max

j∈Pi

Lj .

For the Lipschitz constant of fi, we prove it inductively. The base case it obviously true since node 1 has

no parents. Suppose it is true for all j ≤ i− 1. We have,

fi,µ(w)− fi,µ(w′) ≤ max
u∈∆|Pi|−1

{〈
u,
(
fj,µ(w) + wj,i − fj,µ(w′)− w′

j,i

)
j∈Pi

〉}

= max
j∈Pi

fj,µ(w) + wj,i − fj,µ(w′)− w′
j,i

≤ max
j∈Pi

Bj∥w≤j −w′
≤j∥2 + |wji − w′

ji| .

Repeating the same argument with fi,µ(w) − fi,µ(w′) and noting that the edges defining w≤j and wj,i
are disjoint gives Bi ≤ 1 ∨ maxj∈Pi Bj . This readily gives the bound Bi ≤ 1 for all i ∈ [N ]. For the
smoothness, we invoke Lemma 2.4 to get

Li ≤
1

µ

∑

j∈P ′
i

B2
j +max

j∈Pi

Lj ≤
1

µ
|P ′
i |+max

j∈Pi

Lj .

Part 2. We now prove by induction again that the established recurrence gives Li ≤
∑i

j=1 |P ′
j |/µ. The

base case is true since the first node has no parents. Suppose it is true for nodes [i− 1]. We then deduce,

Li ≤
1

µ
|P ′
i |+max

j∈Pi

Lj ≤
1

µ
|P ′
i |+max

j∈Pi

j∑

j′=1

1

µ
|P ′
j′ |

≤ 1

µ
|P ′
i |+

i−1∑

j=1

1

µ
|P ′
j | =

i∑

j=1

1

µ
|P ′
j | .

A.4 SPIGOT: Analytical Form

Here, we write out the analytical form of SPIGOT (Peng et al., 2018) for the minimization of the task

loss (2.6).

For simplicity, fix and example (x,y) ∈ X×Y and consider the associated loss ℓ
(
y, argmaxy∈Y ϕ(x,y; ·)

)
.

This loss is piecewise constant. Using a parameter ν > 0, SPIGOT proposes the following surrogate gra-

dient for this loss:

∇̃fSpi(w;x,y) =
∑

y∈Y
uy∇wϕ(x,y;w) , where, (A.2)

u =
1

ν

(
ey∗(x;w) − proj∆m−1

(
ey∗(x;w) − (ℓ(y,y))y∈Y

))
. (A.3)

We have the following analytical form for the gradient estimator of SPIGOT.
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Proposition A.5. Fix ν > 0 and an input-output pair (x,y). Suppose the task loss ℓ satisfies ℓ(y,y′) ≥ 0
for all y,y′ ∈ Y with equality iff y = y′. Denote y⋆ = y∗(x;w). Define the set Ys =

{
y ∈ Y \ {y⋆} :

ℓ(y,y) ≤ s
}
for a parameter s > 0. Then, we have the following:

(a) If y⋆ = y, then ∇̃fSpi(w) = 0.

(b) If y⋆ ̸= y, then there exists some scalars c, l > 0, and weights βy ≥ 0 for y ∈ Yl with
∑

y∈Yl
βy = 1

such that

∇̃fSpi(w) = c


∇wϕ(x,y

⋆;w)−
∑

y∈Yl

βy∇wϕ(x,y;w)


 .

Furthermore, the weights βy satisfy the following order-preserving property:

ℓ(y,y) < ℓ(y,y′) ⇐⇒ βy > βy′ ,

with βy = βy′ iff ℓ(y,y) = ℓ(y,y′).

(c) In particular, if ν < 1 and ℓ(y,y⋆) < 1/ν + 1, then

∇̃fSpi(w) =
ℓ(y,y⋆)

2
(∇wϕ(x,y

⋆;w)−∇wϕ(x,y;w)) .

Proof. Let us label the outputs Y = {y1, · · · ,ym}. Without loss of generality, let y⋆ = y1, and ℓ(y,y3) ≥
· · · ≥ ℓ(y,ym). Denote ℓ = (ℓ(y,y))y∈Y ∈ Rm. Let z := ey⋆ − ℓ and the proof requires us to reason

about proj∆m−1(z). We can write

z =




1− νℓ(y⋆,y)
−νℓ(y2,y)

.

.

.

−νℓ(ym,y)


 .

Proof of Part (a). In this case, z1 = 1 and zj < 0 for 2 ≤ j ≤ m. We verify using Lemma A.4 that

proj∆m−1(z) = e1, and the conclusion follows.

Proof of Part (b). Suppose now that y∗ ̸= y. Without loss of generality, suppose y = y2, so that z2 = 0.

By Lemma A.4, we have that proj∆m−1(z) = (z − ρ∗)+, where ρ∗ ∈ R is the unique solution to

1 =
(
1− νℓ(y⋆,y)− ρ∗

)
+
+ (−ρ∗)+ +

m∑

j=3

(
− νℓ(yj ,y)− ρ∗

)
+
. (A.4)

Firstly, observe that ρ∗ < 0 so that [proj∆m−1(z)]2 > 0. Let j∗ ≥ 2 be the smallest index such that

−νℓ(yj ,y)− ρ∗ > 0, and let

l = ℓ(yj ,y) .
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By definition, the only non-zero components of proj∆m−1(z) = (z − ρ∗)+ correspond to (a) y⋆, and, (b)
y such that ℓ(y,y) ≤ l, i.e., y ∈ Yl. Therefore, the vector u from (A.2) is

u =




1− (z1 − ρ∗)+
−z2 + ρ∗,

.

.

.

−zj∗ + ρ∗

0
.
.
.

0




.

Set βyj = (zj − ρ∗)/u1 for yj ∈ Yl. Since [proj∆m−1(z)]2 > 0, we get that [proj∆m−1(z)]1 < 1 and

hence, u1 > 0; thus βyj is well-defined. Finally, by letting c =
(
1 − (z1 − ρ∗)+

)
/ν, we get the claimed

form.

Next, we show the order property of the weights βy . Note for yj ∈ Yl that
βyj = (zj − ρ∗)/u1 =

(
− νℓ(y,yj)− ρ∗

)
/u1 ,

from which the claimed results follow.

Proof of Part (c). In this case, note that z1 > −ν, z2 = 0, z3 < −ν. We can verify that ρ∗ = −νℓ(y,y⋆)/2
satisfies (A.4). Indeed, we have that

z1 − ρ∗ = 1− ν

2
ℓ(y,y⋆) > 1− ν

2

(
1

ν
+ 1

)
=

1

2
(1− ν) > 0 .

Therefore, ρ∗ = −νℓ(y,y⋆)/2 is the unique solution of (A.4). Plugging this into (A.2) gives

proj∆m−1(z) =




1− νℓ(y,y⋆)/2
νℓ(y,y⋆)/2

0
.
.
.

0



, and u =




ℓ(y,y⋆)/2
−ℓ(y,y⋆)/2

0
.
.
.

0



,

which gives the desired result.

Remark A.6. We compare SPIGOT to the structured perceptron loss (Collins, 2002) and its ℓ22-smoothing. The
subdifferential of the structured percetron loss defined on example (x,y) is

∂fperc(w) ∋ ∇wϕ(x,y
∗(x;w);w)−∇wϕ(x,y;w) .

That is, it compares the output y∗(x;w) of inference to the reference y. Its ℓ22-smoothing takes the form

∇fperc,µℓ22 =
∑

y∈Y
uy∇wϕ(x,y;w)−∇wϕ(x,y;w) ,

where u = proj∆m−1

((
ϕ(x,y;w)

)
y∈Y/µ

)
. Thus, it compares multiple outputs with high scores to the ref-

erence y. One the other hand, Proposition A.5 tells us that SPIGOT compares the output y∗(x;w) of inference
to multiple reference outputs with small loss w.r.t. the true reference y.

While the ℓ22 smoothing of the structured perceptron loss gives us a smooth surrogate, it is not clear

if the gradient estimator given by SPIGOT is the gradient of any differentiable function (or indeed, even a

continuous function).
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A.5 Casimir: Convergence Proofs

This section contains the full proof of convergence of Casimir in the convex case from Section 2.5. Through-

out, we shall assume that ω is fixed and drop the subscript in Aω, Dω . Moreover, an unqualified norm ∥·∥
refers to the Euclidean norm ∥·∥2.

A.5.1 Convergence Analysis: Proof of Theorem 2.17

We now give a proof of Theorem 2.17. The proofs of a number of technical auxiliary results are presented

later in this section.

We first analyze the sequence (αk)k≥0. The proof follows from the algebra of Eq. (2.32) and has been

given in Section A.5.2.

Lemma A.7. Given a positive, non-decreasing sequence (κk)k≥1 and λ ≥ 0, consider the sequence (αk)k≥0

defined by (2.32), where α0 ∈ (0, 1) such that α2
0 ≥ λ/(λ + κ1). Then, we have for every k ≥ 1 that

0 < αk ≤ αk−1 and, α2
k ≥ λ/(λ+ κk+1) .

We now characterize the effect of an approximate proximal point step on Fµω .

Lemma A.8. Suppose ŵ ∈ Rd satisfies Fµω,κ(ŵ; z) − minw∈Rd Fµω,κ(w; z) ≤ ε̂ for some ε̂ > 0. Then,
for all 0 < θ < 1 and all w ∈ Rd, we have,

Fµω(ŵ) +
κ

2
∥ŵ − z∥22 +

κ+ λ

2
(1− θ)∥w − ŵ∥22 ≤ Fµω(w) +

κ

2
∥w − z∥22 +

ε̂

θ
. (A.5)

Proof. Let F̂ ∗ = minw∈Rd Fµω,κ(w; z). Let ŵ∗
be the unique minimizer of Fµω,κ(· ; z). We have, from

(κ+ λ)-strong convexity of Fµω,κ(· ; z),

Fµω,κ(w; z) ≥ F̂ ∗ +
κ+ λ

2
∥w − ŵ∗∥22

≥ (Fµω,κ(ŵ; z)− ε̂) + κ+ λ

2
(1− θ)∥w − ŵ∥22 −

κ+ λ

2

(
1

θ
− 1

)
∥ŵ − ŵ∗∥22 ,

where we used that ε̂was sub-optimality of ŵ and Lemma A.13 from Appendix A.5.4. From (κ+λ)-strong
convexity of Fµω,κ(·; z), we have,

κ+ λ

2
∥ŵ − ŵ∗∥22 ≤ Fµω,κ(ŵ; z)− F̂ ∗ ≤ ε̂ ,

Since (1/θ − 1) is non-negative, we can plug this into the previous statement to get,

Fµω,κ(w; z) ≥ Fµω,κ(ŵ; z) +
κ+ λ

2
(1− θ)∥w − ŵ∥22 −

ε̂

θ
.

Substituting the definition of Fµω,κ(· ; z) from (2.30) completes the proof.

We now define a few auxiliary sequences integral to the proof. Define sequences (vk)k≥0, (γk)k≥0,

177



(ηk)k≥0, and (rk)k≥1 as

v0 = w0 (A.6)

vk = wk−1 +
1

αk−1
(wk −wk−1) , k ≥ 1 , (A.7)

γ0 =
(κ1 + λ)α2

0 − λα0

1− α0
, (A.8)

γk = (κk + λ)α2
k−1 , k ≥ 1 , (A.9)

ηk =
αkγk

γk+1 + αkγk
, k ≥ 0 , (A.10)

rk = αk−1w
∗ + (1− αk−1)wk−1 , k ≥ 1 . (A.11)

One might recognize γk and vk from their resemblance to counterparts from the proof in (Nesterov, 2013).

We will need some properties of these sequences. Their proof, based solely on algebraic manipulations

and Jensen’s inequality, is given in Section A.5.

Lemma A.9. For the sequences defined above, we have,

∥rk − zk−1∥22 ≤
αk−1λ(1− αk−1)

κk
∥wk−1 −w∗∥22 + αk−1ηk−1∥vk−1 −w∗∥22 , (A.12)

αkηk = (1− αk)α2
k−1

κk + λ

κk+1
. (A.13)

Next, we define the sequence (Sk)k≥0 to play the role of a potential function here.

S0 = (1− α0)(F (w0)− F (w∗)) +
α0κ1η0

2
∥w0 −w∗∥22 ,

Sk = (1− αk)(Fµkω(wk)− Fµkω(w∗)) +
αkκk+1ηk

2
∥vk −w∗∥22 , k ≥ 1 .

(A.14)

The final ingredient is the approximation property of smoothing in Eq. (2.13): for all µ ≥ µ′ ≥ 0, we have,

0 ≤ Fµω(w)− Fµ′ω(w) ≤ (µ− µ′)Dω . (A.15)

We are now ready to analyze the effect of one outer loop. This lemma is the crux of the analysis.

Lemma A.10. Suppose Fµkω,κk(wk; z) − minw∈Rd Fµkω,κk(w; z) ≤ εk for some εk > 0. The following
statement holds for all 0 < θk < 1:

Sk
1− αk

≤ Sk−1 + (µk−1 − µk)Dω +
εk
θk
− κk

2
∥wk − zk−1∥22 +

κk+1ηkαkθk
2(1− αk)

∥vk −w∗∥22 , (A.16)

where we set µ0 := 2µ1.

Proof. For ease of notation, let Fk := Fµkω , and D := Dω . By λ-strong convexity of Fµkω , we have,

Fk(rk) ≤ αk−1Fk(w
∗) + (1− αk−1)Fk(wk−1)−

λαk−1(1− αk−1)

2
∥wk−1 −w∗∥22 . (A.17)
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We now invoke Lemma A.8 on the function Fµkω,κk(·; zk−1) with ε̂ = εk and w = rk to get,

Fk(wk) +
κk
2
∥wk − zk−1∥22 +

κk + λ

2
(1− θk)∥rk −wk∥22 ≤ Fk(rk) +

κk
2
∥rk − zk−1∥22 +

εk
θk
.

(A.18)

We now separately manipulate the left and right hand sides of (A.18). We start with the right hand side,

which we call R. Upon plugging in (A.17) and (A.12) into R, the terms containing ∥wk−1 −w∗∥22 cancel
out to yield,

R ≤ (1− αk−1)Fk(wk−1) + αk−1Fk(w
∗) +

κkαk−1ηk−1

2
∥vk−1 −w∗∥22 +

εk
θk
. (A.19)

To move on to the left hand side, we note that

Fk(wk)− Fk(w∗) +
κk + λ

2
α2
k−1∥vk −w∗∥22

(A.14),(A.13)
=

Sk
1− αk

. (A.20)

Using rk −wk
(A.7)

= αk−1(w
∗ − vk), we simplify the left hand side of (A.18), which we call L, as

L = Fk(wk)− Fk(w∗) +
κk
2
∥wk − zk−1∥22 +

κk + λ

2
(1− θk)α2

k−1∥vk −w∗∥22
(A.20)

=
Sk

1− αk
+ Fk(w

∗) +
κk
2
∥wk − zk−1∥22 −

κk+1αkηkθk
2(1− αk)

∥vk −w∗∥22 . (A.21)

In view of (A.19) and (A.21), we can simplify (A.18) as

Sk
1− αk

+
κk
2
∥wk − zk−1∥22 −

κk+1αkηkθk
2(1− αk)

∥vk −w∗∥22

≤ (1− αk−1) (Fk(wk−1)− Fk(w∗)) +
κkαk−1ηk−1

2
∥vk−1 −w∗∥22 +

εk
θk
.

(A.22)

We make a distinction for k ≥ 2 and k = 1 here. For k ≥ 2, the condition that µk−1 ≥ µk gives us,

Fk(wk−1)− Fk(w∗)
(A.15)

≤ Fk−1(wk−1)− Fk−1(w
∗) + (µk−1 − µk)D . (A.23)

The right hand side of (A.22) can now be upper bounded by

(1− αk−1)(µk−1 − µk)D + Sk−1 +
εk
θk
,

and noting that 1− αk−1 ≤ 1 yields (A.16) for k ≥ 2.

For k = 1, we note that Sk−1(= S0) is defined in terms of F (w). So we have,

F1(w0)− F1(w
∗) ≤ F (w0)− F (w∗) + µ1D = F (w0)− F (w∗) + (µ0 − µ1)D ,

because we used µ0 = 2µ1. This is of the same form as (A.23). Therefore, (A.16) holds for k = 1 as

well.

We now restate and prove Theorem 2.17.
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Theorem 2.17. Consider Problem (2.27). Suppose δk ∈ [0, 1) for all k ≥ 1, the sequence (µk)k≥1 is non-
negative and non-increasing, and the sequence (κk)k≥1 is strictly positive and non-decreasing. Further, sup-
pose the smoothing function ω : domh∗ → R satisfies −Dω ≤ ω(u) ≤ 0 for all u ∈ domh∗ and that
α2
0 ≥ λ/(λ+ κ1). Then, the sequence (αk)k≥0 generated by Algorithm 2.3 satisfies 0 < αk ≤ αk−1 < 1 for

all k ≥ 1. Furthermore, the sequence (wk)k≥0 of iterates generated by Algorithm 2.3 satisfies

F (wk)− F ∗ ≤ A
k−1
0

Bk1
∆0 + µkDω +

k∑

j=1

Ak−1
j

Bkj
(µj−1 − (1− δj)µj)Dω , (2.35)

where Aji :=
∏j
r=i(1 − αr), B

j
i :=

∏j
r=i(1 − δr), ∆0 := F (w0) − F ∗ +

(κ1+λ)α2
0−λα0

2(1−α0)
∥w0 −w∗∥22 and

µ0 := 2µ1.

Proof. We continue to use shorthand Fk := Fµkω , and D := Dω . We now apply Lemma A.10. In order

to satisfy the supposition of Lemma A.10 that wk is εk-suboptimal, we make the choice εk = δkκk
2 ∥wk −

zk−1∥22 (cf. (2.31)). Plugging this in and setting θk = δk < 1, we get from (A.16),

Sk
1− αk

− κk+1ηkαkδk
2(1− αk)

∥vk −w∗∥22 ≤ Sk−1 + (µk−1 − µk)D .

The left hand side simplifies to Sk (1− δk)/(1− αk) + δk(Fk(wk) − Fk(w
∗)). Note that Fk(wk) −

Fk(w
∗)

(A.15)

≥ F (wk)− F (w∗)− µkD ≥ −µkD. From this, noting that αk ∈ (0, 1) for all k, we get,

Sk

(
1− δk
1− αk

)
≤ Sk−1 + δkµkD + (µk−1 − µk)D ,

or equivalently,

Sk ≤
(
1− αk
1− δk

)
Sk−1 +

(
1− αk
1− δk

)
(µk−1 − (1− δk)µk)D .

Unrolling the recursion for Sk, we now have,

Sk ≤




k∏

j=1

1− αj
1− δj


S0 +

k∑

j=1




k∏

i=j

1− αi
1− δi


 (µj−1 − (1− δj)µj)D . (A.24)

Now, we need to reason about S0 and Sk to complete the proof. To this end, consider η0:

η0
(A.10)

=
α0γ0

γ1 + α0γ0
(A.8)

=
α0γ0

(κ1 + λ)α2
0 +

α0
1−α0

(
(κ1 + λ)α2

0 − λα0

)

=
α0γ0(1− α0)

(κ1 + λ)α2
0 − λα2

0

= (1− α0)
γ0
κ1α0

. (A.25)

With this, we can expand out S0 to get

S0
(A.14)

= (1− α0) (F (w0)− F (w∗)) +
α0κ1η0

2
∥w0 −w∗∥22

(A.25)

= (1− α0)
(
F (w0)− F ∗ +

γ0
2
∥w0 −w∗∥22

)
.
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Lastly, we reason about Sk for k ≥ 1 as,

Sk
(A.14)

≥ (1− αk) (Fk(wk)− Fk(w∗))
(A.15)

≥ (1− αk) (F (wk)− F (w∗)− µkD) .

Plugging this into the left hand side of (A.24) completes the proof.

A.5.2 Properties of the Auxiliary Sequences

Lemma A.7. Given a positive, non-decreasing sequence (κk)k≥1 and λ ≥ 0, consider the sequence (αk)k≥0

defined by (2.32), where α0 ∈ (0, 1) such that α2
0 ≥ λ/(λ + κ1). Then, we have for every k ≥ 1 that

0 < αk ≤ αk−1 and, α2
k ≥ λ/(λ+ κk+1) .

Proof. It is clear that (2.32) always has a positive root, so the update is well defined. Define sequences

(ck)k≥1, (dk)k≥0 as

ck =
λ+ κk
λ+ κk+1

, and dk =
λ

λ+ κk+1
.

Therefore, we have that ckdk−1 = dk, 0 < ck ≤ 1 and 0 ≤ dk < 1. With these in hand, the rule for αk
can be written as

αk =
−(ckα2

k−1 − dk) +
√
(ckα

2
k−1 − dk)2 + 4ckα

2
k−1

2
. (A.26)

We show by induction that that dk ≤ α2
k < 1. The base case holds by assumption. Suppose that αk−1

satisfies the hypothesis for some k ≥ 1. Noting that α2
k−1 ≥ dk−1 is equivalent to ckα

2
k−1 − dk ≥ 0, we

get that

√
(ckα

2
k−1 − dk)2 + 4ckα

2
k−1 ≤

√
(ckα

2
k−1 − dk)2 + 4ckα

2
k−1 + 2(ckα

2
k−1 − dk)(2

√
ckαk−1)

= ckα
2
k−1 − dk + 2

√
ckαk−1 . (A.27)

We now conclude from (A.26) and (A.27) that

αk ≤
−(ckα2

k−1 − dk) + (ckα
2
k−1 − dk + 2

√
ckαk−1)

2
=
√
ckαk−1 ≤ αk−1 < 1 , (A.28)

since ck ≤ 1 and αk−1 < 1. To show the other side, we expand out (A.26) and apply (A.27) again to get

α2
k − dk =

1

2
(ckα

2
k−1 − dk)2 + (ckα

2
k−1 − dk)−

1

2
(ckα

2
k−1 − dk)

√
(ckα

2
k−1 − dk)2 + 4ckα

2
k−1

=
1

2
(ckα

2
k−1 − dk)

(
2 + (ckα

2
k−1 − dk)−

√
(ckα

2
k−1 − dk)2 + 4ckα

2
k−1

)

≥ 1

2
(ckα

2
k−1 − dk)

(
2 + (ckα

2
k−1 − dk)− (ckα

2
k−1 − dk + 2

√
ckαk−1)

)

= (ckα
2
k−1 − dk)(1−

√
ckαk−1) ≥ 0 .

The fact that (αk)k≥0 is a non-increasing sequence follows from (A.28).
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We now state some auxiliary results.

Property A.11. For the sequences defined in (A.6)-(A.11), we have,

γk =
(κk+1 + λ)α2

k − λαk
1− αk

, k ≥ 0 , (A.29)

γk+1 = (1− αk)γk + λαk , k ≥ 0 , (A.30)

ηk =
αkγk

γk + αkλ
, k ≥ 0 (A.31)

zk = ηkvk + (1− ηk)wk , k ≥ 0 , (A.32)

αk−1 − ηk−1 =
λ

κk
(1− αk−1) (A.33)

αkηk = (1− αk)α2
k−1

κk + λ

κk+1
. (A.34)

The proof of this property is similar to standard results for accelerated gradient descent; see e.g., (Nes-

terov, 2013, Sec. 2.2).

