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Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation

Distribution shifts in FL

Our Approach: Simplicial-FLFederated learning

Simplicial-FL leads to improvement in 
the tail performance
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If client losses are -smooth & -Lipschitz, we have 
the following rates on 


Nonconvex case: 


-strongly convex case: 


where  is the local condition number
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FL = Collaborative learning 
on decentralized data

 : data distribution on client pi i

  Usual objective (ERM):

Characteristics of FL

Data heterogeneity

Communication cost

Privacy of user data
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Approach: Minimize the tail error directly

min
w [Fθ(w) := 𝕊θ( (F1(w), ⋯, Fn(w)) )] Superquantile | 
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[Rockafellar & Uryasev (2002)]

Distributional robustness: for a new client with 

distribution , our objective is equivalent to pπ =
n

∑
i=1

πipi

Fθ(w) = max
π : πi≤(θn)−1

𝔼z∼pπ [f(w; z)]

Subgradient expression: if  is an integer thenθn

Theory

 clientsn

 = tail fraction


-quantile of 


-superquantile

θ

Qθ(Z) = (1 − θ) Z

𝕊θ(Z) = (1 − θ)

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) where

π⋆
i ∝ 𝕀(Fi(w) > q)

q = Qθ(F1(w), …, Fn(w))
Algorithm:

Loss

C
ou

nt

Tail

-Quantile(1 − θ)

Quantiles with differential privacy

Noisy client 
loss histogram Σ

Loss

C
ou

nt

Tail≈

Quantile
≈ (1 − θ)

 Noisy 

histogram

Challenge: unbiased gradient estimator not possible

Optimize mini-batch surrogate which is -close: (θm)−1/2

F̃θ,m(w) = 𝔼i1,…,im [𝕊θ(Fi1(w), …, Fim(w))]
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