Property A.12. The sequence (rk)k≥1 from (A.11) satisfies

∥rk − zk−1∥22 ≤ αk−1(αk−1 − ηk−1)∥wk−1 −w∗∥22 + αk−1ηk−1∥vk−1 −w∗∥22 . (A.35)

See e.g., (Lin et al., 2018, Theorem 3) for a proof.

A.5.3 Information Based Complexity of Casimir-SVRG

Presented below are the proofs of Propositions 2.25 to 2.28 from Section 2.5.3. We use the following values

of C, τ , see e.g., Hofmann et al. (2015).

τ(L, λ) =
1

8Lλ + n
≥ 1

8
(
L
λ + n

) and C(L, λ) =
L

λ

(
1 +

nLλ
8Lλ + n

)
.

Proposition 2.25. Consider the setting of Theorem 2.17 with λ > 0 and fix ε > 0. If we run Algorithm 2.3
with SVRG as the inner solver with parameters: µk = µ = ε/10Dω , κk = k chosen as

κ =

{
A
µn − λ , if A

µn > 4λ

λ , otherwise
,

q = λ/(λ+ κ), α0 =
√
q, and δ =

√
q/(2−√q). Then, the number of iterations N to obtain w such that

F (w)− F ∗ ≤ ε is bounded in expectation as

E[N ] ≤ Õ
(
n+

√
AωDωn

λε

)
.

Proof. We use shorthand A := Aω , D := Dω , Lµ = λ + A/µ and ∆F0 = F (w0) − F ∗
. Let C, τ be the

linear convergence parameters of SVRG. From Corollary 2.18, the number of outer iterations K required

to obtain F (wK)− F ∗ ≤ ε is

K ≤ 2√
q
log

(
2∆F0

ε− cqµD

)
,
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where cq = (3−√q)/(1−√q). From Lemma 2.23, the number Tk of inner iterations for inner loop k is,

from δk =
√
q/(2−√q),

E[Tk] ≤
2

τ(Lµ + κ, λ+ κ)
log

(
8C(Lµ + κ, λ+ κ)

τ(Lµ + κ, λ+ κ)
· Lµ + κ

κ
· 2−

√
q

√
q

)
.

Let the total number N of iterations of SVRG to obtain an iterate w that satisfies F (w) − F ∗ ≤ ε. Next,
we upper bound E[N ] ≤∑K

i=1 E[Tk] as

E[N ] ≤ 4√
qτ(Lµ + κ, λ+ κ)

log

(
8C(Lµ + κ, λ+ κ)

τ(Lµ + κ, λ+ κ)

Lµ + κ

κ

2−√q
√
q

)
log

(
2(F (w0)− F ∗)

ε− cqµD

)
.

(A.36)

Next, we shall plug in C, τ for SVRG in two different cases:

• Case 1: A > 4µλn, in which case κ+ λ = A/(µn) and q < 1/4.

• Case 2: A ≤ 4µλn, in which case, κ = λ and q = 1/2.

We first consider the term outside the logarithm. It is, up to constants,

1√
q

(
n+

A

µ(λ+ κ)

)
= n

√
λ+ κ

λ
+

A

µ
√
λ(λ+ κ)

.

For Case 1, plug in κ + λ = A/(µn) so this term evaluates to

√
ADn/(λε). For Case 2, we use the fact

that A ≤ 4µλn so that this term can be upper bounded by,

n

(√
λ+ κ

λ
+ 4

√
λ

λ+ κ

)
= 3
√
2n ,

since we chose κ = λ. It remains to consider the logarithmic terms. Noting that κ ≥ λ always, it follows

that the first log term of (A.36) is clearly logarithmic in the problem parameters.

As for the second logarithmic term, we must evaluate cq . For Case 1, we have that q < 1/4 so that

cq < 5 and cqµD < ε/2. For Case 2, we get that q = 1/2 and cq < 8 so that cqµD < 4ε/5. Thus, the
second log term of (A.36) is also logarithmic in problem parameters.

Proposition 2.26. Consider the setting of Theorem 2.17. Suppose λ > 0 and κk = κ, for all k ≥ 1 and that
α0, (µk)k≥1 and (δk)k≥1 are chosen as in Corollary 2.19, with q = λ/(λ + κ) and η = 1 − √q/2. If we
run Algorithm 2.3 with SVRG as the inner solver with these parameters, the number of iterations N of SVRG
required to obtain w such that F (w)− F ∗ ≤ ε is bounded in expectation as

E[N ] ≤ Õ
(
n+

Aω
µ(λ+ κ)ε

(
F (w0)− F ∗ +

µDω

1−√q

))
.

Proof. We continue to use shorthand A := Aω , D := Dω . First, let us consider the minimum number of

outer iterations K required to achieve F (wK)− F ∗ ≤ ε. From Corollary 2.19, if we have η−K/2∆0 ≤ ε,
or,

K ≥ Kmin :=
log (∆0/ε)

log
(
1/
√
η
) .
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For this smallest value, we have,

µKmin = µηKmin/2 =
µε

∆0
. (A.37)

Let C, τ be the linear convergence parameters of SVRG, and define Lk := λ + A/µk for each k ≥ 1.
Further, let T ′

be such that

T ′ ≥ max
k∈{1,··· ,Kmin}

log

(
8
C(Lk + κ, λ+ κ)

τ(Lk + κ, λ+ κ)

Lk + κ

κδ

)
.

Then, the total complexity is, from Lemma 2.23, (ignoring absolute constants)

E[N ] ≤
Kmin∑

k=1

(
n+

λ+ κ+ A
µk

λ+ κ

)
T ′ ≤

(
(n+ 1)

log
(
∆0
ε

)

log(1/√η)
+

A/µ

λ+ κ

1

1−√η
∆0

ε

)
T ′ .

It remains to bound T ′
. Here, we use λ + A

µ ≤ Lk ≤ λ + A
µK

for all k ≤ K together with (A.37) to note

that T ′
is logarithmic in∆0/ε, n,AD, µ, κ, λ

−1
.

Proposition 2.27. Consider the setting of Theorem 2.17 and fix ε > 0. If we run Algorithm 2.3 with SVRG
as the inner solver with parameters: µk = µ = ε/20Dω , α0 =

√
5−1
2 , δk = 1/(k + 1)2, and κk = κ =

Aω/µ(n+ 1). Then, the number of iterations N to get a point w such that F (w) − F ∗ ≤ ε is bounded in
expectation as

E[N ] ≤ Õ
(
n

√
F (w0)− F ∗

ε
+
√
AωDωn

∥w0 −w∗∥2
ε

)
.

Proof. We use shorthandA := Aω ,D := Dω , Lµ = A/µ and∆F0 = F (w0)−F ∗+ κ
2∥w0−w∗∥2. Further,

let C, τ be the linear convergence parameters of SVRG. In Corollary 2.20, the fact that K ≥ 1 allows us

to bound the contribution of the smoothing as 10µD. So, we get that the number of outer iterations K
required to get F (wK)− F ∗ ≤ ε can be bounded as

K + 1 ≤
√

8∆F0

ε− 10µD
.

Moreover, from our choice δk = 1/(k + 1)2, the number of inner iterations Tk for inner loop k is, from

Lemma 2.23,

E[Tk] ≤
2

τ(Lµ + κ, κ)
log

(
8C(Lµ + κ, κ)

τ(Lµ + κ, κ)
· Lµ + κ

κ
· 8∆F0

ε− 10µD

)
.

Next, we consider the total number N of iterations of SVRG to obtain an iterate w such that F (w)−
F ∗ ≤ ε. Using the fact that E[N ] ≤∑K

i=1 E[Tk], we bound it as

E[N ] ≤ 1

τ(Lµ + κ, κ)

√
8∆F0

ε− 10µD
log

(
64C(Lµ + κ, κ)

τ(Lµ + κ, κ)

Lµ + κ

κ

∆F0

ε− 10µD

)
. (A.38)
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Now, we plug into (A.38) the values of C, τ for SVRG. Note that κ = Lµ/(n+ 1). So we have,

1

τ(Lµ + κ, κ)
= 8

(
Lµ + κ

κ
+ n

)
= 16(n+ 1) , and,

C(Lµ + κ, κ) =
Lµ + κ

κ

(
1 +

n
Lµ+κ
κ

8L+κκ + n

)
≤ (n+ 2)

(
1 + n

8

)
.

It now remains to assignµ = ε/(20D) and plugC, τ from above into (A.38), noting thatκ = 20AD/(ε(n+ 1)).

Proposition 2.28. Consider the setting of Theorem 2.17. Suppose λ = 0 and that α0, (µk)k≥1,(κk)k≥1 and
(δk)k≥1 are chosen as in Corollary 2.21. If we run Algorithm 2.3 with SVRG as the inner solver with these
parameters, the number of iterations N of SVRG required to obtain w such that F (w)− F ∗ ≤ ε is bounded
in expectation as

E[N ] ≤ Õ
(
1

ε

(
F (w0)− F ∗ + κ∥w0 −w∗∥22 + µD

)(
n+

Aω
µκ

))
.

Proof. Define short hand A := Aω , D := Dω and

∆0 := 2(F (w0)− F ∗) + κ∥w0 −w∗∥2 + 27µD . (A.39)

From Corollary 2.21, the number of iterations K required to obtain F (wK) − F ∗ ≤ log(K+1)
K+1 ∆0 ≤ ε is

(see Lemma A.16),

K + 1 =
2∆0

ε
log

2∆0

ε
. (A.40)

Let C, τ be such that SVRG is linearly convergent with parameters C, τ , and define Lk := A/µk for each
k ≥ 1. Further, let T ′

be such that

T ′ ≥ max
k∈{1,··· ,K}

log

(
8
C(Lk + κ, κ)

τ(Lk + κ, κ)

Lk + κ

κδk

)
.

Clearly, T ′
is logarithmic in K,n,AD, µ, κ. From Lemma 2.23, the minimum total complexity is (ig-

noring absolute constants)

E[N ] =
K∑

k=1

(
n+

A/µk + κk
κk

)
T ′ ≤

(
n+ 1 +

A

µκ

)
KT ′ ,

and plugging inK from (A.40) completes the proof.

A.5.4 Some Helper Lemmas

The first lemma is a property of the squared Euclidean norm from Lin et al. (2018, Lemma 5), which we

restate here.

Lemma A.13. For any vectors, w, z, r ∈ Rd, we have, for any θ > 0,

∥w − z∥2 ≥ (1− θ)∥w − r∥2 +
(
1− 1

θ

)
∥r − z∥2 .
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The next lemmas consider rates of the sequences (αk) and (Ak) under different recursions; see (Pillutla
et al., 2018) for proofs.

Lemma A.14. Define a sequence (αk)k≥0 as

α0 =

√
5− 1

2
α2
k = (1− αk)α2

k−1 .

Then this sequence satisfies

√
2

k + 3
≤ αk ≤

2

k + 3
.

Moreover, Ak :=
∏k
j=0(1− αk) satisfies

2

(k + 3)2
≤ Ak ≤

4

(k + 3)2
.

Lemma A.15. Consider a sequence (αk)k≥0 defined by α0 =
√
5−1
2 , and αk+1 as the non-negative root of

α2
k

1− αk
= α2

k−1

k

k + 1
.

Further, define

Ak =

k∏

i=0

(1− αi) .

Then, we have for all k ≥ 0,

1

k + 1

(
1− 1√

2

)
≤ Ak ≤

1

k + 2
. (A.41)

Lemma A.16. Fix some ε > 0. If k ≥ 2
ε log

2
ε , then we have that log k

k ≤ ε.

Proof. We have, since log x ≤ x for x > 0,

log k

k
≤ log 2

ε + log log 2
ε

2
ε log

2
ε

=
ε

2

(
1 +

log log 2
ε

log 2
ε

)
≤ ε .

A.6 Prox-Linearwith IncrementalGradientMethods: Convergence Proofs

This section contains proofs from Section 3.3.
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A.6.1 Prox-Linear: Outer Loop Convergence Analysis

Wefirst prove Lemma 3.4 that specifies the assumption required by the prox-linear in the case of structured

prediction.

Lemma 3.4. Consider the structural hinge loss f(w) = maxy∈Y ψ(y;w) = h ◦ g(w) where h, g are as
defined in (2.11). If the mappingw 7→ ψ(y;w) is L-smooth with respect to ∥ · ∥2 for all y ∈ Y , then it holds
for all w, z ∈ Rd that

|h(g(w + z))− h(g(w) +∇g(w)z)| ≤ L

2
∥z∥22 .

Proof. For anyA ∈ Rm×d
and w ∈ Rd, and ∥A∥2,1 defined in (2.9), notice that

∥Aw∥∞ ≤ ∥A∥2,1∥w∥2 . (A.42)

Now using the fact that max function h satisfies |h(u′)−h(u)| ≤ ∥u′−u∥∞ and the fundamental theorem

of calculus (∗), we deduce

|h(g(w + z))− h(g(w) +∇g(w)z)| ≤ ∥g(w + z)− (g(w) +∇g(w)z) ∥∞
(∗)
≤
∥∥∥∥
∫ 1

0
(∇g(w + tz)−∇g(w))z dt

∥∥∥∥
∞

(A.42)

≤
∫ 1

0
∥∇g(w + tz)−∇g(w)∥2,1∥z∥2 dt . (A.43)

Note that the definition (2.9) can equivalently be stated as ∥A∥2,1 = max∥u∥1≤1 ∥A⊤u∥2. Given u ∈ Rm,
we index its entries uy by y ∈ Y . Then, the matrix norm in (A.43) can be simplified as

∥∇g(w + tz)−∇g(w)∥2,1 = max
∥u∥1≤1

∥∥∥∥
∑

y∈Y
uy(∇ψ(y;w + tz)−∇ψ(y;w))

∥∥∥∥
2

≤ max
∥u∥1≤1

∑

y∈Y
|uy|∥∇ψ(y;w + tz)−∇ψ(y;w)∥2

≤ Lt∥z∥2 ,

from the L-smoothness of ψ. Plugging this back into (A.43) completes the proof. The bound on the

smothing approximation holds similarly by noticing that if h is 1-Lipschitz then hµω too since∇hµω(u) ∈
domh∗ for any u ∈ domh.

We now detail the stationarity measure used to analyze the convergence of the prox-linear in Propo-

sition 3.5.

Proposition 3.5. Considerω satisfying (3.15) and suppose Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19)
hold. For anyw ∈ Rd and µ, κ ≥ 2L, if z ∈ Rd approximately minimizes the model Cµω,κ defined in (3.11)

as
∥∇Cµω,κ(z;w)∥2 ≤

κ

2
∥z −w∥2,

then there exists ẑ ∈ Rd such that

∥ẑ − z∥2 ≤ ∥z −w∥2 +
√
µD and d(0, ∂F (ẑ)) ≤ 5κ∥z −w∥2 + 3

√
µκD.

where d(0, ∂F (ẑ)) = infu∈∂F (ẑ) ∥u∥2.
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Proof. By κ-strong convexity of Cµω,κ(·;w), we have for any u ∈ Rd,

Cµω,κ(u;w) ≥ Cµω,κ(z;w) +∇Cµω,κ(z;w)⊤(u− z) +
κ

2
∥u− z∥22

(3.13)

≥ Cµω,κ(z;w)− κ

2
∥z −w∥2∥u− z∥2 +

κ

2
∥u− z∥22

≥ Cµω,κ(z;w)− κ

8
∥z −w∥22 (A.44)

where we used 2ab ≤ a2 + b2 for any reals a, b. Denote then F̄ : u → F (u) + κ+L
2 ∥u −w∥22, then for

any u ∈ dom f ,

F̄ (u)
(3.18)

≥ C(u;w) +
κ

2
∥u−w∥22

(3.17)

≥ Cµω(u;w) +
κ

2
∥u−w∥22

(A.44)

≥ Cµω,κ(z;w)− κ

8
∥z −w∥22.

Therefore

F̄ (z)− inf
u
F̄ (u) ≤ F (z) + κ+ L+ κ/4

2
∥z −w∥22 − Cµω,κ(z;w)

≤ F (z) + L+ κ/4

2
∥z −w∥22 − Cµω(z;w)

(3.17)

≤ F (z)− C(z;w) +
L+ κ/4

2
∥z −w∥22 + µD

(3.18)

≤
(
L+

κ

8

)
∥z −w∥22 + µD

≤ 9

8
κ∥z −w∥22 + µD

By Ekeland’s variational principle, for any ρ > 0 there exists then ẑ such that, denoting θ = 9
8κ∥z −

w∥22 + µD,

∥ẑ − z∥2 ≤
θ

ρ
, F̄ (ẑ) ≤ F̄ (z), d(0, ∂F̄ (ẑ)) ≤ ρ. (A.45)

where d(0, ∂F̄ (ẑ)) = infu∈∂F̄ (ẑ) ∥u∥21. Choosing ρ = 9
8κ∥z −w∥2 +

√
κµD, we get

∥ẑ − z∥2 ≤ ∥z −w∥2 +
√
µD

κ
.

Finally, using that ∂F̄ (ẑ) = ∂F (ẑ) + (κ + L)(ẑ − w) and ∥ẑ − w∥2 ≤ ∥ẑ − z∥2 + ∥z − w∥2 ≤
2∥z −w∥2 +

√
µD/κ, we get from (A.45)

d(0, ∂F (ẑ)) ≤ 33

8
κ∥z −w∥2 +

5κ

2

√
µD

κ
.

The result follows after simplifications.

1

The original statement is that ẑ is the unique minimizer of z → F̄ (z) + ρ∥z − ẑ∥2. We deduce 0 ∈ ∂F̄ (ẑ) + ρ∂∥0∥2 and

so d(0, ∂F (ẑ)) ≤ ρ.
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We now restate and proof Theorem 3.7.

Theorem 3.7. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. Feed Algorithm 3.1 with a regularization κ ≥ 2L
and non-increasing smoothing parameters (µk)k≥1, then it produces a sequence (wk)k≥0 that satisfies

min
k∈{1,...,K}

κ2∥wk −wk−1∥22 ≤
4κ

K

(
F (w0)− F ∗ + µ1D

)
,

where F ∗ = infw∈Rd F (w).

Proof. For k ≥ 1, by κ-strong convexity of Cµkω,κ(·;wk−1), we have

Fµkω(wk−1) = Cµkω,κ(wk−1;wk−1)

≥ Cµkω,κ(wk;wk−1) +∇Cµkω,κ(wk;wk−1)
⊤(wk −wk−1) +

κ

2
∥wk −wk−1∥22

(3.13)

≥ Cµkω,κ(wk;wk−1)

(3.18)

≥ Fµkω(wk) +
κ− L
2
∥wk −wk−1∥22

We have then for k ≥ 2, using (3.16),

κ− L
2
∥wk −wk−1∥22 ≤ Fµk−1ω(wk−1)− Fµkω(wk) + (µk−1 − µk)D

and for k = 1,
κ− L
2
∥w1 −w0∥22 ≤ F (w0)− Fµ1ω(w1)

Summing along k ≥ 1, we have

κ− L
2

K∑

k=1

∥wk −wk−1∥22 ≤ F (w0)− FµKω(wK) + (µ1 − µK)D

≤ F (w0)− F (wK) + µ1D. (A.46)

Therefore for κ ≥ 2L, we get

min
k∈{1,...,K}

∥wk −wk−1∥22 ≤
4

κK
(F (w0)− F ∗ + µ1D).

Next, we restate and prove Proposition 3.9.

Proposition 3.9. Consider F of the form (3.2), Cµω,κ defined in (3.11) with ω satisfying (3.15) and suppose
Assumption 3.3 such that (3.16), (3.17), (3.18), (3.19) hold. Taking κ̄ ≥ 2L and non-increasing smoothing
parameters µk, the iterates produced by Algorithm 3.2 satisfy

min
k∈{1,...,K}

κ̄2∥wk −wk−1∥22 ≤
4κ̄

K

(
F (w0)− F ∗ + µ1D

)
.
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If moreover the smooth convexmodels lower bound the smooth objective, i.e. for k ≥ 1 andw∗ ∈ argminw F (w)

Cµkω(wk−1; zk−1) ≤ Fµkω(wk−1) and Cµkω(w
∗; zk−1) ≤ Fµkω(w∗), (3.23)

then the algorithm converges for non-decreasing regularization parameters κk ≥ 2L as

F (wk)− F ∗ ≤ A
k−1
0

Bk1
∆0 + µkDω +

k∑

j=1

Ak−1
j

Bkj
(µj−1 − (1− δj)µj)Dω ,

whereAji :=
∏j
r=i(1−αr), B

j
i :=

∏j
r=i(1−δr),∆0 := F (w0)−F ∗+

κ1α2
0

2(1−α0)
∥w0−w∗∥22 and µ0 := 2µ1.

Proof. First part of the proposition stems from Theorem 3.7 and picking best of two steps in line 5. As-

sume now Fµkω to be lower bounded by the models Cµkω(·; zk−1) as in (3.23). We follow the proof of

Theorem 2.17 from Chapter 2 in the convex case such that ηk = αk and λ = 0. Denoting then for any

k ≥ 0,

S0 = (1− α0)(F (w0)− F (w∗) +
κ1α

2
0

2
∥w0 −w∗∥22

Sk = (1− αk)(Fµkω(wk)− Fµkω(w∗)) +
κk+1α

2
k

2
∥zk −w∗∥22,

we want to show the following recurrence

Sk
1− αk

− κk+1α
2
kδk

2(1− αk)
≤ Sk−1 + (µk−1 − µk)D. (A.47)

We start by detailing the decrease made by each approximate minimization of the convex models. At the

kth iterate of the algorithm, with k ≥ 1, by κk-strong convexity of the regularized model, for any u ∈ Rd,

Cµkω,κk(u; zk−1) ≥ Cµkω,κk(ζk; zk−1) +
κk
2
∥u− ζk∥22 +∇Cµkω,κk(ζk; zk−1)

⊤(u− ζk)

(3.21)

≥ Cµkω,κk(ζk; zk−1) +
κk
2
∥u− ζk∥22 −

κk
√
δk√
2
∥ζk − zk−1∥∥u− ζk∥

≥ Cµkω,κk(ζk; zk−1) +
κk
2
∥u− ζk∥22 −

κk
4
∥ζk − zk−1∥2 −

δkκk
2
∥u− ζk∥2

where we used 2ab ≤ a2 + b2 for any reals a, b. Therefore

Cµkω,κk(u; zk−1) +
κk
4
∥ζk − zk−1∥2 ≥ Cµkω,κk(ζk; zk−1) +

κk(1− δk)
2

∥u− ζk∥22 (A.48)

Now we make in evidence the recurrence as, denoting Fk = Fµkω with F0 = F ,

Fk(wk) ≤ Fk(ζk)
(3.18)

≤ Cµkω(ζk; zk−1) +
L

2
∥ζk − zk−1∥22

≤ Cµkω,κk(ζk; zk−1) +
L− κk

2
∥ζk − zk−1∥22

(A.48)

≤ Cµkω,κk(u; zk−1) +
κk/2 + L− κk

2
∥ζk − zk−1∥22 +

κk(δk − 1)

2
∥u− ζk∥22

≤ Cµkω(u; zk−1) +
κk
2
∥u− zk−1∥22 +

κk(δk − 1)

2
∥u− ζk∥22,
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where we used in last inequality the choice of κk ≥ 2L.

Taking u = αk−1w
∗ + (1 − αk−1)wk−1, where w∗ ∈ argminF , using convexity of the models

Cµkω(·; zk−1),

Fk(wk) ≤αk−1Cµkω(w
∗; zk−1) + (1− αk−1)Cµkω(wk−1; zk−1)

+
κkα

2
k−1

2
∥zk−1 −w∗∥22 +

κk(δk − 1)α2
k−1

2
∥zk −w∗∥22

(3.23)

≤ αk−1Fk(w
∗) + (1− αk−1)Fk(wk−1)

+
κkα

2
k−1

2
∥zk−1 −w∗∥22 +

κk(δk − 1)α2
k−1

2
∥zk −w∗∥22.

Therefore, rearranging the terms and using the approximation made by smoothing for decreasing µk,
denoting µ0 = 2µ1, we get

Fk(wk)− Fk(w∗) +
κk(1− δk)α2

k−1

2
∥zk −w∗∥22 ≤(1− αk−1) (Fk−1(wk−1)− Fk−1(w

∗))

+
κkα

2
k−1

2
∥zk−1 −w∗∥22

+ (1− αk)(µk−1 − µk)D (A.49)

Using that κkα
2
k−1 = κk+1α

2
k/(1− αk) and 1− αk ≤ 1, this reads

Sk
1− αk

− κk+1α
2
kδk

2(1− αk)
≤ Sk−1 + (µk−1 − µk)D.

We then retrieved the inequality (A.47) used to prove Theorem 2.17. The claim follows then the same steps

with ηk = αk and λ = 0.

A.6.2 Information-BasedComplexity of theProx-linearAlgorithmwithCasimir-SVRG

We now state and prove Proposition 3.10.

Proposition 3.10. Consider the setting of Corollary 3.8 and that the subproblem of Line 2 of Algorithm 3.1 is
solved using Catalyst-SVRG. Then, total number of SVRG iterationsN required to produce an iterate ε(1/κ+
1/
√
κ)close to an ε-near stationary is bounded as

E[N ] ≤ Õ
(
κ

√
Aωn

ε3
(∆F0 + µ0D)3/2

)
.

Proof. We only need to bound the number of iterations of each subproblem and combine it with Corol-

lary 3.8. Denote for k ≥ 1, Ck(·) = Cµkω,κ(·;wk−1), w
∗
k = argminw∈Rd Ck(w), C∗

k = minw∈Rd Ck(w)
and zt the iterates produced by a linearly convergent method such as Catalyst-SVRG with z0 = wk−1.

We will show that to get the stopping criterion ∥∇Ck(zt)∥2 ≤ κ∥wk−1−zt∥2/2, it suffices to decrease

the objective gap Ck(zt)− C∗
k by a constant factor. Precisely, assume that

Ck(zt)− C∗
k ≤

κ2

18(Aω/µk + κ)2
(Ck(z0)− C∗

k) (A.50)
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Then by (Aω/µk + κ)-smoothness of Ck, we have
2

∥∇Ck(zt)∥22 ≤ 2(Aω/µk + κ)(Ck(zt)− C∗
k) ≤

κ2

9(Aω/µk + κ)
(Ck(z0)− C∗

k) ≤
κ2∥z0 −w∗

k∥22
9

Therefore, as z0 = wk−1, ∥∇Ck(zt)∥2 ≤ κ∥wk−1−w∗
k∥2/3. Then using that ∥∇Ck(zt)∥2 ≥ κ∥zt−w∗

k∥2
by κ-strong convexity of Ck,

3∥∇Ck(zt)∥ ≤ κ∥wk−1 − zt∥2 + κ∥zt −w∗
k∥2 ≤ κ∥wk−1 − zt∥2 + ∥∇Ck(zt)∥

and so ∥∇Ck(zt)∥2 ≤ κ∥wk−1 − zt∥2/2.
Recall now that for strongly convex objectives the complexity of Catalyst-SVRG to achieve an ε ac-

curacy reads N = O(
√
nLCk

/µCk
log(γCk

) log((Ck(z0) − C∗
k)/ε) where γCk

is a constant depending

on global properties of Ck (Lin et al., 2018, Proposition 17). The total complexity of Catalyst-SVRG at the

kth iteration to achieve (A.50) is then, ignoring the logarithmic dependencies in µk, Aω, κ, of the order of
E[Nk] = Õ(

√
n(Aω/µk + κ)/κ).

Now, using Corollary 3.8 the number of outer iterations of the prox-linear needed to achieve the ε
target accuracy is, denoting∆F0 = F (w0)− F ∗

,

K =
4κ

ε2
(
∆F0 + µ0D

)

Therefore collecting all constants and terms logarithmic in the parameters in T , T ′, T ′′
, the total number

of iterations of SVRG is in

E[N ] =
K∑

k=1

E[Nk] ≤
K∑

k=1

(√
n
Aω/µk + κ

κ

)
T

≤
[√

Aωn

κ

(
K∑

k=1

√
k

)]
T

≤
[√

Aωn

κ
K3/2

]
T ′

≤
[√

Aωn

κ

(
κ(∆F0 + µ0D)

ε2

)3/2
]
T ′′

=

[
κ

√
Aωn

ε3
(∆F0 + µ0D)3/2

]
T ′′ .

A.7 Local Quadratic Convergence of the Prox-Linear Method

Here, we give with a simple proof of Proposition 3.1, following standard techniques (Nesterov, 2007, The-

orem 3).

2

We use in the first inequality that a gradient step z+
t = zt − 1

Aω/µk+κ
∇Ck(zt) at zt reads by smoothness Ck(w

∗
k) ≤

Ck(z
+
t ) ≤ C(zt)− 1

2(Aω/µk+κ)
∥∇Ck(zt)∥22.
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Proposition 3.1. Consider problem (3.2) where h is ℓ-Lipschitz, convex, and α-sharp for some α > 0, i.e.,
h(u) −minh ≥ α dist(u, U∗) for any u ∈ Rm where dist(u, U∗) is the Euclidean distance of u to U∗ =
argminu∈Rm h(u) ̸= ∅. Further, suppose the function g(w) = (g1(w); . . . ; gn(w)) ∈ Rnk is L-smooth and
satisfies σmin(∇g(w)⊤) ≥ ν > 0 for anyw ∈ Rd. Then, the sequence (wk)

∞
k=0 produced by the prox-linear

algorithm (3.4) with κ = Lℓ starting from arbitraryw0 ∈ Rd converges globally as F (wk)→ F ∗ := minF .
Furthermore, if an iteratewj satisfies F (wk)−F ∗ ≤ (ανn2)2/(Lℓ), the subsequence (wk)

∞
k=j convergences

quadratically as

F (wk+1)− F ∗ ≤ Lℓn2

2(αν)2
(
F (wk)− F ∗)2 . (3.5)

We prove the proposition for the case n = 1, i.e.,minw∈Rd h ◦ g(w). We can generalize to n > 1 with
the reduction g : Rd → Rmn and f : Rmn → R given by

g(w) = (g1(w); . . . ; gn(w)), and, h
(
u1; . . . ;un

)
=

1

n

n∑

i=1

hi(ui) , (A.51)

where we use semi-colons to denote the concatenation of vectors.

We are interested primarily in the overparameterized case wherem ≤ d. Below, we denote∇g(w) ∈
Rm×d

as the Jacobian of g at w. We impose the assumption that its minimal singular value is bounded

away from 0 as σmin(∇g(w)⊤) ≥ ν > 0 for any w ∈ Rd, This assumption implies the surjectivity of the

Jacobian at each w. That is, for every u ∈ Rm, there exists a v ∈ Rd such that∇g(w)v = u.

We also assume that the following minimum values are bounded from below:

h∗ = min
u∈Rm

h(u), and, (h ◦ g)∗ = min
w∈Rd

h
(
g(w)

)
.

Proposition A.17. Consider the compositional problemminw∈Rd h ◦ g(w) with following assumptions:

(a) h is ℓ-Lipschitz continuous, convex and α-sharp, i.e., h(u)−h∗ ≥ α dist(u, U∗) for any u ∈ Rm with
α > 0 and dist(u, U∗) the Euclidean distance of u to U∗ = argminu∈Rm h(u) ̸= ∅.

(b) g is L-smooth and satisfies σmin(∇g(w)⊤) ≥ ν > 0 for any w ∈ Rd.

The sequence (wk)
∞
k=0 produced by the prox-linear algorithm (3.4) with M = Lℓ starting from arbitrary

w0 ∈ Rd converges globally as (h ◦ g)(wk)→ (h ◦ g)∗ = h∗. Furthermore, as soon as an iteratewj satisfies
h(g(wk))− (h ◦ g)∗ ≤ (αν)2/(Lℓ), the subsequence (wk)∞k=j convergences quadratically as

h(g(wk+1))− (h ◦ g)∗ ≤ Lℓ

2(αν)2
(h(g(wk))− (h ◦ g)∗)2 ≤ 1

2
(h(g(wk))− (h ◦ g)∗).

Proof. For an iterate wk of the prox-linear algorithm, denote u∗
k = ProjU∗(g(wk)) the Euclidean projec-

tion of g(wk) onto the set of minimizers of h such that dist(g(wk), U
∗) = ∥g(wk)− u∗

k∥2.
Since the Jacobian ∇g(wk)

⊤
is surjective, there exists v∗k be such that ∇g(wk)v

∗
k = u∗

k − g(wk).
Furthermore, from the minimum singular value condition, there exists a choice of v∗k such that ∥v∗k∥ ≤
∥u∗

k − g(w)∥2/ν (see (Nesterov, 2007, Lemma 6) for a proof).
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By definition of the prox-linear update in (3.4), we get

h(g(wk+1)) = min
v∈Rd

{
h(g(wk) +∇g(wk)v) +

M

2
∥v∥22

}

(i)

≤ min
t∈[0,1]

{
h(g(wk) + t∇g(wk)v

∗
k) +

Mt2

2
∥v∗k∥22

}

(ii)

≤ min
t∈[0,1]

{
h(g(wk) + t(u∗

k − g(wk)) +
Mt2

2ν2
∥u∗

k − g(wk)∥22
}

(iii)

≤ min
t∈[0,1]

{
th∗ + (1− t)h(g(wk)) +

Mt2

2(να)2
(h(g(wk))− h∗)2

}
. (A.52)

Here, we (i) restricted the domain of the minimization to v = tv∗k with t ∈ [0, 1], (ii) plugged in the defi-

nition of v∗k and the bound on ∥v∗k∥, and, (iii) used the convexity and sharpness of h. Next, by subtracting

h∗ from both sides, we get

h(g(wk+1))− h∗ ≤ min
t∈[0,1]

{
(1− t)(h(g(wk))− h∗) +

t2M

2(να)2
(h(g(wk))− h∗)2

}
.

If h(g(wk))− h∗ ≤ (αν)2/M , the minimum in (A.52) is reached at t = 1 and we get

h(g(wk+1))− h∗ ≤
M

2(να)2
(h(g(wk))− h∗)2 ≤

1

2
(h(g(wk))− h∗).

This is the quadratic convergence phase. On the other hand, if h(g(wk)) − h∗ ≥ (αν)2/M , then the

minimum in (A.52) is reached at t = (να)2/ (M (h(g(wk))− h∗)) , and we have the bound

h(g(wk+1))− h∗ ≤ h(g(wk))− h∗ −
(αν)2

2M
.

Since f is bounded from below, the sequence h(g(wk)) converges to h
∗
. Hence, the minimum of the

composite objective matches the minimum of the outer function, i.e., h∗ = (h ◦ g)∗.
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Appendix B

MAUVE: Proofs and Experimental Details

Here, we provide the full details of the proofs and experiments, as well as additional experiments in Chap-

ter 4. We start with providing the missing proofs in Section B.1, followed by experimental details in Sec-

tion B.2, and experimental results in Section B.3, followed by details of the human evaluation in Section B.4.

B.1 Proof of the Statistical Bound

We restate and give the full proof of Theorem 4.2.

Theorem 4.2. Consider two discrete distributions P,Q ∈ ∆k−1, and i.i.d. samples Y1, · · · , Yn ∼ P and
Y1, · · · , Y ′

n ∼ Q. Denote P̂n = (1/n)
∑n

i=1 δYi and Q̂n = (1/n)
∑n

i=1 δY ′
i
denote the corresponding empir-

ical distributions. We have,

E
∣∣∣JS(P̂n, Q̂n)− JS(P,Q)

∣∣∣ ≤ log n

2

(
αn(P ) + αn(Q)

)
+

1

2

(
βn(P ) + βn(Q)

)
,

where αn(P ) =
∑k

i=1

√
n−1Pi and βn(P ) = E

[∑
i:P̂n,i=0 Pi log 1/Pi

]
. We also have the distribution-free

bound

E
∣∣∣JS(P̂n, Q̂n)− JS(P,Q)

∣∣∣ ≤ log n

2

(√
k

n
+
k

n

)
.

Proof. The proof relies on showing that

∣∣∣JS(P̂n, Q̂n)− JS(P,Q)
∣∣∣ is approximately Lipschitz w.r.t. ∥ ·∥TV,

the total variation distance.

Notation. Define ψ : [0, 1]× [0, 1] as

ψ(p, q) =
p

2
log

(
2p

p+ q

)
+
q

2
log

(
2q

p+ q

)
,

so that JS(P,Q) =
∑k

i=1 ψ(Pi, Qi). By the triangle inequality, we have,

∣∣∣JS(P̂n, Q̂n)− JS(P,Q)
∣∣∣ ≤

n∑

i=1

∣∣∣ψ(P̂n,i, Q̂n,i)− ψ(Pi, Q̂n,i)
∣∣∣

︸ ︷︷ ︸
=:∆i

+
∣∣∣ψ(P̂i, Q̂n,i)− ψ(Pi, Qi)

∣∣∣
︸ ︷︷ ︸

=:∆′
i

.
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Outline. We bound ∆i in terms of |P̂n,i − Pi| — by summing over all coordinates, this gives a bound

on the total variation distance ∥P̂n − P∥TV =
∑k

i=1 |P̂n,i − Pi|. If Q̂n,i = 0, then we have ∆i ≤
(log 2/2)|Pi − P̂n,i| by direct calculation. Next, we consider the case when Q̂n,i is non-zero. A first order

Taylor expansion gives the bound

∆i ≤ max
λ∈[0,1]

|ψp(λPi + (1− λ)P̂n,i, Qi)| |Pi − P̂n,i| ,

whereψp denotes the partial derivative ofψw.r.t. its first argument. Unfortunately, if p ≤ q (and especially
as p→ 0 for q fixed), we have that |ψp(p, q)| ≤ (1/2) log(q/p)→∞. We use two tricks to overcome this

issue. We take a second order Taylor expansion so that we only depend on ψp(max{Pi, P̂n,i}, Q̂n,i) and
carefully bound the second order remainder term. Secondly, Because P̂n is an empirical measure, we can

only have two possibilities: P̂n,i ≥ 1/n or P̂n,i = 0. The first case gives an additional log n dependence,

while we handle the second case with techniques from the missing mass literature.

Second Order Taylor Expansion. Assume for now that P̂n,i ≥ Pi. By convexity of ψ and a second

order Taylor expansion, we get,

0 ≤ ψ(Pi, Q̂n,i)−ψ(P̂n,i, Q̂n,i)− (Pi − P̂n,i)ψp(P̂n,i, Q̂n,i) =
1

2

∫ Pi

P̂n,i

ψpp(s, Q̂n,i)(p− s)ds

= −Pi
2

∫ P̂n,i

Pi

ψpp(s, Q̂n,i) ds+
1

2

∫ P̂n,i

Pi

sψpp(s, Q̂n,i) ds

≤ 0 +
1

4
(P̂n,i − Pi) , (B.1)

where the last step used (a) the fact that the second partial derivative ψpp is non-negative by convexity of

ψ(·, q) and (b) the following bound by direct calculation

pψpp(p, q) =
q

2(p+ q)
≤ 1

2
for all p > 0, q ≥ 0 .

We now bound the first order term in two cases:

(a) If P̂n,i ≥ Q̂n,i, then ψp(P̂n,i, P̂n,i) ≥ 0 because ψ(·, q) is convex with its global minimum at q.
Therefore, we get by direct calculation,

0 ≤ (P̂n,i − Pi)ψp(P̂n,i, Q̂n,i) =
1

2
(P̂n,i − Pi) log

(
2P̂n,i

P̂n,i + Q̂n,i

)
≤ log 2

2
(P̂n,i − Pi) .

(b) If P̂n,i ≤ Q̂n,i, then ψp(P̂n,i, Q̂n,i) ≤ 0, we get

ψp(P̂n,i, Q̂n,i) =
1

2
log

(
2P̂n,i

P̂n,i + Q̂n,i

)
≥ −1

2
log

1

2P̂n,i
.

Plugging this into (B.1) gives us, and repeating the argument with Pi and P̂n,i swapped for Pi ≥ P̂n,i gives

∆i ≤ |P̂n,i − Pi| max

{
1

4
+

1

2
log

n

2
,
1

4
,
log 2

2

}
≤ 1

2
log

1

max{Pi, P̂n,i}
|P̂n,i − Pi| . (B.2)
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Two cases based on whether i appears in the sample. If i appears in the sample, then P̂i ≥ 1/n, so
that log 1/max{P̂n,i, Pi} ≤ log n. That gives,

k∑

i=1

∆i ≤
log n

2

∑

i : P̂n,i>0

|P̂n,i − Pi|+
1

2

∑

i : P̂n,i=0

Pi log
1

Pi
.

Since ψ(p, q) = ψ(q, p), we get an analogous bound on∆′
i. This gives,

E
∣∣∣JS(P̂n, Q̂n)− JS(P,Q)

∣∣∣ ≤ log n

2
E
[
∥P̂n − P∥TV + ∥Q̂n −Q∥TV

]
+

1

2

(
βn(P ) + βn(Q)

)
.

Final Bounds. Wenowget the first part of the theorem by bounding ∥P̂n−P∥TV with Jensen’s inequality:

E
k∑

i=1

|P̂n,i − Pi| ≤
k∑

i=1

√
E(P̂n,i − Pi)2 =

k∑

i=1

√
Pi(1− Pi)

n
≤ αn(P ) .

The distribution-free bound on αn again follows from Jensen’s inequality applied to

√· as

1

k

k∑

i=1

√
ak ≤

√√√√1

k

k∑

i=1

ak .

The distribution-free bound on βn comes from P(P̂n,i = 0) = (1− Pi)n as

βn(P ) =
k∑

i=1

(1− Pi)nPi log
1

Pi
≤ k log n

n
,

from Lemma B.1.

We need the following technical lemma (Liu et al., 2021a, Lemma 31).

Lemma B.1. For all x ∈ (0, 1) and n ≥ 3, we have

0 ≤ (1− x)nx log 1

x
≤ log n

n
.

B.2 Experimental Details

The outline of this section is as follows.

• Section B.2.1: the three task domains considered in the experiments.

• Section B.2.2: training and decoding hyperparameters for each of these tasks.

• Section B.2.3: hyperparameters of MAUVE.

• Section B.2.4: details of other automatic comparison measures we consider.

• Section B.2.5: other details (software, hardware, running time, etc.).
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B.2.1 Task Domains

We consider an open-ended text generation task under three domains: web text, news and stories. As

summarized in Table 4.2, we follow a slightly different setting for the task in each domain:

Web text Generation. The goal of this task is to generate articles from the publicly available analogue

of the Webtext dataset
1
using pretrained GPT-2 models for various sizes. At generation time, we use as

prompts the first 35 tokens of each of the 5000 articles from the Webtext test set, keeping maximum gen-

eration length to 1024 tokens (which corresponds, on average, to around 750words). For comparison with

human text, we use the corresponding human-written continuations from the test set (up to a maximum

length of 1024 tokens).

News Generation. Under this task, the goal is to generate the body of a news article, given the title

and metadata (publication domain, date, author names). We use a Transformer-based (Vaswani et al.,

2017) causal language model, Grover (Zellers et al., 2019), which is similar to GPT-2, but tailored to gen-

erating news by conditioning on the metadata of the article as well. Our generations rely on pretrained

Grover architectures of various sizes. The generation prompt comprises the headline and metadata of

5000 randomly chosen articles from the April2019 set of the RealNews dataset (Zellers et al., 2019), and

the maximum article length was 1024 tokens. We reuse the publicly available Grover generations
2
for our

evaluation.

Story Continuation. Given a situation and a (human-written) starting of the story as a prompt, the goal

of this task is to continue the story. Here, we use a GPT-2 medium model fine-tuned for one epoch on

the WritingPrompts dataset (Fan et al., 2018). We use as generation prompts the first 50 tokens of 5000
randomly chosen samples of the test set of WritingPrompts. The machine generations are allowed to be up

to 512 tokens long. The corresponding test examples, truncated at 512, tokens are used as human-written

continuations.

B.2.2 Training and Decoding Hyperparameters

We use size-based variants of Transformer language models (Vaswani et al., 2017) for training each task

(domain). At decoding time, we explore a text continuation setting, conditioned on a prompt containing

human-written text. All experiments were built using pretrained (and if applicable, finetuned) models

implemented in the HuggingFace Transformers library (Wolf et al., 2020). The tasks are summarized in

Table 4.2.

Story Continuation Finetuning. We finetune GPT-2 medium on the training set of the WritingPrompts

dataset using the cross entropy loss for one epoch over the training set with an effective batch size of 32
and a block size of 512. We use the default optimizer and learning rate schedules of the HuggingFace

Transformers library, i.e., the Adam optimizer with a learning rate of 5× 10−5
.

Decoding Hyperparameters. We consider pure sampling (i.e., ancestral sampling from the model dis-

tribution), greedy decoding (i.e., choosing the argmax token recursively), and nucleus sampling (Holtzman

1https://github.com/openai/gpt-2-output-dataset
2

available at https://github.com/rowanz/grover/tree/master/generation_examples
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et al., 2020) with parameter p ∈ {0.9, 0.92, 0.95, 0.99} for web text generation and story continuation, and
p ∈ {0.9, 0.92, 0.94, 0.96, 0.98} for news generation.

B.2.3 MAUVE Hyperparameters

MAUVE’s hyperparameters are the scaling constant c, the embedding modelM , and the quantization al-

gorithm (including the size of the quantized distribution).

Scaling Constant

Note thatMAUVE’s dependence on c is order-preserving since themapx 7→ exp(−cx) is strictlymonotonic

inx. That is, ifMAUVEc1(P,Q1) > MAUVEc1(P,Q2), then it holds thatMAUVEc2(P,Q2) > MAUVEc2(P,Q2)
for all scaling constants c1, c2 > 0. In other words, the choice of the scaling constant affects the numer-

ical value of MAUVE but leaves the relative ordering between different models unchanged. We choose

c = 5 throughout because it allows for a meaning comparison between the numerical values of MAUVE;

Appendix B.3.3 gives the values of MAUVE for various values of c.

Embedding Model

We compute text embeddings from the GPT-2 large model. We find in Appendix B.3.3 that feature repre-

sentations obtained from other large transformer models such as RoBERTA (Liu et al., 2019) also achieves

similar results.

Quantization

We experiment with three quantization algorithms.

MAUVE-k-means. We first run PCA on the data matrix obtained from concatenating the hidden state

representations of the human text and model text. We keep 90% of the explained variance and normalize

each datapoint to have unit ℓ2 norm. We then run k-means with FAISS for a maximum of 500 iterations

for 5 repetitions; the repetition with the best objective value is used for the quantization. We quantize the

human text distribution and themodel text distribution by a histogram obtained from cluster memberships.

We vary the number of clusters in {100, 250, 500, 1000}. Too few clusters makes the distributions seem

closer than they actually are while too many clusters leads to many empty clusters (which makes all

distributions seem equally far away). Yet, we find in Appendix B.3.3 that MAUVE with all these values of

k correlate strongly with each other; we use as default k = 500 clusters as it is neither too small nor too

large.

MAUVE-DRMM. We use the code released by the authors of (Hämäläinen and Solin, 2020).
3
We take 10

components per layer and 3 layers for a total of 1000 components. We train the DRMM for 20 epochs

using the hyperparameters suggested by the authors, i.e., a batch size of 64 with a learning rate

γt = γ0min{1, (2− 2t/T )2} ,
where T is the total number of updates and the initial learning γ0 = 0.005. That is, the learning rate is

set to a constant for the first half of the updates and then annealed quadratically. For more details, see

(Hämäläinen and Solin, 2020, Appendix C).

3https://github.com/PerttuHamalainen/DRMM
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MAUVE-Lattice. We use the code provided by the authors of (Sablayrolles et al., 2019).
4
We train a 4-

dimensional feature representation of the hidden states for for 200 epochs using the triplet loss of (Sablay-
rolles et al., 2019), so that the learnt feature representations are nearly uniformly distributed. We use a

2-layer multilayer perceptron with batch normalization to learn a feature representation. We train this

MLP for 200 epochs with hyperparameters suggested by the authors, i.e., a batch size of 64 and an ini-

tial learning rate of 0.1. The learning rate is cut to 0.05 after half the training and 0.01 after 75% of the

training.

The learnt feature representations are then quantized using the lattice spherical quantizer into 744
bins. This work as follows: let Sr denote the integral points of the unit sphere of radius r =

√
50 in R4

. A

hidden state vector x is run through the trained MLP f to get its feature representation f(x). Next, f(x)
is quantized to argminu∈Sr

∥f(x)− u/r∥22.

B.2.4 Automatic Comparison Measures: Details and Hyperparameters

We now describe the other automatic comparison measures we compared MAUVE to, as well as their

hyperparameters.

• Generation Perplexity (Gen. PPL.): We compute the perplexity of the generated text under the

GPT-2 large model.

• Zipf Coefficient: we report the slope of the best-fit line on log-log plot of a rank versus unigram

frequency plot. Note that the Zipf coefficient only depends on unigram count statistics and is invariant

to, for instance, permuting the generations. We use the publicly available implementation of (Holtzman

et al., 2020).
5

• Repetition Frequency (Rep.): The fraction of generations which devolved into repetitions. Any gen-

eration which contains at least two contiguous copies of the same phrase of any length appearing at

the end of a phrase is considered a repetition. We consider repetitions at the token level.

• Distinct-n: The fraction of distinct n-grams from all possible n-grams across all generations. We use

n = 4.

• Self-BLEU: Self-BLEU is calculated by computing the BLEU score of each generations against all other

generations as references. We report the Self-BLEU using 4-grams. This operation is extremely ex-

pensive, so we follow the protocol of (Holtzman et al., 2020): sample 1000 generations and compute

the BLEU against all other 4999 generations. A lower Self-BLEU score implies higher diversity. This

operation takes around 7 hours to compute on a single core of an Intel i9 chip (see hardware details in

the next subsection).

• Discriminator Accuracy: We train a binary classifier to classify text as human or not. A smaller

discrimination accuracy means that model text is harder to distinguish from human text. A separate

classifier is trained for each model and decoding algorithm pair. For the story continuation task, we

train a classification head on a frozen GPT-2 large model using the logistic loss. We use 25% of the data

as a test set and the rest for training; a regularization parameter is selected with 5-fold cross validation.
For the news dataset, we follow the protocol of (Zellers et al., 2019), i.e., a Grover mega model finetuned

with a binary classification head. Results with other discriminators are reported in Appendix B.3.

4https://github.com/facebookresearch/spreadingvectors
5https://github.com/ari-holtzman/degen/blob/master/metrics/zipf.py
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B.2.5 Miscellaneous Details

Software. We used Python 3.8, PyTorch 1.7 and HuggingFace Transformers 4.3.2.

Hardware. All the experiments requiring a GPU (finetuning, sampling generations and computing em-

beddings) were performed on a machine with 8 Nvidia Quadro RTX GPUs (24G memory each) running

CUDA 10.1. Each only used one GPU at a time. On the other hand, non-GPU jobs such as computation of

MAUVE and self-BLEU were run on a workstation with Intel i9 processor (clock speed: 2.80GHz) with 32
virtual cores and 126G of memory.

Evaluation time for MAUVE. Computation of MAUVE using k-means with 5000 generations takes 1−3
minutes on a single core of an Intel i9 CPU (clock speed: 2.80GHz), using cached hidden state represen-

tations from a GPT-2 large (which are available during generation). On the other hand, MAUVE-DRMM

takes 1.75 hours on a single CPU core while MAUVE-Lattice runs in about 5 minutes on a single TITAN

Xp GPU. MAUVE-k-means and MAUVE-DRMM can also run much faster on multiple CPU cores and can

leverge GPUs although we did not use these features.

B.3 Additional Experimental Results

The outline of this section is as follows.

• Section B.3.1: full results across model size and decoding (elaborating on Section 4.4.1).

• Section B.3.2: full results across text length (elaborating on Section 4.4.1).

• Section B.3.3: study of approximations in MAUVE (elaborating on Section 4.4.2).

• Section B.3.4: some miscellaneous plots such use of MAUVE for hyperparameter tuning.

B.3.1 Comparison of Measures Across Model Size and Decoding

Full versions of Table 4.3 and Table 4.4 can be found between Table B.1 for statistics-based measures and

Table B.4 for the language modeling measures. The corresponding tables for the news and story domains

are Tables B.2 and B.3 respectively.

Note: The main paper and the appendix treat the statistics-based measures differently (Gen. PPL., Zipf,

Self-BLEU, etc). For each statistic T , the main paper (Tables 4.3 and 4.4) gives the difference |T (Q)−T (P )|
between the statistic on model text and human text, while in Tables B.1, B.2, B.3 of the supplement, we

show T (Q) in the row corresponding to Q and T (P ) in the row corresponding to human.

Results. From Table B.1, we observe that among the decoding approaches, nucleus sampling achieves the

best MAUVE followed by sampling and lastly by greedy decoding. This trend is consistent with the fraction

of distinct 4-grams. On the other hand, in comparison with the perplexity of human text, Gen. PPL is too

high for sampling and too low for greedy decoding; it does not give us a way to directly compare which

of these two is better. MAUVE, however, rates greedy decoding as far worse than ancestral sampling.

This is consistent with the empirical observation that greedy decoding produces extremely degenerate

text (Welleck et al., 2020b). Adversarial perplexity sampling produces unintelligible textwhich nevertheless

has perfect Gen. PPL, thus demonstrating its unsuitability for as a comparison measure.

201



GPT-2 Size Decoding Gen. PPL Zipf Coef. Rep. Distinct-4 Self-BLEU Human/BT(↑) MAUVE (↑)

small

Sampling 101.8800.627 0.9260.001 0.0010.000 0.9410.001 0.3270.003 −27.52 0.5890.018
Greedy 1.224 1.037 0.942 0.072 0.4650.000 – 0.008
Nucleus, 0.9 23.7880.144 1.0120.002 0.0100.001 0.8590.002 0.4360.004 −15.78 0.8780.006
Adversarial 12.554 1.073 0.006 0.365 0.525 – 0.043

medium

Sampling 129.2630.798 0.8720.001 0.0010.000 0.9530.001 0.2810.002 −30.77 0.3730.010
Greedy 1.241 0.978 0.903 0.091 0.415 – 0.012
Nucleus, 0.9 21.0730.134 0.9570.001 0.0050.001 0.8840.001 0.4020.003 −3.43 0.9150.006
Adversarial 12.554 1.006 0.005 0.381 0.444 – 0.044

large

Sampling 30.0800.196 0.9300.002 0.0020.001 0.9160.001 0.3580.001 −6.93 0.8450.010
Greedy 1.232 0.983 0.881 0.100 0.413 – 0.012
Nucleus, 0.95 13.4990.058 0.9670.002 0.0060.001 0.8700.001 0.4120.002 12.55 0.9360.003
Adversarial 12.554 0.965 0.005 0.395 0.429 – 0.035

xl

Sampling 31.8860.447 0.9300.001 0.0020.001 0.9130.001 0.3600.003 8.97 0.8820.006
Greedy 1.278 0.975 0.859 0.115 0.417 – 0.016
Nucleus, 0.95 14.1430.043 0.9660.002 0.0050.000 0.8680.001 0.4130.002 15.66 0.9400.006
Adversarial 12.554 0.986 0.005 0.397 0.448 – 0.057

Human n/a 12.602 0.952 0.002 0.878 0.382 47.25 –

Table B.1: Comparison measures across different model sizes, and decoding approaches for web text

generations. Subscripts indicate the s.d. across 5 runs for the sampling-based methods; greedy decoding,

being deterministic, always returns the same value for a given model. For nucleus sampling, we show

the best hyperparameter value from {0.9, 0.92, 0.95, 0.99} as per MAUVE. The column “Human/BT” gives

the Bradley-Terry score obtained from a pairwise human evaluation (Section 4.4.3). Boldfaced numbers

indicate best performance according to the measure, or closest to the human reference, when applicable.

MAUVE shows that larger models perform better, across decoding approaches; moreover, nucleus sampling

is the best decoding algorithm as per MAUVE.

Grover Size Decoding Gen. PPL Zipf Coef. Rep. Distinct-4 Self-BLEU % Disc. Acc.(↓) mauve(↑)

base

Sampling 37.505 0.942 0.002 0.882 0.419 99.925 0.700
Greedy 1.413 1.038 0.518 0.081 0.548 100.000 0.005
Nucleus, 0.96 23.064 0.974 0.006 0.847 0.462 99.950 0.701

large

Sampling 27.796 0.946 0.002 0.878 0.429 99.450 0.794
Greedy 1.575 1.012 0.366 0.124 0.504 100.000 0.005
Nucleus, 0.98 20.792 0.962 0.002 0.859 0.450 98.475 0.750

mega

Sampling 22.656 0.950 0.001 0.879 0.427 97.300 0.808
Greedy 1.796 1.003 0.316 0.176 0.500 100.000 0.005
Nucleus, 0.96 14.834 0.972 0.003 0.848 0.469 88.675 0.813

Human n/a 15.356 0.956 0.002 0.842 0.473 – –

Table B.2: News generation evaluation across different Grover model sizes, and decoding approaches.

For nucleus sampling, we show the best hyperparameter value from {0.9, 0.92, 0.94, 0.96, 0.98} as per
MAUVE. Disc. Acc. denotes the discrimination accuracy (%) of a Grover mega model trained to distinguish

human text from machine text generated with the model and decoding algorithm of each row. Boldfaced

numbers indicate performance closest to the human reference when applicable, or the best performance

according to the measure. MAUVE favors nucleus sampling over ancestral sampling and greedy decoding.

The results in Tables B.2 and B.3 for the news and story domains are qualitatively similar to the webtext
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Decoding Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU % Disc. Acc. (↓) mauve(↑)
Sampling 38.9830.143 1.0660.002 0.0010.000 0.8330.001 0.5180.003 0.7810.004 0.9050.010
Nucleus, 0.9 15.4330.042 1.2010.002 0.0060.001 0.7190.001 0.6370.002 0.7520.004 0.8870.008
Nucleus, 0.92 17.4220.060 1.1790.002 0.0040.001 0.7420.001 0.6200.003 0.7200.006 0.9010.005
Nucleus, 0.95 21.5990.127 1.1470.002 0.0030.000 0.7750.002 0.5890.005 0.6860.006 0.9200.004
Top-100 16.5270.041 1.2520.001 0.0020.000 0.7430.001 0.6310.001 0.7820.002 0.8840.007
Top-500 23.8330.076 1.1530.001 0.0010.000 0.7940.001 0.5760.002 0.6970.005 0.9190.005
Greedy 1.739 1.362 0.988 0.101 0.742 0.997 0.005

Human 19.704 1.101 0.001 0.783 0.571

Table B.3: Story continuation evaluation across different and decoding approaches with GPT-2 medium.

Disc. Acc. denotes the discrimination accuracy (%) of a classifier (a frozen GPT-2 large model with classifi-

cation head) trained to distinguish human text from machine text generated with the decoding algorithm

of each row. Boldfaced numbers indicate performance closest to the human reference when applicable, or

the best performance according to the measure. MAUVE favors nucleus and top-K sampling over ancestral

sampling and greedy decoding.

GPT-2 Size Decoding SP(↑) JS(↓) ε-PPL(↓) Human/BT(↑) MAUVE (↑)

small

Greedy 0.431 0.394 1049.589 – 0.008
Sampling 0.653 0.425 19.401 −27.52 0.5890.018
Nucleus, 0.9 0.652 0.414 25.938 −15.78 0.8780.006

medium

Greedy 0.465 0.371 708.057 – 0.012
Sampling 0.670 0.402 14.631 −30.77 0.3730.010
Nucleus, 0.9 0.670 0.391 18.821 −3.43 0.9150.006

large

Greedy 0.483 0.359 580.020 – 0.012
Sampling 0.679 0.381 12.658 −6.93 0.8450.010
Nucleus, 0.95 0.679 0.374 14.938 12.55 0.9360.003

xl

Greedy 0.496 0.349 497.696 – 0.016
Sampling 0.686 0.369 11.412 8.97 0.8820.006
Nucleus, 0.95 0.686 0.363 13.677 15.66 0.9400.006
Adversarial n/a n/a n/a – 0.057

Table B.4: MAUVE versus comparison measures based on language modeling (SP, JS and ε-PPL) across
different model sizes, and decoding approaches for web text generations. SP, JS and ε-PPL are deterministic

because they do not require generations from a decoding algorithm; moreover they cannot measure the

quality of the adversarial decoding. The column “Human/BT” gives the Bradley-Terry score obtained from

a pairwise human evaluation (Section 4.4.3). Boldfaced numbers indicate best performance according to

the measure.

Discriminator

BERT GPT-2 Grover

Base Large Small Medium Large Base Large Mega

Correlation 0.803 0.817 0.831 0.829 0.822 0.928 0.956 0.925

Table B.5: Spearman rank correlation between the discrimination accuracy for various discriminators and

MAUVE for news generation. All entries have a p-value of < 2× 10−6
.
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Decoding Greedy Beam b = 4
Beam b = 4 +

no 4-gram repeat

Beam b = 8
Beam b = 8 +

no 4-gram repeat

Ancestral Nucleus

Mauve 0.008 0.021 0.026 0.366 0.341 0.5890.02 0.8780.007

Table B.6: MAUVE and beam search: we compare beam search with beam sizes b = 4, 8 (with and without
allowing 4-gram repetitions) with other decoding algorithms of Table B.1 for web text generation with

GPT-2 small. The subscript denotes the standard deviation over 5 random seeds, and is omitted for the

deterministic greedy decoding and beam search.

GPT-2 size Decoding RoBERTa GPT-2

small Sampling 0.174 0.589

Greedy 0.056 0.008

Nucleus, 0.9 0.723 0.878

medium Sampling 0.292 0.372

Greedy 0.114 0.011

Nucleus, 0.9 0.891 0.915

large Sampling 0.684 0.845

Greedy 0.125 0.012

Nucleus, 0.95 0.920 0.936

xl Sampling 0.780 0.881

Greedy 0.170 0.016

Nucleus, 0.95 0.947 0.940

Table B.7: Comparison of MAUVE computed with dense embeddings from RoBERTa (Liu et al., 2019) large

with the default GPT-2 large. Boldfaced numbers indicate best performance according to the measure.

The two feature representations have a Spearman rank correlation of 0.993. See Figure 4.7 for a visual

representation of a subset of this table.

domain. MAUVE, like discrimination accuracy, rates larger models as better and nucleus sampling as better

than ancetral sampling and greedy decoding. An exception to this rule is Grover large, where MAUVE

thinks ancestral sampling is better than nucleus sampling. The statistics-based measures Zipf coefficient,

Repetition and the fraction of distinct 4-grams all prefer smaller Grover sizes.

Nextwe turn to the languagemodeling comparisonmeasures in Table B.4. JS consistently favors greedy

decoding, which produces far worse text than other decoding algorithms. Likewise, ε-PPL favors ancestral
sampling, which also produces somewhat degenerate text (Holtzman et al., 2020), while SP appears to be

unable to distinguish between ancestral sampling and nucleus sampling. This makes SP, JS and ε-PPL
unsuitable to compare generated text to human text.

While most measures behave nearly as expected across model architectures (larger models produce

better generations for the same decoding algorithm), Self-BLEU prefers generations from GPT-2 medium

over GPT-2 large or xl. This indicates that while measures based on word/token statistics are important

diagnostic tools, they do not capture the quality of generated text entirely.

Discriminator Accuracy: Choice of Discriminator. We show the Spearman rank correlation between

the discriminator accuracy for various choices of the discriminator in Table B.5. The results show that

MAUVE has a strong correlation with the discrimination accuracy for a variety of discriminators, including
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one based on a masked language model, BERT (Devlin et al., 2019). This correlation is particular strong

for the Grover-based discriminators. We note that evaluating any one model and decoding algorithm pair

requires fine-tuning a separate model. This can be particularly expensive for the larger models such as

Grover mega. MAUVE, on the other hand, is inexpensive in comparison.

Beam Search. We also calculate MAUVE for beam search in Table B.6. MAUVE is able to quantify the

qualitative observations of Holtzman et al. (2020): beam search produces extremely degenerate text, but

slightly better than greedy decoding. Disallowing repetition of 4-grams substantially improves the quality

of the produced text, since the most glaring flaw of beam search is that the text is highly repetitive. How-

ever, the quality of the resulting text is still far worse than produced by ancestral sampling, and hence also

nucleus sampling.

B.3.2 Behavior Across Text Length

We now turn to the plot of comparison measures versus text length in Figure B.1. We expect the quality of

the generation to degrade as the maximum length of the text (both machine and human-written) increases.

Comparison Measures. Figure B.1 plots MAUVE, Gen. PPL. and the Sparsemax score (Martins et al.,

2020). In additionwe also plot the Fréchet distance, a variant of the Fréchet InceptionDistance (FID) (Heusel

et al., 2017) which is the de facto standard evaluation metric for GANs in computer vision. The FID is com-

puted as the Wasserstein-2 distance between Gaussians fit to the feature representation from using an

Inception network; we adapt it to our setting by using embeddings from GPT-2 large instead. For Gen.

PPL., we plot the difference of Gen. PPL., i.e., |Tppl(Q≤ℓ) − Tppl(P≤ℓ)|, Tppl(P≤ℓ) denotes the perplexity
of the text x ∼ P truncated at a length of ℓ. The perplexity is measured using GPT-2 large model as the

external language model.

Results. MAUVE indeed shows this expected behavior. However, the Fréchet distance (Heusel et al., 2017)

actually decreases for nucleus sampling for all GPT-2 sizes and ancestral sampling for GPT-2 xl. This shows

that it is not suitable as an evaluation metric for text. While Gen. PPL. mostly agrees with MAUVE about

quality versus text length, we observe non-monotonic behavior for nucleus sampling with GPT-2 small

and large. Finally, sparsemax score (Martins et al., 2020) does not depend on the samples generated and is

therefore independent of the maximum text length.

B.3.3 Effect of Approximations of MAUVE

We expand upon the approximation results from the main paper in §4.4.2.

EmbeddingModel. Table B.7 shows MAUVE compute with RoBERTa large in addition to the default GPT-

2 large. We restrict the maximum text length of the RoBERTa model to 256 BPE tokens, since RoBERTa

cannot handle sequences of length 1024 tokens. We observe similar trends with both: larger models are

rated higher and nucleus sampling is preferred over ancestral sampling while greedy decoding is rated

very low. The Spearman rank correlation between MAUVE computed with the two feature representations

is 0.993, indicating that MAUVE is robust to feature representations. We observe that RoBERTa penalizes

ancestral sampling more while rating greedy decoding higher across all model sizes. We leave a study of

the biases induced by different feature representations to future work.
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Quantization Algorithm. We compare different choices of the quantization to k-means with k = 500,
which is our default. The Spearman rank correlation between MAUVE computed with k-means for k
ranging from 100 to 5000 correlates nearly perfectly with that of k = 500. In particular, the Spearman

correlation is exactly 0.99 or 1.00. Likewise, MAUVE computed with DRMM or lattice quantization has

a near-perfect Spearman correlation of at least 0.99 with k-means. While the actual numerical value of

MAUVE could vary with the quantization algorithm, these results show that the rankings induced by various
variants of MAUVE are nearly identical.

See Figure B.3 (Left) for how MAUVE-k-means depends on the number of clusters, k. If k is too small

(k < 100), all methods are scored close to 1. If k is too large k > 2000), all methods are scored close to 0.
There is a large region between these two extremes where MAUVE-k-means is effective.

Effect of Number of Generations. Figure B.2 plots the value of MAUVE versus the sample size n, with
the number of clusters in k-means chosen as k = n/10. We observe that a smaller sample size gives an

optimistic estimate of MAUVE; this is consistent with (Djolonga et al., 2020, Prop. 8). We also note that a

smaller sample size leads to a larger variance in MAUVE.

B.3.4 Miscellaneous Plots

Figure B.3 plots MAUVE for nucleus and top-K sampling for various values of the hyperparameters p and
K .

B.4 Human Evaluation Details

B.5 Human Evaluation: Protocol and Full Results

Here, we describe the human evaluation protocol and results of §4.4.3 in detail. The outline for this section

is

• Section B.5.1: Overview of the human evaluation setup.

• Section B.5.2: Details of the statistical model we fit to the raw data.

• Section B.5.3: Full results of the human evaluation.

• Section B.5.4: Additional details of the human evaluation protocol.

B.5.1 Overview

We performed a human evaluation for web text generations where human annotators are instructed to

select one from a pair of texts. The pairs might come from human and machine text, or different sources

of machine text; each is based on the same prompt for generation (recall that we obtained the prompt as a

prefix from the human text).

The annotators were presented with a pairs of continuations of the same prompt andwere instructed to

choose which one is (a) more interesting, (b) more sensible, and, (c) more likely to be written by a human.

Each question could have a different answer.

We considered all four GPT-2 model sizes with pure sampling and nucleus sampling. We collected 90
annotations for each of the 8 model-human pairs and

(
8
2

)
model-model pairs on the Amazon Mechanical
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Turk platform using the interface shown in Figure B.4. We fit a Bradley-Terry model to obtain a ranking

from the pairwise preferences of the crowd-workers. We report the correlation of MAUVE with obtained

Bradley-Terry scores.

B.5.2 From Pairwise Preferences to Ranking: the Bradley-Terry Model

We compute the Bradley-Terry (BT) scores from the pairwise preferences obtained from the human eval-

uation along each of the three axes interesting, sensible and more likely to be written by a human.

Bradley-TerryModelReview. Givenn playerswith scoresw1, · · · , wn, the the Bradley-Terrymodel (Mar-

den, 1995) models the outcome of a head-to-head comparison of any two players using a sigmoid
6

Prob(i beats j) =
1

1 + e−(wi−wj)/100
.

The model also assumes the outcome of each head-to-head comparison of any pair of players is indepen-

dent of all other comparisons. Note that the model is invariant to additive shifts of the scores, i.e., the

model probabilities induced by scores w1 +C, · · · , wn+C is same as the that induced by w1, · · · , wn for
any constant C . For uniqueness, we normalize the scores so that their mean is 0.

Fitting the Model. The Bradley-Terry model can be fit to data using Zermelo’s algorithm (Hunter, 2004).

Suppose that we are given a dataset of head-to-head comparisons summarized by numbers Nij denoting

the number of times player i has defeated player j. Then, the negative log-likelihood ℓ(w1, · · ·wn) of the
data under the Bradley-Terry model can be written as

ℓ(w1, · · · , wn) = −
n∑

i=1

n∑

j=1

Nij log(1 + e−(wi−wj)/100) .

This is convex in the parameters w1, · · · , wn since the log-sum-exp function is convex. Zermelo’s al-

gorithm (Hunter, 2004) can be used to compute the maximum likelihood estimate. Denote w̃i = wi/100.

Starting from an initial estimate w̃
(0)
1 , · · · , w̃(0)

n , each iteration of Zermelo’s algorithm performs the update

u
(t)
i = log


∑

j ̸=i
Nij


− log


∑

j ̸=i

Nij +Nji

exp(w̃
(t)
i ) + exp(w̃

(t)
j )




followed by the mean normalization

w̃
(t+1)
i = u

(t)
i −

1

n

n∑

j=1

u
(t)
j .

Processing Raw Data. We collect the result of a head-to-head comparison using 5 options: Definitely

A/B, Slightly A/B or a Tie. We combine Definitely A and Slightly A into a single category denoting that A

wins, while ties were assigned to either A or B uniformly at random.

6

the scaling factor 100 is arbitrary and does not change the model
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BT/Human-like BT/Interesting BT/Sensible

Human 47.251 25.503 43.229
xl Nucleus, p = 0.95 15.664 23.046 31.888

Sampling 8.966 9.529 7.753
large Nucleus, p = 0.95 12.553 6.785 8.781

Sampling −6.935 −1.532 −7.106
medium Nucleus, p = 0.9 −3.429 −12.824 −7.293

Sampling −30.769 −34.323 −32.004
small Nucleus, p = 0.9 −15.783 −0.697 −7.442

Sampling −27.518 −15.487 −37.805

Table B.8: Fitted Bradley-Terry (BT) scores for each of the three axes rated by human annotators: “Human-

like” denotes measures how likely the text is to be written by a human, while “Interesting” and “Sensible”

quantify how interesting or sensible the text is. The Spearman rank correlations between each of these

scores are (p-value ≤ 5 × 10−4
for each): Human-like and Interesting: 0.917, Human-like and Sensible:

0.917, Interesting and Sensible: 0.967.

Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU mauve

BT/Human-like 0.810 0.833 −0.167 0.738 0.595 0.952
BT/Interesting 0.643 0.524 −0.143 0.524 0.405 0.810
BT/Sensible 0.738 0.690 −0.071 0.595 0.524 0.857

Table B.9: Spearman rank correlation between the Bradley-Terry scores from the human evaluation and

the various automatic comparison measures.

B.5.3 Full Results of the Human Evaluation

BT Model for Human Eval. In our setting, each “player” is a source of text, i.e., one human, plus,

eight model and decoding algorithm pairs (four model sizes GPT-2 small/medium/large/xl coupled with

pure sampling or nucleus sampling). We compute the BT score of each player as the maximum likelihood

estimate of corresponding the parameters w1, · · · , wn based on head-to-head human evaluation data.

A higher BT score indicate a stronger preference from human annotators. The BT scores are reported

in Table B.8. The Spearman rank correlations between each of these scores are (p-value ≤ 5 × 10−4
for

each):

• Human-like and Interesting: 0.917,

• Human-like and Sensible: 0.917,

• Interesting and Sensible: 0.967.

Interpreting BT scores. The BT scores reported in Table B.8 give us predictions from the sigmoid model

above. For example, consider the column “BT/Human-like”. The best model-generated text, GPT-2 xl with

nucleus sampling, will lose to human text with probability 0.578. At the other end, GPT-2 small with

nucleus sampling will lose to human text with probability 0.679. This shows that there is still much room

for improvement in machine generated text.

Discussion. In general, the BT scores from human evaluations and MAUVE both indicate that (a) nucleus
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sampling is better than pure sampling for the same model size, and, (b) larger model sizes are better for

the same decoding algorithm. There is one exceptions to this rule, as per both the human evaluations and

MAUVE: GPT-2 small is better than GPT-2 medium for pure sampling.

Correlation Between Comparison Measures. We compare the Spearman rank correlation between

the various automatic comparison measures and the BT scores from human evaluations in Table B.9. In

terms of being human-like, we observe that MAUVE correlates the best (0.95) with human evaluations.

While this is also the case for Zipf coefficient, we note that it is based purely on unigram statistics; it is

invariant to the permutation of tokens, which makes it unsuitable to evaluate generations.

We note that MAUVE does disagree with human evaluations on specific comparisons. For instance,

MAUVE rates nucleus sampling with GPT-2 medium as being better than pure sampling from GPT-2 large

and xl. The same is also the case with Gen. PPL. We leave a detailed study of this phenomenon to future

work.

B.5.4 Additional Details

We describe more details for the human evaluation. The terminology below is taken from (Shimorina and

Belz, 2021).

Number of Outputs Evaluated. We compare 9 players: one player is “human”, representing human-

written text, whereas the other 8 are text generated by the model using the first 35 tokens of the corre-

sponding human generation as a prompt. Each of the 8 non-human players come from a GPT-2 model of

different sizes (small, medium, large, xl) and two decoding algorithms (pure sampling and nucleus sam-

pling). We perform 90 comparisons between each pair of players, so each player is evaluated 90×8 = 720
times.

Prompt Filtering. We manually selected 1831 out of 5000 prompts which are well-formed English sen-

tences from the webtext test set
7
. For every head-to-head comparison, we sample 90 prompt without

replacement and then sample the corresponding completions (for human-generated text, we use the test

set of webtext). We only consider a pair of players for human evaluation if the generation from each player

is at least 200 BPE tokens long (and we truncate each generation at a maximum length of 256 BPE tokens).

Number of Evaluators. 214 unique evaluators participated in the evaluation. Of these, 11 evaluators

supplied at least 50 annotations 95 evaluators supplied at least 10 annotations.

Evaluator Selection and Pay. We conduct our human evaluation on Amazon Mechanical Turk. Since

the task only requires elementary reading and understanding skills in English, we open the evaluations

to non-experts. Each crowd-worker was paid 0.40 per annotation. The pay was estimated based on a

$16/hour wage for the 85th percentile of response times from a pilot study (which was approx. 98 seconds
per annotation). There evaluators are not previously known to the authors.

7

The webtext dataset is scraped from the internet and is not curated. It contains poor prompts such as headers of webpages

or error message, such as: “Having trouble viewing the video? Try disabling any ad blocking extensions currently running on

your browser” or “Front Page Torrents Favorites My Home My Galleries Toplists Bounties News Forums Wiki”. We exclude such

prompts as they are unsuitable for human evaluation.
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Training and Instructions. The evaluators were given instructions about the task and two detailed

examples. No other training was provided due to the elementary nature of the task. The screenshots of

these examples are given in Figure B.5 while the instructions read:

Task Info: We are studying how good AI models are at generating text on the internet. You are given

a snippet of text from a random document on the internet, called the "prompt" or the "context", as well

as and two continuations, A and B. One or both of these is written by an AI. You must choose (a) which

of two continuations is more interesting, (b) which makes more sense given the prompt, and, (c) which

is more likely to have been written by a human, as per your assessment.

Guidelines:

• There are five choices for each question: Definitely A/B, Slightly A/B, or Tie. Please use the "Tie"

option extremely sparingly! (No more than one in every ten pairs should be chosen as a tie along

any of the three questions).

• The questions can have different answers! Some text is very creative or interesting, but it doesn’t

quite fit the prompt or make sense.

• Try to focus on quality over quantity. The text can be long but contain rambly gibberish.

• Don’t worry if the text ends abruptly, or has other artifacts of the website downloading process

(text like ’Advertisement’ for instance).

• Please do your best, some of these are pretty challenging!

• Answering each question should take around 1.5 minutes on average, as per our estimation. We

have calibrated the pay to be $16 per hour with this speed.

Quality Control. All annotations made in under 25 seconds were excluded for quality control (the mean

response time per annotation was 47 seconds).

Quality Criteria. We use three quality criteria. The questions asked to the evaluators are (verbatim):

1. Interestingness: “Which continuation is more interesting or creative, given the context?"

2. Sensible: “Which continuation makes more sense, given the context?”

3. Human-like: “Which continuation is more likely to be written by a human?”

Note that we do explicitly name the criteria in the evaluation form, although those names could be inferred

from the definitions. We use these names only in the paper.

Further Details:

• Each of the criteria is a “Goodness” criteria as per the classification of (Belz et al., 2020). Goodness refers

to the setting where there is no single, general mechanism for deciding when outputs are maximally

good, only for deciding for two outputs which is better and which is worse. E.g. for Fluency, even if

outputs contain no disfluencies, there may be other ways in which any given output could be more

fluent.

• Each criterion assesses outputs as a whole, not just form or just content.

• The output quality is assessed without referring to anything other than the output itself, i.e. no system-

internal or external frame of reference.

• Each criterion involves a subjective assessments of preferences by evaluators.

• The quality of outputs is assessed without considering their effect on something external to the system,

e.g. the performance of an embedding system or of a user at a task.

• For each criteria, we provide 5 options: “Definitely/Slightly A/B” and “Tie (Use sparingly!)”
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Figure B.1: Generation quality versus maximum generation length as per various comparison measures

for web text generation with GPT-2. We expect the quality of the generation to degrade as the maximum

length of the text (both machine and human-written) increases. MAUVE is the only comparison measure

which correctly shows this behavior across all models and decoding algorithms. The shaded area denotes

one standard deviation over generations from 5 random seeds.
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Figure B.3: Left: MAUVE-k-means for various values of the number of clusters k. We use k = 500 as our
default because it is neither too small (every method is scored close to 1) nor too large (every method is

scored close to 0). Center&Right: MAUVE for nucleus and top-K sampling for different values of p andK
for GPT-2 large. MAUVE rates nucleus sampling with p = 0.95 and top-K sampling with 100 ≤ K ≤ 1000
as the best choices. The shaded area denotes one s.d. over generations from 5 random seeds.
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Figure B.4: Mechanical Turk interface for human evaluation.
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Figure B.5: Annotated examples shown to the evaluators.
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Appendix C

RFA: Experimental Details

In this chapter, we we give complete experiments details in Section C.1 and additional numerical results

in Section C.2. The numerical study of the Weiszfeld algorithm is given in Section C.3.

C.1 Experimental Details

The outline of this section is:

• Section C.1.1 gives the dataset and task description.

• Section C.1.2 discusses the hyperparameter tuning.

• Section C.1.3 describes the evaluation methodology.

C.1.1 Datasets and Task Description

We experiment with three tasks, (1) handwritten-letter recognition, (2) character-level language modeling,

and, (3) sentiment analysis. As discussed in Section 5.1, we take the weight αi ∝ Ni, which is the number

of data points available on device i.

Handwritten-Letter Recognition

The first dataset is the EMNIST dataset (Cohen et al., 2017) for handwritten letter recognition.

Data. Each inpt x is a gray-scale image resized to 28 × 28. Each output y is categorical variable which

takes 62 different values, one per class of letter (0-9, a-z, A-Z).

Formulation. The task of handwritten letter recognition is cast as a multi-class classification problem

with 62 classes.

Distribution of Data. The handwritten characters in the images are annotated by the writer of the

character as well. We use a non-i.i.d. split of the data grouped by a writer of a given image. We discard

devices with less than 100 total input-output pairs (both train and test), leaving a total of 3461 devices. Of

these, we sample 1000 devices to use for our simulations, corresponding to about 30% of the data. This

selection held constant throughout the simulations. The number of training examples across these devices
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summarized in the following statistics: median 160, mean 202, standard deviation 77, maximum 418 and

minimum 92. This preprocessing was performed using LEAF (Caldas et al., 2018).

Models. For the model φ, we consider two options: a linear model and a convolutional neural network.

• Linear Model: The linear model maintains parametersw1, · · · , w62 ∈ R28×28
. For a given image x, class

l is assigned score ⟨wl, x⟩, which is then converted to a probability using a softmax operation as pl =
exp(⟨wl, x⟩)/

∑
l′ exp(⟨wl′ , x⟩). For a new input image x, the prediction is made as argmaxl⟨wl, x⟩.

• Convolutional Neural Network (ConvNet): The ConvNet (LeCun et al., 1998) we consider contains two

convolutional layers with max-pooling, followed by a fully connected hidden layer, and another fully

connected (F.C.) layer with 62 outputs. When given an input image x, the output of this network is

assigned as the scores of each of the classes. Probabilities are assigned similar to the linear model with

a softmax operation on the scores. The schema of network is given below:

Input

28× 28
−→

Conv2D

filters = 32
kernel = 5× 5

−→ ReLU −→
Max Pool

kernel = 2× 2
stride = 2

−→
Conv2D

filters = 64
kernel = 5× 5

−→

ReLU −→
Max Pool

kernel = 2× 2
stride = 2

−→ F.C.

units = 2048
−→ ReLU −→ F.C.

units = 62
−→ score

Loss Function. Weuse themultinomial logistic loss ℓ(y, p) = − log py , for probabilities p = (p1, · · · , p62)
and y ∈ {1, · · · , 62}. In the linear model case, it is equivalent to the classical softmax regression.

Evaluation Metric. The model is evaluated based on the classification accuracy on the test set.

Character-Level Language Modeling

We learn a character-level language model over the Complete Works of Shakespeare (Shakespeare). The

goal is to read a few characters and predict the next character which appears.

Data. The dataset consists of text from the Complete Works of William Shakespeare as raw text.

Formulation. We formulate the task as a multi-class classification problem with 53 classes (a-z, A-Z,

other) as follows. At each point, we consider the previous H = 20 characters, and build x ∈ {0, 1}H×53

as a one-hot encoding of theseH characters. The goal is then try to predict the next character, which can

belong to 53 classes. In this manner, a text with l total characters gives l input-output pairs.

Distribution of Data. We use a non-i.i.d. split of the data. Each role in a given play (e.g., Brutus from The

Tragedy of Julius Caesar) is assigned as a separate device. All devices with less than 100 total examples are

discarded, leaving 628 devices. The training set is assigned a random 90% of the input-output pairs, and

the other rest are held out for testing. This distribution of training examples is extremely skewed, with the

following statistics: median 1170, mean 3579, standard deviation 6367, maximum 70600 and minimum 90.

This preprocessing was performed using LEAF (Caldas et al., 2018).
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Models. We use a long-short term memory model (LSTM) (Hochreiter and Schmidhuber, 1997) with 128
hidden units for this purpose. This is followed by a fully connected layer with 53 outputs, the output of

which is used as the score for each character. As previously, probabilities are obtained using the softmax

operation.

Loss Function. We use the multinomial logistic loss.

Evaluation Metric. The model is evaluated based on the accuracy of next-character prediction on the

test set.

Sentiment Analysis

The third task is analyze the sentiment of tweets as positive or negative.

Data. Sent140 (Go et al., 2009) is a text dataset of 1,600,498 tweets produced by 660,120 Twitter accounts.

Each tweet is represented by a character string with emojis redacted. Each tweet is labeled with a binary

sentiment reaction (i.e., positive or negative), which is inferred based on the emojis in the original tweet.

Formulation. The task is a binary classification problem, with the output being a positive or negative

sentiment, while the input is the raw text of the tweet.

Distribution of Data. We use a non-i.i.d. split of the data. Each client device represents a Twitter

user and contains tweets from this user. We discarded all clients containing less that 50 tweets, leaving

only 877 clients. The training set is assigned a random 80% of the input-output pairs, and the other rest

are held out for testing. This distribution of training examples across client devices is skewed, with the

following statistics: median 55, mean 65.3, standard deviation 32.4, maximum 439 and minimum 40. This

preprocessing was performed using LEAF (Caldas et al., 2018).

Models. We use a linear model φ(x;w) = w⊤ϕ(x), where the feature representation ϕ(x) ∈ R50
of text

x is obtained as the average of the GloVe embeddings (Pennington et al., 2014) G(·) of each word in the

tweet, i.e.,

ϕ(x) =
1

|x|

|x|∑

i=1

G(xi) .

Loss Function. We use the binary logistic loss.

Evaluation Metric. We use the binary classification accuracy.

C.1.2 Methods, Hyperparameters and Variants

We first describe the corruption model, followed by various methods tested.

217



the geometric median’s robustness

geometric m

or s’naide

Text:

x, y :

ex, ey : m

Figure C.1: Illustration of the data corruption introduced in the Shakespeare dataset. The first line denotes

the original text. The second line shows the effective xwhen predicting the “m” of the word “median”. The

second line shows the corresponding x̃ after the introduction of the corruption. Note that x̃ is the string

“edian's ro” reversed.

Corruption Model

Since the goal of this work to test the robustness of federated learning models in the setting of high cor-

ruption, we artificially corrupt updates while controlling the level of corruption. We use the following

corruption models.

Data Corruption. This is an example of static data poisoning. The model training procedure is not

modified, but the data fed into the model is modified. In particular, we take a modification D̃i of the local

dataset Di of client i and run the training algorithm on this different dataset. The exact nature of the

modification depends on the dataset:

• EMNIST: We take the negative of the image x. Mathematically, D̃i(x, y) = Di(1− x, y), assuming the

pixels of x are normalized to lie in [0, 1]. The labels are left unmodified.

• Shakespeare: We reverse the original text. Mathematically, D̃i(c1 · · · c20, c21) = Di(c21 · · · c2, c1) This
is illustrated in Fig. C.1. The labels are left unmodified.

• Sent140: We flip the label, i.e., D̃i(x, y) = Di(x,−y). The text in the tweet remains unchanged.

Gaussian corruption. This is an example of update poisoning. The data is not modified here but the

update of a client device is directly replaced by a Gaussian random variable, with standard deviation σ
equal to the standard deviation of the original update across its components. Note that we corrupt the

update to the model parameters transmitted by the device, which is typically much smaller in norm than

the model parameters themselves.

Omniscient corruption. This is an example of update poisoning. The data is not modified here but the

parameters of a device are directly modified. In particular, w
(t+1)
i for i ∈ C is set to be

w
(t+1)
i = − 1∑

j∈St∩C αj

(
2
∑

j∈St\C

αjw
(t)
j,τ +

∑

j∈St∩C
αjw

(t)
j,τ

)
,

such that ∑

i∈St

αiw
(t+1)
i = −

∑

i∈St

αiw
(t)
i,τ .

In other words, the weighted arithmetic mean of the model parameter is set to be the negative of what it

would have other been without the corruption. This corruption model requires full knowledge of the data

and server state, and is adversarial in nature.
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Implementation details. Given a corruption level ρ, the set of devices which return corrupted updates

are selected as follows:

• Start with C = ∅.

• Sample device i uniformly without replacement and add to C. Stop when

∑
i∈C αi just exceeds ρ.

Methods

We compare the following algorithms:

• the FedAvg algorithm (McMahan et al., 2017),

• the RFA algorithm proposed here in Algorithm 5.1,

• the minibatch stochastic gradient descent (SGD) algorithm.

Hyperparameters

The hyperparameters for each of these algorithms are detailed below.

FedAvg. The FedAvg algorithm requires the following hyperparameters.

• Devices per roundm: We use 100 for EMNIST and 50 for both the Shakespeare and Sent140 datasets.

• Batch Size and Number of Local Epochs: Instead of running τ local updates, we run for ne local epochs
following (McMahan et al., 2017) with a batch size of b. For the EMNIST dataset, we use b = 50, ne = 5,
and for Shakespeare and Sent140, we use b = 10, ne = 1.

• Learning Rate (γt): We use a learning a learning rate scheme γt = γ0C
⌊t/t0⌋

, where γ0 and C were

tuned using grid search on validation set (20% held out from the training set) for a fixed time horizon on

the uncorrupted data. The values which gave the highest validation accuracy were used for all settings
- both corrupted and uncorrupted. The time horizon used was 2000 iterations for the EMNIST linear

model, 1000 iterations for the EMNIST ConvNet 200 iterations for Shakespeare LSTM.

• Initial Iterate w(0)
: Each element of w(0)

is initialized to a uniform random variable whose range is

determined according to TensorFlow’s “glorot_uniform_initializer”.

RFA. RFA’s hyperparameters, in addition to those of FedAvg, are:

• Algorithm: We use the smoothed Weiszfeld algorithm, as discussed in Sec. 5.3.

• Smoothing parameter ν: Based on the interpretation that ν guards against division by small numbers,

we simply use ν = 10−6
throughout.

• Robust Aggregation Stopping Criterion: This concerns the stopping criterion used to terminate the

smoothed Weiszfeld algorithm. We use two criteria: an iteration budget and a relative improvement

condition - we terminate if a given iteration budget has been extinguished, or if the relative improvement

in objective value |gν(v(r))− gν(v(r+1))|/gν(v(r)) ≤ 10−6
is small.

C.1.3 Evaluation Methodology and Other Details

We specify here the quantities appearing on the x and y axes on the plots, as well as other details.

xAxis. Asmentioned in Section 5.1, the goal of federated learning is to learn themodel with as few rounds

of communication as possible. Therefore, we evaluate various methods against the number of rounds of

communication, which we measure via the number of calls to a secure average oracle.

Note that FedAvg and SGD require one call to the secure average oracle per outer iteration, while RFA

could require several. Hence, we also evaluate performance against the number of outer iterations.
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Figure C.2: Robustness of RFA and FedAvg for an i.i.d. data split on Sent140 with data corruption.

y Axis. We are primarily interested in the test accuracy, which measures the performance on unseen data.

We also plot the function value F , which is the quantity our optimization algorithm aims to minimize. We

call this the train loss.

Evaluation with Data Corruption. In simulations with data corruption, while the training is performed

on corrupted data, we evaluate train and test progress using the corruption-free data.

Software. We use the package LEAF (Caldas et al., 2018) to simulate the federated learning setting. The

models used are implemented in TensorFlow.

Hardware. Each simulation was run in a simulation as a single process. The EMNIST linear model sim-

ulations were run on two workstations with 126GB of memory, with one equipped with Intel i9 processor

running at 2.80GHz, and the other with Intel Xeon processors running at 2.40GHz. Simulations involving

neural networks were run either on a 1080Ti or a Titan Xp GPU.

Random runs. Each simulation is repeated 5 times with different random seeds, and the solid lines in the

plots here represents the mean over these runs, while the shaded areas show the maximum and minimum

values obtained in these runs.

C.2 Additional Numerical Results

Effect of non-identical data distributions. Here, we plot the analogue of Figure 5.3 for the Sent140

dataset with data corruption in the setting where the dataset was split in an i.i.d. manner across devices.

Recall that we had a small gap of 0.3% between the performance of RFA and FedAvg in the setting of

no corruption. Consistent with the theory, this gap completely vanishes in the i.i.d. case, as shown in

Figure C.2.

Effect of iteration budget of smoothed Weiszfeld. We study the effect of the iteration budget of the

smoothedWeiszfeld algorithm in RFA. in Figure C.3. We observe that a low communication budget is faster

in the regime of low corruption, while more iterations work better in the high corruption regime. We used

a budget of 3 calls to the secure average oracle throughout to trade-off between these two scenarios.
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Figure C.3: Hyperparameter study, effect of the maximum number of the communication budget on the

smoothed Weiszfeld algorithm in RFA on the EMNIST dataset with a linear model.

Effect of number of devices per iteration round. Figure C.4 plots the performance of RFA against the

numberm of devices chosen per round. We observe the following: in the regime of low corruption, good

performance is achieved by selecting 50 devices per round (5%), where as 10 devices per round (1%) is not

enough. On the other hand, in high corruption regimes, we see the benefit of choosing more devices per

round, as a few runs with 10 or 50 devices per round with omniscient corruption at 25% diverged. This is

consistent with Theorem 5.9, which requires the number of devices per round to increase with the level of

corruption (cf. Eq. (5.17)).

Effect of local computation. Figure C.5 plots the performance of FedAvg and RFA versus the amount
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Figure C.4: Hyperparameter study, effect of the number of selected client devices per round in RFA on

the EMNIST dataset with a linear model.

of local computation. We see that the performance is always within one standard deviation of each other

irrespective of the amount of local computation. However, we also note that RFA with a single local epoch

is obtains a slightly lower test accuracy in the no-corruption regime than using more local computation.
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Figure C.5: Effect of the number of epochs on FedAvg and RFA for the Sent140 dataset in the presence of

data corruption.

C.3 Numerical Results: Convergence of The Smoothed Weiszfeld Algo-

rithm

For each of these models, we freeze FedAvg at a certain iteration and experiment with different robust

aggregation algorithms.

We find that the smoothedWeiszfeld algorithm enjoys a fast convergence behavior, converging exactly

to the smoothed geometric median in a few passes. In fact, the smoothed Weiszfeld algorithm displays

(local) linear convergence, as evidenced by the straight line in log scale. Further, we also maintain a strict

iteration budget of 3 iterations. This choice is also justified in hindsight by the results of Figure C.3.

Next, we visualize the weights assigned by the geometric median to the corrupted updates. Note that
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(b) Visualization of the re-weighting of points in the robust aggregate.

Figure C.6: Performance of robust aggregation algorithms.

the smoothed geometric medianw1, · · · , wm is some convex combination

∑m
i=1 βiwi. This weight βi ofwi

is a measure of the influence of wi on the aggregate. We plot in Figure C.6b the ratio βi/αi for each device

i, where αi is its weight in the arithmetic mean and βi is obtained by running the smoothed Weiszfeld

algorithm to convergence. We expect this ratio to be smaller for worse corruptions and ideally zero for

obvious corruptions. We find that the smoothed geometric median does indeed assign lower weights to

the corruptions, while only accessing the points via a secure average oracle.
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Appendix D

∆-FL: Proofs and Experimental Details

In this chapter, we give the full proofs from Chapter 6 and provide additional experimental details and

results. In particular, we give the full proofs of convergence in Section D.1, followed by the privacy analysis

in Section D.2. Finally, we turn to the experiments in Section D.3.

D.1 Convergence Analysis

Below, we restate and prove Theorem 6.5 as Theorem D.1 in Section D.1.1 and Theorem 6.6 as Theorem D.2

in Section D.1.2,

D.1.1 Convergence Analysis: Non-convex Case

We review some definitions of subdifferentials and weak convexity before we get to the main theorem.

Nonconvex Subdifferentials. We start by recalling the definition of subgradients for nonsmooth func-

tions (in finite dimension), following the terminology of (Rockafellar and Wets, 2009). Consider a function

ψ : Rd → R ∪ {+∞} and a point w̄ such that ψ(w̄) < +∞. The regular (or Fréchet) subdifferential of ψ
at w̄ is defined by

∂ψ(w̄) =
{
s ∈ Rd : ψ(w) ≥ ψ(w̄) + ⟨s, w − w̄)⟩+ o(∥w − w̄∥)

}
.

The regular subdifferential thus corresponds to the set of gradients of smooth functions that are below ψ
and coincide with it at w̄. These notions generalize (sub)gradients of both smooth functions and convex

functions: it reduces to the singleton {∇ψ(w̄)}when ψ is smooth and to the standard subdifferential from

convex analysis when ψ is convex.

Weak Convexity. We recall the notion of weak convexity, which is one way of characterizing functions

which are “close” to convex. A function ψ : Rd → R is said to be η-weakly convex if the function

w 7→ ψ(w) + (η/2)∥w∥2 is convex (Nurminskii, 1973). The class of weakly convex functions includes all

convex functions (with η = 0) and all L-smooth functions (with η = L).
Weak convexity also admits an equivalent first-order condition: for any w, v ∈ Rd and s ∈ ∂ψ(w), we

have,

ψ(z) ≥ ψ(w) + ⟨s, v − w⟩ − η

2
∥v − w∥2 . (D.1)
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Weak convexity will feature in our developments in two ways:

• In our case, both Fθ as well as Fθ,S are L-weakly convex, since each can be written as the maximum

of a family of L-smooth functions (Drusvyatskiy and Paquette, 2019, Lemma 4.2).

• The prox operator for weakly convex function is well-defined. Let ψ be a η-weakly convex function.

Its proximal or prox operator, with parameter µ > 0 is defined as

proxψ/µ(w) = argmin
v

{
ψ(v) +

µ

2
∥v − w∥2

}
.

It is well-defined (i.e., the argmin exists and is unique) for µ > η, since the function inside the argmin

is (µ− η)-strongly convex.

In nonsmooth and nonconvex optimization of weakly convex functions, we are interested in finding sta-

tionary points w.r.t. the regular subdifferential, i.e., points w satisfying 0 ∈ ∂ψ(w). A natural measure of

near-stationarity is, therefore,

dist(0, ∂ψ(w)) = inf
s∈∂ψ(w)

∥s∥ .

Moreau Envelope. Given a parameter µ > 0, we define the Moreau envelope of F θ as

Φ
µ
θ (w) = inf

v

{
F θ(v) +

µ

2
∥v − w∥2

}
.

The Moreau envelope is well-defined since F θ is bounded from below by our assumptions. We will use

two standard properties of the Moreau envelope:

• Since F θ,S is L-weakly convex, we have that its Moreau envelope Φ
µ
θ (w) is continuously differen-

tiable for µ > L with

∇Φµθ (w) = µ
(
w − proxF θ/µ

(w)
)
.

• The stationary points of Φ
µ
θ and F θ coincide and inf Φ

µ
θ = inf F θ for µ > L.

• We have for all µ > 0 that Φ
µ
θ (w) ≤ F θ(w).

Notation. Let S = S(t)
denote the random set of clients selected in round t of Algorithm 6.3. We define

∇̃Fθ,S(w(t)) =
∑

i∈S
π
(t)
i ∇Fi(w(t)) , (D.2)

where π
(t)
i ∈ argmaxπ∈Pθ,S

∑
i∈S πiFi(w

(t)) is selected as in line 3 of Algorithm 6.3. A key consequence

of the chain rule (Rockafellar and Wets, 2009, Thm. 10.6) is

∇̃Fθ,S(w(t)) ∈ ∂Fθ,S(w(t)) . (D.3)

Convergence Analysis. We now state and prove the convergence result in the nonconvex case.

Theorem D.1. Fix and the number of rounds T , fix µ = 2L and set the learning rate

γ = min

{
1

4τL
,

1

τ
√
T

√
∆F0

LG2
,

1

τT 1/3

(
∆F0

32L2G2(1− τ−1)

)1/3
}
,
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where we denote ∆F0 = Φ
µ
θ (w

(0)) − inf Φ
µ
θ ≤ F θ(w

(0)) − inf F θ . Let ŵ be sampled uniformly at random
from {w(0), · · · , w(T−1)}. Ignoring absolute constants, we have the bound,

E
∥∥∇Φµθ (ŵ)

∥∥2 ≤
√

∆F0LG2

T
+

(
∆F0LG(1− τ−1)1/2

T

)2/3

+
∆F0L

T
.

Proof. We start with some notation. Throughout, we denote v(t) as the proximal point of w(t)
:

v(t) = proxF θ/µ
(w(t)) = argmin

v

{
F θ(z) +

µ

2

∥∥∥v − w(t)
∥∥∥
2
}
.

Let F (t)
denote the sigma algebra generated by w(t)

and define Et[·] = E[· | F (t)]. By definition, we have

that v(t) is also F (t)
-measurable.

We use the update w(t+1) = w(t) − γ∑i∈S π
(t)
i

∑τ−1
k=0∇Fi(w

(t)
i,k) to get

Φ
µ
θ (w

(t+1)) = min
v

{
F θ(v) +

µ

2

∥∥∥v − w(t+1)
∥∥∥
2
}

≤ F θ(v(t)) +
µ

2

∥∥∥v(t) − w(t+1)
∥∥∥
2

= F θ(v
(t)) +

µ

2

∥∥∥v(t) − w(t)
∥∥∥
2
+ µγ

〈
v(t) − w(t),

∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

〉

+
µγ2

2

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥

2

= Φ
µ
θ (w

(t)) + µγ

〈
v(t) − w(t),

∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

〉

︸ ︷︷ ︸
=:T1

+
µγ2

2

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥

2

︸ ︷︷ ︸
=:T2

.

(D.4)

We handle both T1 and T2 separately. We start with T1 by defining

Ck :=

〈
v(t) − w(t),

∑

i∈S
π
(t)
i

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)〉

.

We use the weak convexity of Fθ,S , in particular (D.1), to bound

〈
v(t) − w(t) ,

∑

i∈S
π
(t)
i ∇Fi(w

(t)
i,k)

〉
=

〈
v(t) − w(t),

∑

i∈S
π
(t)
i ∇Fi(w(t))

〉
+ Ck

(D.2)

=
〈
v(t) − w(t), ∇̃Fθ,S(w(t))

〉
+ Ck

(D.1),(D.3)
≤ Fθ,S(v

(t))− Fθ,S(w(t)) +
L

2

∥∥∥v(t) − w(t)
∥∥∥
2
+ Ck .
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Taking an expectation conditioned on F (t)
and noting that v(t) is F (t)

-measurable (so the expectation is

only over the randomness in S), we get

Et

〈
v(t) − w(t),

∑

i∈S
π
(t)
i ∇Fi(w

(t)
i,k)

〉

≤
(
F θ(v

(t)) +
µ

2

∥∥∥v(t) − w(t)
∥∥∥
2
)
− F θ(w(t))− µ− L

2

∥∥∥v(t) − w(t)
∥∥∥
2
+ Et[Ck] .

Note that the function

h(v) := F θ(v) +
µ

2

∥∥∥v − w(t)
∥∥∥
2

is (µ− L)-strongly convex and v(t) is its minimizer. This gives,

h(w(t))− h(v(t)) ≥ µ− L
2

∥∥∥v(t) − w(t)
∥∥∥
2
.

This implies,

Et

〈
v(t) − w(t),

∑

i∈S
π
(t)
i ∇Fi(w

(t)
i,k)

〉
≤ −(µ− L)

∥∥∥v(t) − w(t)
∥∥∥
2
+ Et[Ck] .

Next, we bound the term Ck as follows:

|Ck| =
∣∣∣∣∣

〈
v(t) − w(t),

∑

i∈S
π
(t)
i

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)〉∣∣∣∣∣

≤ µ− L
2

∥∥∥v(t) − w(t)
∥∥∥
2
+

1

2(µ− L)

∥∥∥∥∥
∑

i∈S
π
(t)
i

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)∥∥∥∥∥

2

≤ µ− L
2

∥∥∥v(t) − w(t)
∥∥∥
2
+

1

2(µ− L)
∑

i∈S
π
(t)
i

∥∥∥
(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)∥∥∥

2

≤ µ− L
2

∥∥∥v(t) − w(t)
∥∥∥
2
+

L2

2(µ− L)
∑

i∈S
π
(t)
i

∥∥∥w(t)
i,k − w(t)

∥∥∥
2
.

Together with the previous inequality and the equality∇Φµθ (w(t)) = µ(w(t)− v(t)), we get a bound on T1
as

Et[T1] ≤ −
γτ(µ− L)

2µ

∥∥∥∇Φµθ (w(t))
∥∥∥
2
+

µγL2

2(µ− L)d
(t) , (D.5)

where d(t) =
∑

i∈S
∑τ−1

k=0 π
(t)
i

∥∥∥w(t)
i,k − w(t)

∥∥∥
2
is the client drift. Next, we bound T2 as

T2 =
µγ2

2

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥

2

≤ µγ2τ

2

∑

i∈S
π
(t)
i

τ−1∑

k=0

∥∥∥∇Fi(w(t)
i,k)
∥∥∥
2

≤ µγ2τ2G2

2
, (D.6)
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where we used Jensen’s inequality and

∥∥∥∇Fi(w(t)
i,k)
∥∥∥
2
≤ G2

since Fi is G-Lipschitz.

Next, we plug in (D.5) and (D.6) into (D.4) and invoke Proposition D.7 to bound the client drift d(t) to
get

Et
[
Φ
µ
θ (w

(t+1))
]
≤ Φ

µ
θ (w

(t))− γτ(µ− L)
2

∥∥∥∇Φµθ (w(t))
∥∥∥
2

+
µγ2τ2G2

2

(
1 +

8L2γ

µ− L(τ − 1)

)
.

Finally, taking an unconditional expectation, summing this up over t = 0 to T − 1 and rearranging gives

us the bound

E
∥∥∇Φµθ (ŵ)

∥∥2 ≤ 2∆F0

γτT
+ 2γτLG2 (1 + 8Lγ(τ − 1)) ,

where we plugged in µ = 2L. Plugging in the choice of γ (cf. Lemma D.10) completes the proof.

D.1.2 Convergence Analysis: Strongly Convex Case

The main result is the following.

Theorem D.2 (Convergence rate, Strongly Convex Case). Suppose that each Fi is convex and the regu-
larization parameter satisfies 0 < λ < L. Define notation κ = (L + λ)/λ, w⋆ = argminw Fθ(w) and
∆0 = ∥w(0) − w⋆∥2. Assume also that the number of rounds is T ≥

√
2κ3. Fix a smoothing parameter

ν =





G2

λκ , if T ≤
√
2κ3 log

(
1 ∨ CT 2

κ2

)
,

2G2κ2

λT 2 log
(
1 ∨ CT 2

κ2

)
, if

√
2κ3 log

(
1 ∨ CT 2

κ2

)
≤ T ≤ κ2 log

(
1 ∨ CT 2

κ2

)
,

2G2

λT log (1 ∨ CT ) , else,

where C = λ2∆0/(2G
2 logm), and a learning rate

γ = min

{ √
λ

18τ(L+ λ)
√
L′
,

1

4τL′ ,
1

λτT
log

(
1 ∨ λ

2∆0θm

G2
T

)
,

1

λτT
log2

(
1 ∨ λ2∆0T

2

G2κ2(1− τ−1)
T

)}
,

where L′ = L+ λ+G2/ν. Consider the sequence (w(t))Tt=0 produced by Algorithm 6.3 run with smoothing
parameter ν and learning rate γ, and the corresponding averaged iterate

w(T ) :=

∑T
t=0w

(t)
(
1− λγτ

2

)−(1+t)

∑T
r=0

(
1− λγτ

2

)−(1+r)
.

Then, ignoring absolute constants, we have the bound,

E
[
Fθ(w

(T ))− Fθ(w⋆)
]
≤ λ∥w(0) − w⋆∥2 exp

(
−T/
√
2κ3
)
+

B√
θm

+
G2

λT

(
1

θm
+ logm

)
log

(
1 ∨ λ

2∆0T

G2

)

+
G2κ2

λT 2

(
1− τ−1 + logm

)
log2

(
1 ∨ λ

2∆0T
2

G2κ2

)
.
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We give the proof in a sequence of results. We start with some notation.

Notation. Analogous to the smoothing F νθ of Fθ , we define the smoothing of the sample version Fθ,S as

F νθ,S(w) = max
π∈Pθ,S

{∑

i∈S
πiFi(w)− νDS(π)

}
+
λ

2
∥w∥2 , (D.7)

From Danskin’s theorem (Bertsekas, 1999, Proposition B.25), we get the expression of its gradient as

∇Fθ,S(w(t)) =
∑

i∈S
π
(t)
i ∇F̃i(w(t)) , (D.8)

where π(t) attains the unique argmax in (D.7) (see also (6.13) for the definition).

We define the averaged superquantile as

F
ν
θ(w) = ES∼Um [F

ν
θ,S(w)] , (D.9)

where Um is the uniform distribution over subsets of [n] of sizem. Finally, let w⋆ = argminw F
ν
θ(w).

We also define the notion of client drift as

d(t) := ES∼Um

[∑

i∈S
π
(t)
i

τ−1∑

k=0

∥w(t)
i,k − w(t)∥2

∣∣∣∣∣Ft
]
. (D.10)

Effect of One Round. The crux of the proof of Theorem D.2 is the following statement.

Proposition D.3. Consider the setting of Theorem D.2. Let (w(t))t≥0 the sequence of global models generated
by Algorithm 6.3. For any t ≥ 0, we have:

F
ν
θ(w

(t))− F νθ(w⋆) ≤
1

γτ

(
1− λγτ

2

)
∥w(t) − w⋆∥2 − 1

γτ
∥w(t+1) − w⋆∥2

+
16τG2γ

θm
+

9 (L+ λ)2

τλ
d(t) ,

where d(t) denotes the client drift, defined in (D.10).

Proof. We denote Et[·] := E[· | Ft]. We expand the update w(t+1) = w(t) − γ∑i∈S π
(t)
i

∑τ−1
k=0∇F̃i(w

(t)
i,k)

to get

Et∥w(t+1) − w⋆∥2 = ∥w(t) − w⋆∥2 − 2γEt

[∑

i∈S
π
(t)
i

τ−1∑

k=0

〈
∇F̃i(w(t)

i,k), w
(t) − w⋆

〉]

︸ ︷︷ ︸
=:A

+ γ2Et

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥

2

︸ ︷︷ ︸
=:B

.
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In order to bound A, we use the expression (D.8) of the gradient ∇Fθ,S(w(t)) together with the λ-strong
convexity (cf. (D.16)) of Fθ,S to get

〈∑

i∈S
π
(t)
i ∇F̃i(w(t)), w(t) − w⋆

〉
=
〈
∇Fθ,S(w(t)), w(t) − w⋆

〉

≥ F νθ,S(w
(t))− F νθ,S(w⋆) +

λ

2
∥w(t) − w⋆∥2 .

This allows us to bound A as

A =

〈∑

i∈S
π
(t)
i ∇F̃i(w(t)), w(t) − w⋆

〉

+

〈∑

i∈S
π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
, w(t) − w⋆

〉

≥F νθ,S(w(t))− F νθ,S(w⋆) +
λ

2
∥w(t) − w⋆∥2

−
∣∣∣∣∣

〈∑

i∈S
π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
, w(t) − w⋆

〉∣∣∣∣∣ .

Next, using successively the triangle inequality, the Cauchy-Schwartz inequality and (L+λ)-smoothness

of the F̃i yields:

∣∣∣∣∣

〈∑

i∈S
π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
, w(t) − w⋆

〉∣∣∣∣∣

≤
∑

i∈S
π
(t)
i

∣∣∣
〈
∇F̃i(w(t)

i,k)−∇F̃i(w(t)), w(t) − w⋆
〉∣∣∣

≤
∑

i∈S
π
(t)
i ∥∇F̃i(w

(t)
i,k)−∇F̃i(w(t))∥∥w(t) − w⋆∥

≤
∑

i∈S
π
(t)
i (L+ λ) ∥w(t)

i,k − w(t)∥∥w(t) − w⋆∥ .

Finally, using 2|ab| ≤ a2/c2 + c2b2 and the convexity of t 7→ t2,

∣∣∣∣∣

〈∑

i∈S
π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
, w(t) − w⋆

〉∣∣∣∣∣

≤ 4

λ

(∑

i∈S
π
(t)
i (L+ λ) ∥w(t)

i,k − w(t)∥
)2

+
λ

4
∥w(t) − w⋆∥2

≤ λ

4
∥w(t) − w⋆∥2 + 4 (L+ λ)2

λ

∑

i∈S
π
(t)
i ∥w

(t)
i,k − w(t)∥2 .
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Overall, we bound A as

A ≥ 2γ Et

[
τ−1∑

k=0

(
F νθ,S(w

(t))− F νθ,S(w⋆) +
λ

4
∥w(t) − w⋆∥2

− 4 (L+ λ)2

λ

∑

i∈S
π
(t)
i ∥w

(t)
i,k − w(t)∥2

)]

≥ 2γτ
(
F
ν
θ(w

(t))− F νθ(w⋆)
)
+
λγτ

2
∥w(t) − w⋆∥2 − 8γ (L+ λ)2

λ
d(t) ,

where we use the definition of d(t) from (D.10). We boundB using Proposition D.8. Putting these together,

we get,

Et∥w(t+1) − w⋆∥2 ≤
(
1− λγτ

2

)
∥w(t) − w⋆∥2

− (2γτ − 4γ2τ2L′)(F
ν
θ(w

(t))− F νθ(w⋆))

+
16τ2G2γ2

θm
+ 2

(
γ2τ (L+ λ)2 + 4γ

(L+ λ)2

λ

)
d(t) .

With γ ≤ (4τL′)−1
we have 2γτ − 4γ2τ2L′ ≥ γτ . Likewise, the same condition on γ also implies

2(γ (L+ λ)2 + 4(L+ λ)2/(τλ)) ≤ 9 (L+ λ)2 /(τλ). Rearranging completes the proof.

Proof of Theorem D.2. We are now ready to prove the theorem.

Proof of Theorem D.2. Plugging in the client drift bound of Proposition D.7 into the bound of Proposi-

tion D.3 and rearranging, we get

(
1− 18L′ (L+ λ)2 τ2γ2e2

λ

)(
F
ν
θ(w

(t))− F νθ(w⋆)
)

≤ 1

γτ

(
1− λγτ

2

)
∥w(t) − w⋆∥2 − 1

γτ
Et∥w(t+1) − w⋆∥2

+
16τG2γ

θm
+

9G2 (L+ λ)2 τ2γ2e2

λ

(
4 +

8

θm

)
.

The constraint γ ≤
√
λ(18τ (L+ λ)

√
L′)−1

together with the numerical bound 36e2 ≤ 182 implies

18L′ (L+ λ)2 τ2γ2e2/λ ≤ 1
2 . This gives

F
ν
θ(w

(t))− F νθ(w⋆) ≤
2

γτ

(
1− λγτ

2

)
∥w(t) − w⋆∥2 − 2

γτ
Et∥w(t+1) − w⋆∥2

+
32τG2γ

θm
+

18G2 (L+ λ)2 τ2γ2e2

λ

(
4 +

8

θm

)

︸ ︷︷ ︸
=:T1

.
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Next, we use convexity to get

E
[
F
ν
θ(w

(T ))− F νθ(w⋆)
]

≤ 1
∑T

t=0

(
1− λγτ

2

)−(1+t)

T∑

t=0

(
1− λγτ

2

)−(1+t)

E
[
F
ν
θ(w

(t))− F νθ(w⋆)
]

so that telescoping the sum yields

E
[
F
ν
θ(w

(T ))− F νθ(w⋆)
]
≤ 2

∥∥w(0) − w⋆
∥∥2

γτ
∑T

t=0

(
1− λγτ

2

)−(1+t)
+ T1 .

Now, we can lower bound the denominator with

T∑

t=0

(
1− λγτ

2

)−(1+t)

≥ 1

γτλ
eTγτλ ,

to get the bound

E
[
F
ν
θ(w

(T ))− F νθ(w⋆)
]
≤ 2λe−Tγτλ∥w(0) − w⋆∥2 + T1 . (D.11)

It remains to translate the results on F
ν
θ into Fθ . For the left hand side, we use the bias bound of Prop-

erty D.4. For the right hand side, we use the λ-strong convexity of Fθ and Property D.4 we have:

∥w(0) − w⋆∥2 ≤ 2∥w(0) − w⋆∥2 + 2∥w⋆ − w⋆∥2

≤ 2∥w(0) − w⋆∥2 + 4

λ
(Fθ(w

⋆)− Fθ(w⋆))

≤ 2∥w(0) − w⋆∥2

+
4

λ

(
Fθ(w

⋆)− F νθ(w⋆) + F
ν
θ(w

⋆)− F νθ(w⋆) + F
ν
θ(w

⋆)− Fθ(w⋆)
)

≤ 2∥w(0) − w⋆∥2 + 4

λ

(
2B√
θm

+ 4 ν logm

)
,

since F
ν
θ(w

⋆)− F νθ(w⋆) ≤ 0. Plugging this into (D.11) gives us the bound

E
[
Fθ(w

(T ))− Fθ(w⋆)
]
≤ 4λ∥w(0) − w⋆∥2e−Tγτλ + 32τG2γ

θm
+

18G2 (L+ λ)2 τ2γ2e2

λ

(
4 +

8

θm

)
+

(
2B√
θm

+ 2 ν logm

)(
1 + 8e−Tγτλ

)
.

Hyperparameter Optimization. To complete the proof from here, it remains to optimize the learn-

ing rate γ and the smoothing parameter ν. We invoke Lemma D.9 to optimize for γ. Ignoring absolute
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constants, this gives us the bound

E
[
Fθ(w

(T ))
]
− Fθ(w⋆) ≤ λ∆0 exp(−λτΓT ) +

G2

θmλT
log

(
1 ∨ λ

2∆0Tθm

G2

)

+
G2κ2

λT 2
(1− τ−1) log2

(
1 ∨ λ

2∆0T
2

G2κ2

)

+
B√
θm

+ ν logm,

where we take

Γ = min

{ √
λ

18τ(L+ λ)
√
L′
,

1

4τL′ ,

}

Next, we set ν. The two terms that depend on ν are

λ∆0 exp(−λτΓT ) + ν logm = λ∆0 exp


− T(

κ+ G2

λν

)
∨ κ
√
κ+ G2

λν


+ ν logm

≤ λ∆0max

{
exp

(
−λνT
G2

)
, exp

(
−T
κ

√
λν

2G2

)}
+ ν logm.

Assume now that ν ≤ 2G2/(λκ2), so the first term in the max is active. The conditions of Lemma D.9 are

met since T ≥ 2κ is assumed; that gives us the choice

ν =
G2

λκ
∧ 2G2

λT
log

(
1 ∨ λ2∆0T

2G2 logm

)
,

so that the error is bounded by

λ∆0 exp

(
− T

2κ

)
+

2G2

λT
log(m) log

(
1 ∨ λ2∆0T

2G2 logm

)
.

Likewise, if ν > 2G2/(λκ2), the second term inside the max is active. The conditions of Lemma D.9 are

met since T ≥
√
2κ3 is assumed. That gives us the choice

ν ≤ G2

λκ
∧ 2G2κ2

λT 2
log2

(
1 ∨ λ2∆0T

2

2G2κ2 logm

)
,

so that the error is bounded by

λ∆0 exp

(
− T√

2κ3

)
+

2G2κ2

λT 2
log(m) log2

(
1 ∨ λ2∆0T

2

2G2κ2 logm

)
.

Plugging in these choices completes the proof.
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D.1.3 Intermediate Results

Wepresent some prerequisites and some intermediate results which are required in the convergence proofs

of both the convex and nonconvex cases.

Note that for any S ⊂ [n] of sizem, the partial superquantile is differentiable at w with :

∇F νθ,S(w) =
∑

i∈S
π⋆i∇F̃i(w) (D.12)

where π⋆ denotes solution to the maximization

F νθ,S(w) = max
π∈Pθ,S

∑

i∈S
πiF̃i(w)− ν DS(π)

Bias and variance of the partial superquantile. We use the partial superquantile defined on a subset

S ⊂ [n] to approximate the full superquantile. We start with the quality of this approximation.

Property D.4. Let Um denote the uniform distribution over all subsets of [n] of sizem. For any w ∈ Rd, we
have

∣∣F νθ(w)− Fθ(w)
∣∣ ≤ B√

θm
+ 2 ν logm,

ES∼Um

∥∥∇F νθ,S(w)−∇F
ν
θ(w)

∥∥2 ≤ 8G2

θm
.

Smoothing and smoothness constants. The following result is standard (Beck and Teboulle, 2012,

Theorem 4.1, Lemma 4.2).

Property D.5. For every ν > 0, we have that F νθ,S and F νθ,S are L′-smooth with L′ = L+ λ+ G2

ν .

Bounding Gradient Dissimilarity. Bounding of the variance of gradient estimators is a key assumption

in the analysis of stochastic gradients methods (see e.g. the textbook (Bottou et al., 2018)). In the centralized

setting, when a stochastic objective Ewi[f(w,wi)], it is standard to assume for a given estimator gw of

∇wE [f(w,wi] that there exists some constantsM1,M2 > 0 such that for all w ∈ Rd,

∥E [gw]∥2 ≤M1 or ∥E [gw]∥2 ≤M1 +M2 ∥∇wE [f(w,wi]∥2 .

In the federated setting, the use of a subset S ⊂ [n] of clients in each round induces noise on the estimation

of the average gradient over the whole network. Thus, such assumption translates into a bound on the
gradient dissimilarity among the clients (Karimireddy et al., 2020; Wang et al., 2019):

1

n

∑

i∈[n]

∥∥∥∇F̃i(w)
∥∥∥
2
≤M1 +M2

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇F̃i(w)

∥∥∥∥∥∥

2

.

In this work, we also consider the minimization of the global loss F νθ by a stochastic algorithm based on a

partial participation of the clients in the network, with the additional difficulties that we only have access

to a biased estimator F
ν
θ of the loss F νθ and its gradient. In particular, the adaptive reweighting of the

clients selected at each round does not permit the direct use of such assumption. We show instead in the

next lemma that the variance of stochastic gradient estimator can also be bounded, thanks to the Lipschitz

assumption.
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Proposition D.6 (Gradient Dissimilarity). Consider the quantities π(t), w(t) from Algorithm 6.3. We have,

E

[∑

i∈S
π
(t)
i

∥∥∥∇F̃i(w(t))
∥∥∥
2
∣∣∣∣∣Ft
]
≤
(
4 +

8

θm

)
G2 +

∥∥∥∇F νθ(w(t))
∥∥∥
2
.

Proof. We drop the superscript t throughout this proof. By centering the second moment (cf. (D.15)), we

have:

∑

i∈S
πi

∥∥∥∇F̃j(w)
∥∥∥
2
=
∑

i∈S
πi

∥∥∥∇F̃i(w)−∇F νθ,S(w)
∥∥∥
2
+
∥∥∇F νθ,S(w)

∥∥2

=
∑

i∈S
πi

∥∥∥∥∥∥
∇Fi(w)−

∑

j∈S
πj∇Fj(w)

∥∥∥∥∥∥

2

+
∥∥∇F νθ,S(w)

∥∥2 .

Now since the weights πi sum to one, we may use the convexity of ∥·∥2 to get:

∑

i∈S
πi

∥∥∥∇F̃j(w)
∥∥∥
2
≤
∑

i,j∈S
πiπj ∥∇Fj(w)−∇Fi(w)∥2 +

∥∥∇F νθ,S(w)
∥∥2 .

The squared triangle inequality (cf. (D.14)) together with the Lipschitz assumption on the functions Fi
yields:

∑

i∈S
πi

∥∥∥∇F̃i(w)
∥∥∥
2
≤ 2

∑

i,j∈S
πiπi

(
∥∇Fi(w)∥2 + ∥∇Fj(w)∥2

)
+
∥∥∇F νθ,S(w)

∥∥2

≤ 4 G2 +
∥∥∇F νθ,S(w)

∥∥2 .
Thus, taking an expectation over S ∼ Um gives

E

[∑

i∈S
πi

∥∥∥∇F̃j(w)
∥∥∥
2
∣∣∣∣∣Ft
]
≤ 4 G2 + ES∼Um

[∥∥∇F νθ,S(w)
∥∥2
]
.

By centering (cf. (D.15)), we get,

E

[∑

i∈S
πi

∥∥∥∇F̃i(w)
∥∥∥
2
∣∣∣∣∣Ft
]
≤ 4 G2 +

∥∥∇F νθ(w)
∥∥2

+ E
[∥∥∇F νθ,S(w)−∇F

ν
θ(w)

∥∥2
∣∣∣Ft
]
.

(D.13)

Finally, substituting the variance bound from Property D.4 into (D.13) yields the stated result.

Bounding the Client Drift. During federated learning, each client takes multiple local steps. This

causes the resulting update to be a biased estimator of a descent direction for the global objective. This

phenomenon has been referred to as “client drift” (Li et al., 2020e; Karimireddy et al., 2020). Current proof

techniques rely on treating this as a “noise” term which is to be controlled. In the context of this work, the

reweighting by π(t) requires us to adapt this typical definition of client drift to our setting. In particular,

recall that we define the client drift d(t) in outer iteration t of the algorithm as

d(t) := ES∼Um

[∑

i∈S
π
(t)
i

τ−1∑

k=0

∥w(t)
i,k − w(t)∥2

∣∣∣∣∣Ft
]
.
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Proposition D.7 (Client Drift). If γ ≤ 1
4τ(L+λ) , we have the following bounds for any t ≥ 0:

d(t) ≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 + ∥∇F νθ(w(t))∥2

)
and,

d(t) ≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 + 2L′

(
F
ν
θ(w

(t))− F νθ(w⋆)
))

.

Furthermore, if λ = 0, we have the bound

d(t) ≤ 8τ2(τ − 1)γ2G2 .

The last bound also works without smoothing, i.e., ν = 0.

Proof. If τ = 1, there is nothing to prove as both sides of the inequality are 0. We assume now that τ > 1.
Let us first fix S ⊂ [n] of size |S| = m. For any k ∈ S and j ∈ {1, . . . , τ − 1}, by the squared triangle

inequality (cf. (D.14)), we have:

∥∥∥w(t)
i,k − w(t)

∥∥∥
2
=
∥∥∥w(t)

i,k−1 − γ∇F̃i(w
(t)
i,k−1)− w(t)

∥∥∥
2

≤
(
1 +

1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥
2
+ τγ2

∥∥∥∇F̃i(w(t)
i,k−1)

∥∥∥
2
.

The squared triangle inequality (cf. (D.14)) together with the smoothness of the local losses gives:

∥∥∥w(t)
i,k − w(t)

∥∥∥
2

(∥∥∥w(t)
i,k − w(t)

∥∥∥
2
)
≤
(
1 +

1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥
2

+ 2τγ2
(∥∥∥∇F̃i(w(t)

i,k−1)−∇F̃i(w(t))
∥∥∥
2
+
∥∥∥∇F̃i(w(t))

∥∥∥
2
)

≤
(
1 +

1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥
2

+ 2τγ2 (L+ λ)2
∥∥∥w(t)

i,k−1 − w(t)
∥∥∥
2
+ 2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥
2
.

Hence, for γ ≤ 1
4τ(L+λ) , we get:

∥∥∥w(t)
i,k − w(t)

∥∥∥
2
≤
(
1 +

2

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥
2
+ 2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥
2
.

Unrolling this recursion yields for any j ≤ τ − 1

∥∥∥w(t)
i,k − w(t)

∥∥∥
2
≤

j−1∑

i=0

(
1 +

2

τ − 1

)i(
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥
2
)

≤ τ − 1

2

(
1 +

2

τ − 1

)j (
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥
2
)

≤ τ − 1

2

(
1 +

2

τ − 1

)τ−1(
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥
2
)

≤ τ(τ − 1)γ2e2
∥∥∥∇F̃i(w(t))

∥∥∥
2
,
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where we use (1 + 1/x)x ≤ e for any x > 0. If λ = 0 we have that
∥∥∥∇F̃i(w(t))

∥∥∥
2
=
∥∥∇Fi(w(t))

∥∥2 ≤ G2

since Fi is G-Lipschitz; this gives us the final bound in the statement. When λ ̸= 0, this does not hold. In
this case, we apply Proposition D.6 to get

d(t) ≤ τ2(τ − 1)γ2e2 ES∼Um

[∑

i∈S
π
(t)
i

∥∥∥∇F̃i(w(t))
∥∥∥
2
∣∣∣∣∣F

(t)

]

≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 +

∥∥∥∇F νθ(w(t))
∥∥∥
2
)
.

This gives the first bound. The second bound follows from the first by smoothness (cf. (D.17)).

Boundon theNormof EachUpdate. Webound the expected squared norm of each updatew(t+1)−w(t)
,

which has the closed form expression:

w(t+1) − w(t) = −γ
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇F̃i(w(t)
i,k) .

Proposition D.8. We have the bounds,

γ2E



∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥

2
∣∣∣∣∣∣
Ft




≤ 2γ2τ (L+ λ)2 d(t) +
16τ2γ2G2

θm
+ 2τ2γ2

∥∥∥∇F νθ(w(t))
∥∥∥
2

≤ 2γ2τ (L+ λ)2 d(t) +
16τ2γ2G2

θm
+ 4τ2γ2L′

(
F
ν
θ(w

(t))− F νθ(w⋆)
)
,

where d(t) is the client drift term defined in (D.10).

Proof. Using the the squared triangle inequality (cf. Eq. (D.14)) together with the gradient formula (D.12),

we get:

∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

j=0

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
∥∥∥∥∥∥

2

+ 2

∥∥∥∥∥∥
∑

i∈S
π
(t)
i

τ−1∑

j=0

∇F̃i(w(t))

∥∥∥∥∥∥

2

≤ 2τ
∑

i∈S
π
(t)
i

τ−1∑

k=0

∥∥∥∇F̃i(w(t)
i,k)−∇F̃i(w(t))

∥∥∥
2
+ 2τ2

∥∥∥∇F νθ,S(w(t))
∥∥∥
2
.
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For the first term, we invoke (L+λ)-smoothness of F̃i and take an expectation to get 2τ(L+λ)2d(t). For
the second term, we use centering (cf. Eq. (D.15)) followed by the variance bound of Property D.4 to get:

Et
[∥∥∥∇F νθ,S(w(t))

∥∥∥
2
]
= Et



∥∥∥∥∥
∑

i∈S
π
(t)
i ∇F̃i(w(t))−∇F νθ(w(t))

∥∥∥∥∥

2

+

∥∥∥∇F νθ(w(t))
∥∥∥
2

≤ 8G2

θm
+
∥∥∥∇F νθ(w(t))

∥∥∥
2
.

This gives the first bound. The second bound follows from the first by smoothness (cf. Eq. (D.17)).

D.1.4 Useful Inequalities and Technical Results

We recall a few standard inequalities:

• Squared Triangle inequality: For any x, y ∈ Rd and α > 0 we have:

∥x+ y∥2 ≤ (1 + α) ∥x∥2 +
(
1 +

1

α

)
∥y∥2 . (D.14)

• Centering the second moment: For any Rd-valued random vector X such that E∥X∥2 <∞,

E∥X∥2 = E∥X − E [X]∥2 + ∥E [X]∥2 (D.15)

• Strong convexity: Let F : Rd → R be µ-strongly convex. Then for any x, y ∈ Rd, we have:

⟨∇F (x), x− y⟩ ≥ F (x)− F (y) + µ

2
∥x− y∥2 (D.16)

• Smoothness: Let F : Rd → R be L-smooth and let F ⋆ be the minimum value of F (assuming it

exists). Then for any x ∈ Rd, we have:

∥∇F (x)∥2 ≤ 2L (F (x)− F ⋆) (D.17)

Lemma D.9. Consider the map φ : (0,Γ]→ R+ given by

φ(γ) = A exp(−γT ) +Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. If T > 1/Γ, then, we have,

φ(γ⋆) ≤ A exp(−ΓT ) + B

T
+
B

T
log

(
1 ∨ AT

B

)
+
C

T 2
+
C

T 2
log2

(
1 ∨ AT

2

C

)
,

where γ⋆ is given by

γ⋆ = min

{
Γ,

1

T
log

(
1 ∨ AT

B

)
,
1

T
log

(
1 ∨ AT

2

C

)}
.
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Proof. Define γ1 = T−1 log(1 ∨ AT/B) and γ2 = T−1 log(1 ∨ AT 2/C). If γ⋆ = Γ, we have that Γ ≤ γ1
and Γ ≤ γ2 so that

φ(γ⋆) = A exp(−ΓT ) +BΓ + CΓ2 ≤ A exp(−ΓT ) +Bγ1 + Cγ22 .

Now suppose that γ⋆ = γ1 so that γ1 ≤ γ2. Then, we have,

φ(γ⋆) = A exp(−γ1T ) +Bγ1 + Cγ21 ≤
B

T
+
B

T
log(1 ∨AT/B) + Cγ22 .

The third case is identical to the second.

The proof of the next lemma is elementary and is omitted.

Lemma D.10. Consider the map φ : (0,Γ]→ R+ given by

φ(γ) =
A

γT
+Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. Then, we have,

φ(γ⋆) ≤ A

ΓT
+ 2

(
AB

T

)1/2

+ 2C1/3

(
A

T

)2/3

,

where γ⋆ is given by

γ⋆ = min

{
Γ,

√
A

BT
,

(
A

CT

)1/3
}
.

D.2 Privacy Analysis

The discrete Gaussian mechanism was introduced in (Canonne et al., 2020) as an extension of the Gaussian

mechanism to integer data. A random variable ξ is said to satisfy the discrete Gaussian distribution with

mean µ and variance proxy σ2 if

P(ξ = n) = C exp

(
−(n− µ)2

2σ2

)
for all n ∈ Z ,

where C is an appropriate normalizing constant. We denote it by NZ(µ, σ
2). We need the following

property of the discrete Gaussian.

Property D.11. Let ξ be distributed according to NZ(µ, σ
2). Then, E[ξ] = µ. Furthermore, if µ = 0, then ξ

is sub-Gaussian with variance proxy σ2, i.e., E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0.

We now give the full proof of Theorem 6.8

Proof of Theorem 6.8. We start by defining and controlling the probabilities of some events. Throughout,

let δ > 0 be fixed. Define the event

Emod =
n⋂

i=1

b⋂

j=1

{
−M − 2

2n
≤ cxi,j + ξi,j ≤

M − 2

2n

}
. (D.18)

Note that under Emod, no modular wraparound occurs in the algorithm, i.e., x̃i = cxi + ξi and

ĥ =

n∑

i=1

x̃i
c

=

n∑

i=1

(
xi +

ξi
c

)
.

We will show later that Emod holds with high probability; for now, we assume that it holds.
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Privacy Analysis. We start by establishing the sensitivity of the sum query over xi’s as 1. Define the
input space X to be the canonical basis vectors in Rb, i.e., the set of all vectors in {0, 1}b with only one 1,
and letX ∗ = ∪∞r=1X r denote the set of all sequences of elements ofX . We consider the rescaled sum query

A((x1, · · · , xN )) =
∑n

i=1 cxi. The L2 sensitivity S(A) of this queryA is supremum over allX ∈ X ∗
and

X ′
which is obtained by concatenating x′ to X :

S(A) = sup
X,X′
∥A(X)−A(X ′)∥2 = sup

x′∈X
c∥x′∥2 = c .

We invoke the privacy bound of sums of discrete Gaussians (Lemma D.14) to claim that an algorithm

A returning A(x) +
∑n

i=1 ξi satisfies (1/2)ε
2
-concentrated DP where ε is as in the theorem statement.

The fact that the quantile and all further functions of it remains private follows from the post-processing

property of DP (also known as the data-processing inequality).

Utility Analysis. Define n̂ =
∑b

j=1 ĥj , as the noisy analogue to n =
∑b

j=1 hj . Below, we use shorthand
ρ = 1− θ. We bound the quantile error as

∆θ

(
ĥ, h

)
= Rθ

(
h, j∗θ (ĥ)

)
=

∣∣∣∣∣∣
1

n

j∗θ (ĥ)∑

j=1

hj − ρ

∣∣∣∣∣∣

≤ 1

n

∣∣∣∣∣∣

j∗θ (ĥ)∑

j=1

hj − ĥj

∣∣∣∣∣∣
+

1

n

∣∣∣∣∣∣

j∗θ (ĥ)∑

j=1

ĥj − n̂ρ

∣∣∣∣∣∣
+
ρ

n
|n̂− n|

≤ max
j′∈[b]

1

cn

∣∣∣∣∣∣

j′∑

j=1

n∑

i=1

ξi,j

∣∣∣∣∣∣
+

(
1 +
|n̂− n|
n

)
R∗
θ(ĥ) +

ρ

n
|n̂− n| .

Let us define an event Esum under which the first term and last terms are bounded:

Esum =



max
j∈[b]

∣∣∣
j∑

j′=1

n∑

i=1

ξi,j′
∣∣∣ ≤

√
2σ2nb log(4/δ)



 . (D.19)

Under Esum, we also have

|n− n̂| = 1

c

∣∣∣∣∣∣

b∑

j=1

n∑

i=1

ξi,j

∣∣∣∣∣∣
≤
√

2σ2nb

c2
log

4

δ
.

Plugging this back into∆ρ(ĥ, h) gives us the desired bound, provided Esum holds.

Bounding the Failure Probability. The algorithm fails when at least one of Emod or Esum fail to hold.

We have from Claim D.12 that P(Emod) ≥ 1− δ/2 and from Claim D.13 that P(Esum) ≥ 1− δ/2. With a

union bound, we get that P(Esum ∩ Eprod) ≥ 1 − δ, i.e., the algorithm succeeds with probability at least

1− δ.

We state and prove bounds on probabilities of the events Emod, Esum defined above.

Claim D.12. IfM ≥ 2 + 2cn+ 2n
√
2σ2 log(4nb/δ), then P(Emod) ≥ 1− δ/2.
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Proof. Each discrete Gaussian random variable ξi,j is centered and sub-Gaussian with variance proxy σ2

(cf. Property D.11). A Cramér-Chernoff bound (cf. Lemma D.15) gives us the exponential tail bound

P
(
|ξi,j | >

√
2σ2 log(4nb/δ)

)
≤ δ

2nb
.

Using a union bound for i ∈ [n], j ∈ [b] and xi,j ∈ {0, 1} completes the proof.

Claim D.13. We have that P(Esum) ≥ 1− δ/2.
Proof. Each discrete Gaussian random variable ξi,j is centered and sub-Gaussian with variance proxy σ2,
i.e., E[ξi,j ] = 0 and E[exp(λξi,j)] ≤ exp(λ2σ2/2) for all λ ∈ R (cf. Property D.11). Therefore, ζj :=∑n

i=1 ξi,j is centered and sub-Gaussian with variance proxy nσ2, since E[ζj ] = 0, and

E[exp(λζj)] =
n∏

i=1

E[exp(λξi,j)] ≤ exp(λ2σ2n/2)

by independence. We get a bound on the partial sums from Lemma D.16; this involves constructing a

martingale (
∑j

j′=1 ζj′)
b
j=1 and applying the maximal inequality. The bound we get is

P


max
j∈[b]

∣∣∣
j∑

j′=1

ζj′
∣∣∣ > t


 ≤ exp

(
− t2

2σ2nb

)
.

Plugging in t =
√

2σ2nb log(2/δ) completes the proof.

D.2.1 Useful Results

The distributed discrete Gaussianmechanism gets privacy guarantees by adding a sum of discrete Gaussian

random variables. We give a bound on its privacy. The following lemma is due to (Kairouz et al., 2021a).

Lemma D.14 (Privacy of Sum of Discrete Gaussians). Fix σ ≥ 1/2. Let A be a deterministic algorithm
with ℓ2-sensitivity S. Define a randomized algorithmA, which when given an input x, samples ξ1, · · · , ξn ∼
NZ(0, σ

2Id) and returns A(x) +
∑n

i=1 ξi. Then, A satisfies ε2/2-concentrated DP with

ε = min

{√
S2

nσ2
+
ψd

2
,
S√
nσ

+ ψ
√
d

}
,

where ψ = 10
∑n−1

i=1 exp
(
− 2π2σ2i/(k + 1)

)
≤ 10(n− 1) exp(−2π2σ2).

Next, we record two standard concentration results.

Lemma D.15 (Cramér-Chernoff). Let ξ be a real-valued and centered sub-Gaussian random variable with
variance proxy σ2, i.e., E[ξ] = 0 and E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0. Then, we have for any t > 0,

P(|ξ| > t) ≤ 2 exp

(
− t2

2σ2

)
.

Lemma D.16 (Maximal Inequality). Let ξ1, ξ2, · · · be i.i.d. centered sub-Gaussian random variables with
variance proxy σ2, i.e., E[ξj ] = 0 and E[exp(λξj)] ≤ exp(λ2σ2/2) for all λ ∈ R and j = 1, 2, · · · . Then, it
holds for any t > 0 and integer n ≥ 1 that

P


max
i∈[n]

∣∣∣
k∑

j=1

ξj

∣∣∣ > t


 ≤ 2 exp

(
− t2

2σ2n

)
.

242



D.3 Numerical Experiments: Complete Results

We conduct our experiments on two datasets from computer vision and natural language processing. These

datasets contain a natural, non-iid split of data which is reflective of data heterogeneity encountered in

federated learning. In this section, we describe in details the experimental setup and the results. Here is

its outline:

• Section D.3.1 describes the datasets and tasks.

• Section D.3.2 presents the algorithm and the hyperparameters used.

• Section D.3.3 details the evaluation methodology.

• Section D.3.4 gives the experimental comparison of∆-FL to baselines.

Since each client has a finite number of datapoints in the examples below, we let its probability distri-

bution πi to be the empirical distribution over the available examples, and the weight αi to be proportional
to the number of datapoints available on the client.

D.3.1 Datasets and Tasks

We use the two following datasets, described in detail below. The data was preprocessed using LEAF (Cal-

das et al., 2018).

EMNIST for handwritten-letter recognition.

Dataset. EMNIST (Cohen et al., 2017) is a character recognition dataset. This dataset contains images of

handwritten digits or letters, labeled with their identification (a-z,A-Z, 0-9). The images are grey-scaled

pictures of 28× 28 = 784 pixels.

Train and Test Devices. Each image is also annotated with the “writer” of the image, i.e., the human

subject who hand-wrote the digit/letter during the data collection process. Each client corresponds to one

writer. From this set of clients, we discard all clients containing less than 100 images. The remaining

clients were partitioned into two groups — 1730 training and 1730 testing clients. For each experiment we

subsampled 865 training and 865 testing clients for computational tractability, where the sampled clients

vary based on the random seed of each experiment.

Model. We consider the following models for this task.

• Linear Model: We use a linear softmax regression model. In this case each Fi is convex. We train

parameters w ∈ R62×784
. Given an input image x ∈ R784

, the score of each class c ∈ [62] is
the dot product ⟨wc, x⟩. The probability pc assigned to each class is then computed as a softmax:

pc = exp ⟨wc, x⟩/
∑

c′ exp ⟨wc′ , x⟩. The prediction for a given image is then the class with the

highest probability.
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• ConvNet: We also consider a convolutional neural network with two convolutional layers with

max-pooling and one fully connected layer (F.C) of which outputs a vector in R62
. The outputs of

the ConvNet are scores with respect to each class. They are also used with a softmax operation to

compute probabilities.

The loss used to train both models is the multinomial logistic loss L(p, y) = − log py where p denotes
the vector of probabilities computed by the model and py denotes its y

th
component. In the convex case

we add a quadratic regularization term of the form (λ/2)∥w∥22.

Sent140 for Sentiment Analysis.

Dataset. Sent140 (Go et al., 2009) is a text dataset of 1,600,498 tweets produced by 660,120 Twitter ac-

counts. Each tweet is represented by a character string with emojis redacted. Each tweet is labeled with a

binary sentiment reaction (i.e., positive or negative), which is inferred based on the emojis in the original

tweet.

Train and Test Devices. Each client represents a twitter account and contains only tweets published by

this account. From this set of clients we discarded all clients containing less that 50 tweets, and split the

877 remaining clients rest of clients into a train set and a test set of sizes 438 and 439 respectively. This

split was held fixed for all experiments. Each word in the tweet is encoded by its 50-dimensional GloVe

embedding (Pennington et al., 2014).

Model. We consider the following models.

• Linear Model: We consider a l2-regularized linear logistic regression model where the parameter

vectorw is of dimension 50. In this case, each Fi is convex. We summarize each tweet by the average

of the GloVe embeddings of the words of the tweet.

• RNN: The nonconvex model is a Long Short Term Memory (LSTM) model (Hochreiter and Schmid-

huber, 1997) built on the GloVe embeddings of the words of the tweet. The hidden dimension of the

LSTM is same as the embedding dimension, i.e., 50. We refer to it as “RNN”.

The loss function is the binary logistic loss.

D.3.2 Algorithms and Hyperparameters

Algorithm and Baselines.

The proposed∆-FL is run for three values of θ ∈ {0.8, 0.5, 0.1}. We compare it to the following baselines:

• FedAvg (McMahan et al., 2017): It is the de facto standard for the vanilla federated learning objective.

• FedAvg, θ: We also consider FedAvg with a random client subselection step: local updates are run

on a fraction of the initial number of clients randomly selected per round. For each dataset, we

try three values of, corresponding to the average number of clients selected by ∆-FL for the three

values of θ used. In the main paper, we report as FedAvg-Sub the performance of FedAvg, θ with

θ ∈ {0.8, 0.5, 0.1} which gives the best performance on ∆-FL (i.e., lowest 90th percentile of test

misclassification error). Here we report numbers for all values of θ considered.
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• FedProx (Li et al., 2020b): It augments FedAvg with a proximal term but still minimizes the vanilla

federated learning objective.

• q-FFL (Li et al., 2020d): It raises the per-client losses to the power (1+q), where q ≥ 0 is a parameter,

in order to focus on clients with higher loss. We run q-FFL for values of q in {10j , j ∈ {−3, · · · , 1}}.

• AFL (Mohri et al., 2019): It aims to minimize the worst per-client loss. We implement it as an asymp-

totic version of q-FFL, using a large value of q, as this was found to yield better convergence with

comparable performance (Li et al., 2020d). In the experiments we take q = 10.0.

The experiments are conducted on the datasets described in Section D.3.1.

Hyperparameters.

Rounds. Wemeasure the progress of each algorithm by the number of calls to secure aggregation routine

for weight vectors, i.e., the number of communication rounds.

For the experiments, we choose the number of communication rounds depending on the convergence

of the optimization for FedAvg. For the EMNIST dataset, we run the algorithm for 3000 communication

rounds with the linear model and 1000 for the ConvNet. For the Sent140 dataset, we run the 1000 com-

munication rounds for the linear model and 600 for the RNN.

Devices perRound. Wechoose the same number of clients per round for eachmethod, with the exception

of FedAvg, θ. All clients are assumed to be available and selections are made uniformly at random. In

particular, we select 100 clients per round for all experiments with the exception of Sent140 RNN for which

we used 50 clients per round.

Local Updates and Minibatch Size. Each selected client locally runs 1 epoch of mini-batch stochastic

gradient descent locally. We used the default mini-batch of 10 for all experiments (McMahan et al., 2017),

except for 16 for EMNIST ConvNet. This is because the latter experiments were run using on a GPU, as

we describe in the section on the hardware.

Learning rate scheme. We now describe the learning rate γt used during LocalUpdate. For the linear

model we used a constant fixed learning rate γt ≡ γ0, while for the neural network models, we using a step

decay scheme of the learning rate γt = γ0c
−⌊t/t0⌋

for some where γ0 and 0 < c ≤ 1 are tuned. We tuned

the learning rates only for the baseline FedAvg and used the same learning rate for the other baselines and

∆-FL at all values of θ.

For the neural network models, we fixed t0 so that the learning rate was decayed once or twice during
the fixed time horizon T . In particular, we used t0 = 400 for EMNIST ConvNet (where T = 1000) and
t0 = 200 for Sent140 RNN (where T = 600). We tuned c from the set {2−3, 2−2, 2−1, 1}, while the choice
of the range of γ0 depended on the dataset-model pair. The tuning criterion we used was the mean of the

loss distribution over the training clients (with client iweighted by αi) at the end of the time horizon. That

is, we chose the γ0, c which gave the best terminal training loss.
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Table D.1: Metrics for the test misclassification error for EMNIST (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.38± 0.38 18.39± 0.33 21.54± 0.35 32.61± 0.39 49.65± 0.67
FedAvg θ = 0.8 34.20± 0.45 18.25± 0.22 21.37± 0.26 32.10± 0.34 49.92± 1.16
FedAvg θ = 0.5 34.51± 0.47 18.21± 0.30 21.40± 0.36 32.36± 0.59 50.28± 0.77
FedAvg θ = 0.1 34.60± 0.46 18.58± 0.31 21.71± 0.37 32.54± 0.37 50.33± 1.28
FedProx 33.82± 0.30 18.25± 0.23 21.37± 0.35 31.75± 0.20 49.15± 0.74
q-FFL (Best q = 1.0) 34.71± 0.27 19.34± 0.30 22.33± 0.41 32.80± 0.23 49.90± 0.58
Tilted-ERM (Best t = 1.0) 34.15± 0.25 10.78± 0.30 22.43± 0.29 32.36± 0.23 48.59± 0.62
AFL 39.32± 0.27 25.42± 0.27 28.64± 0.43 38.16± 0.34 51.62± 0.28

∆-FL θ = 0.8 34.48± 0.26 19.16± 0.32 22.24± 0.32 32.85± 0.31 49.10± 0.24
∆-FL θ = 0.5 35.01± 0.20 20.46± 0.34 23.64± 0.22 33.83± 0.34 48.44± 0.38
∆-FL θ = 0.1 38.32± 0.48 23.86± 0.59 27.27± 0.64 37.52± 0.67 50.34± 0.95

Tuning of the regularization parameter. The regularization parameter λ for linear models was tuned

with cross validation from the set {10−k : k ∈ {3, · · · , 8}}. This was performed as described below.

For each dataset, we held out half the training clients as validation clients. Then, for different values of

the regularization parameter, we trained a model with the (smaller subset of) training clients and evaluate

its performance on the validation clients. We selected the value of the regularization parameter as the one

which gave the smallest 90th percentile of the misclassification error on the validation clients.

Baselines Parameters. We tune the proximal parameter of FedProx with cross validation. The procedure

we followed is identical to the procedure we described above for the regularization parameter λ. The set
of parameters tested is {10−j , j ∈ {0, . . . , 3}}. We did not attempt to tune the parameter q of q-FFL and

report the performance of all values of q which we tried.

Hyperparameters of ∆-FL. We optimize ∆-FL via Algorithm 6.3 with a fixed number of local steps,

corresponding to one epoch. For simplicity, we calculate the quantile exactly, assuming client losses are

available to the server.

D.3.3 Evaluation Strategy and Other Details

Evaluation metrics. We record the loss of each training client and the misclassification error of each

testing client, as measured on its local data.

The evaluation metrics noted in Section D.3.4 are the following : the weighted mean of the loss dis-

tribution over the training clients, the (unweighted) mean misclassification error over the testing clients,

the weighted τ -percentile of the loss over the training client and the (unweighted) τ -percentile of the mis-

classification error over the testing clients for values of τ among {20, 50, 60, 80, 90, 95}. We also present

the 90th and 95th superquantile of the test misclassification error (i.e., average misclassification error of

the worst 10% and 5% of the clients respectively), as well as the average test misclassification error of the

best 10% clients. The weight αi used for training client iwas set proportional to the number of datapoints

on the client.
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Table D.2: Metrics for the test misclassification error for EMNIST (ConvNet Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 16.63± 0.50 4.94± 0.14 6.43± 0.24 15.34± 0.37 28.46± 1.07
FedAvg θ = 0.8 15.95± 0.42 5.25± 0.19 6.86± 0.38 14.84± 0.24 26.82± 1.28
FedAvg θ = 0.5 16.22± 0.23 5.06± 0.17 6.47± 0.28 15.05± 0.25 27.56± 0.81
FedAvg θ = 0.1 15.97± 0.43 5.40± 0.42 7.10± 0.64 14.76± 0.20 26.35± 2.08
FedProx 16.01± 0.54 5.16± 0.32 6.68± 0.44 14.88± 0.29 27.01± 1.86
q-FFL (Best q = 0.001) 16.58± 0.30 5.05± 0.21 6.53± 0.20 15.40± 0.43 28.02± 0.80
Tilted-ERM (Best t = 1.0) 15.69± 0.38 7.31± 0.68 7.26± 0.51 14.66± 0.16 25.46± 1.49
AFL 33.00± 0.37 20.38± 0.23 22.92± 0.23 31.58± 0.27 45.07± 1.00

∆-FL θ = 0.8 16.08± 0.40 5.60± 0.14 7.31± 0.29 14.85± 0.48 26.23± 1.15
∆-FL θ = 0.5 15.48± 0.30 6.13± 0.15 8.08± 0.16 14.73± 0.22 23.69± 0.94
∆-FL θ = 0.1 16.37± 1.03 6.61± 0.42 8.28± 0.65 15.49± 1.03 25.45± 2.77

Table D.3: Metrics for the test misclassification error for Sent140 (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.81± 0.38 46.83± 0.54
FedAvg θ = 0.8 34.47± 0.03 12.08± 0.16 21.69± 0.26 34.62± 0.17 46.59± 0.38
FedAvg θ = 0.5 34.46± 0.07 12.11± 0.24 21.55± 0.51 34.48± 0.20 47.00± 0.40
FedAvg θ = 0.1 34.79± 0.32 11.97± 0.37 22.08± 0.75 34.93± 0.35 46.69± 0.84
FedProx 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.82± 0.39 46.83± 0.54
q-FFL (Best q = 1.0) 34.48± 0.06 11.96± 0.14 21.61± 0.24 34.57± 0.16 46.38± 0.40
Tilted-ERM (Best t = 1.0) 34.71± 0.31 12.00± 0.14 21.83± 0.34 34.91± 0.39 46.70± 0.50
AFL 35.97± 0.08 11.83± 0.09 23.58± 0.28 36.09± 0.17 47.51± 0.32

∆-FL θ = 0.8 34.41± 0.22 12.17± 0.11 21.77± 0.34 34.64± 0.25 46.44± 0.38
∆-FL θ = 0.5 35.28± 0.25 11.68± 0.40 23.03± 0.38 35.55± 0.53 46.64± 0.41
∆-FL θ = 0.1 37.78± 0.89 12.86± 0.52 23.93± 0.99 37.80± 1.30 51.38± 1.07

Evaluation times. We evaluate the model during training process for once every l communication

rounds. The value of l used was l = 50 for EMNIST linear model, l = 10 for EMNIST ConvNet, l = 20 for
Sent140 linear model and l = 25 for Sent140 RNN.

Hardware. We run each experiment as a simulation as a single process. The linear models were trained

on m5.8xlarge AWS instances, each with an Intel Xeon Platinum 8000 series processor with 128 GB of

memory running at most 3.1 GHz. The neural network experiments were trained on workstation with an

Intel i9 processor with 128 GB of memory at 1.2 GHz, and two Nvidia Titan Xp GPUs. The Sent140 RNN

experiments were run on a CPU while the other neural network experiments were run using GPUs.

Software Packages. Our implementation is based on NumPy using the Python language. In the neural

network experiments, we use PyTorch to implement the LocalUpdate procedure, i.e., the model itself and

the automatic differentiation routines provided by PyTorch to make SGD updates.
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Table D.4: Metrics for the test misclassification error for Sent140 (RNN Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 30.16± 0.44 4.36± 1.26 10.06± 2.06 29.51± 0.33 49.66± 3.95 1

FedAvg θ = 0.8 29.85± 0.46 5.39± 1.32 11.90± 2.27 29.57± 0.31 46.93± 3.84 1

FedAvg θ = 0.5 31.06± 1.01 4.33± 2.73 9.69± 4.89 30.14± 0.71 53.10± 7.22 1

FedAvg θ = 0.1 31.96± 1.47 4.82± 2.09 11.65± 4.83 31.55± 1.13 52.87± 8.41 1

FedProx 30.20± 0.48 4.35± 1.23 10.37± 2.08 29.51± 0.32 49.85± 4.07
q-FFL (Best q = 0.01) 29.99± 0.56 4.90± 1.66 10.98± 2.88 29.56± 0.39 48.65± 4.68
Tilted-ERM (Best t = 1.0) 30.13± 0.49 14.17± 2.10 13.18± 3.33 29.96± 0.84 46.54± 3.27
AFL 37.74± 0.65 9.90± 1.46 18.19± 1.99 36.95± 1.03 57.78± 1.19

∆-FL θ = 0.8 30.30± 0.33 6.75± 2.68 13.05± 3.87 29.92± 0.38 46.46± 4.39
∆-FL θ = 0.5 33.58± 2.44 8.74± 3.98 16.77± 6.62 33.28± 2.27 50.47± 8.24
∆-FL θ = 0.1 51.97± 11.81 9.11± 5.47 16.67± 9.15 52.44± 13.21 86.44± 10.95

Randomness. Since several sampling routines appear in the procedures such as the selection of clients

or the local stochastic gradient, we carry our experiments with five different seeds and plot the average

metric value over these seeds. Each simulation is run on a single process. Where appropriate, we report

one standard deviation from the mean.

D.3.4 Experimental Results

We now present the experimental results of the paper.

• We present different metrics on the distribution of test misclassification error over the clients, com-

paring∆-FL to baselines.

• We study the convergence of Algorithm 6.3 for∆-FL over the course of the optimization, and com-

pare it with FedAvg.

• We plot the histograms of the distribution of losses over train clients as well as the test misclassifi-

cation errors over test clients at the end of the training process.

• We present in the form of scatter plots the training loss and test misclassification error across clients

achieved at the end of training, versus the number of local data points on the client.

• We present the number of clients having a loss greater than the quantile at each communication

round for∆-FL. This gives the effective number of clients selected in each round, cf. Proposition 6.3

and Remark 6.4.

Comparison to Baselines. We now present a detailed comparison of various statistics of the test mis-

classification error distribution for different methods in Table D.1- For each column the smallest mean over

five random runs is highlighted in bold. Further, if no other method is within one standard deviation of

this method, the entire entry (i.e., mean± std) is highlighted in bold.

Histograms of Loss and Test Misc. Error over Devices. Here, we plot the histograms of the loss

distribution over training clients and the misclassification error distribution over testing clients. We report

the losses and errors obtained at the end of the training process. Each metric is averaged per client over
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Figure D.1: Histogram of loss distribution over training clients and misclassification error distribution

over testing clients for EMNIST. The identification of the model (linear or ConvNet) is given on the y-axis
of the histograms.

5 runs of the random seed. Figure D.1 shows the histograms for EMNIST, while Figure D.2 shows the

histograms for Sent140 dataset. for Sent140. We note that ∆-FL tends to exhibit thinner upper tails at at

multiple values of θ and a lower variance of the distribution in most of the cases. This is also confirmed

by the figures in Tables D.1 to D.4. This shows the benefit of using∆-FL over vanilla FedAvg.

Performance compared to local data size. Next, we plot the loss on training clients versus the amount

of local data on the client and the misclassification error on the test clients versus the amount of local data

on the client. See Figure D.3 for EMNIST and Figure D.4 for Sent140.

Observe firstly that improvement over the worst cases is achieved regardless of the local data size of

the clients. Indeed, the client re-weighting step operates a sorting of the loss of the clients which does not

prevent small clients from being selected. In contrary, FedAvg, by averaging with respect to the weights
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Figure D.2: Histogram of loss distribution over training clients and misclassification error distribution

over testing clients for Sent140. The identification of the model (linear or RNN) is given on the y-axis of
the histograms.

of the clients is likely to put more the accent on the clients with larger local data size. Secondly, ∆-FL

appears to reduce the variance of of the loss on the train clients. Lastly, note that amongst test clients with

a small number of data points (e.g., < 200 for EMNIST or < 100 for Sent140), ∆-FL reduces the variance

of the misclassification error. Both effects are more pronounced on the neural network models.
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Scatter plot of losses and accuracies across devices sizes for EMNIST (Linear Model)
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Scatter plot of losses and accuracies across devices sizes for EMNIST (ConvNet Model)

Figure D.3: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification

error on testing client vs. amount of local data for EMNIST.
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Scatter plot of losses and test misclassification error across across devices sizes for Sent140 (Linear Model)
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Scatter plot of losses and test misclassification error across across devices sizes for Sent140 (LSTM Model)

Figure D.4: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification

error on testing client vs. amount of local data for Sent140.
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