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Models leak information
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Models leak information about their training data reliably
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Generative AI ChatGPT HOW Strangers GOt MYvEmall

Can Disturbingly Gobble Address From ChatGP Modelf:’
Up Your Private And ; By JeremyWhlte Dec 22, 2023 ‘;\ .

Confidential Data,

Forewarns Al Ethics And Samsung Bans Staff’s Al Use After

Al Law Spotting ChatGPT Data Leak

Lifice Eliot Cantributar ¢ m = Employees accidentally leaked sensitive data via ChatGPT
Dr. Lance B. Eliot is a world-renowned expert on . . . .

Artificial Intelligence (AI) and Machine Learning... u Company preparing own internal artificial mte"lgence tools

By Mark Gurman
May 2, 2023 at 6:18 AM GMT+5:30

Nvidia's Al software tricked into leaking data

Researchers manipulate feature in ways that could reveal sensitive information

LILY HAY NEWMAN ANDY GREENBERG SECURITY DEC 2. 2823 9:88 AM

Security News This Week: ChatGPT Spit Out Sensitive Data When Told to
Repeat ‘Poem’ Forever
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Privacy attacks:

Adversary uses the model to infer something about the data

Secure Public
location : access



What does the word “privacy” mean to an end user?

Transparency, Minimize data Data
Control, sharing

e Lers Anonymization
Verifiability

506 by B %A%
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Training, testing,
\ analytics—they're all

tasks we can tackle
privately and securely
‘ with federation!

https://federated.withgoogle.com/

Bonawitz, Kairouz, McMahan, Ramage (2022). Federated Learning and Privacy. Communications of the ACM.



Basic privacy attack: Membership inference
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Basic privacy attack: Data extraction
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Data extraction using membership inference

m Membership

Q f}) < - Generated text > Inference
O— —O (1] ] (Y'Y} (T}
o Ao
do m
< Generated text > e
LLM > Inference
Step 1 (Repeat): Step 2:
« Prompt model with random tokens e Membership Inference attack determines
to generate lots of text if each sample was in training set

Carlini et al. (USENIX Security 2021)



Example scenario 1: Incorporating sensitive metadata

TB or
No TB




Example scenario 1: Incorporating sensitive metadata

+ Patient info:
e Symptoms

o

TB or
No TB

Privacy-

sensitive!
o O

e Comorbidities (tobacco/HIV/diabetes/...)

e Family/location history



Linkage Attacks:

Combining information from multiple sources

Example/Image credit:
Latanya Sweeney

MAN_A0_THROWNEROMMOTORCYCLE
A 60-year-old Soap Lake man ‘was hospitalized
NSaturcay afternoonjafter he was thrown from his
mcetorcycle. Ronald Jameson was riding his 2003
Harley-Davidsei north on Highway 25, when he
failed _to_negotiate _a_curve to the left. His

Record Soasassas | |

Hospital 162: Sacred Heart
Medical Center in
Providence N

Admit Type 1: Emergency

Type of Stay = = n

Length of Stayj 6 days

Discharge Datej] Oct-2011 N

Discharge <

Status under the care of an
health service
organization

Charges $71708.47

Payers 1: Medicare
6: Commercial insurance
625: Other government

Emergency E8162: motor vehicle

Codes traffic accident due t
loss of control; loss
control mv-mocycl

Diagnosis 8U843: CL o

Codes of other specified part

of pelvis

51851: pulnonary
insufficiency following
trauma & surgery

276%: hyposmolality

§,0r hyponatremia £ |

T78057: tachycardia

motorcycie became airborne|before landing in a
wooded area. Jameson was thrown from the bike;
he“was wearing a helmet during the 12:24 nm.
incident. He was taken to Sacred Heart Hospital.
The police cited speed as the cause of the crash.

[News Review 10/18/2011]

2851: acute

———w—prrhagic 4dnemia

Extracted from

[ Age in Years 60

L AgEe 10 MOonrns 125
Cender Male
ZIP 98851
State Reside WA

RaCeyoonnIcICy

WIS Non-Hispanic

the model

Obtained from
some other
public sources




Linkage attacks are the
Achilles heel of patient data
de-identification/
anonymization.

A Piers Nash
‘; Innovative Al/Data Strategist | PhD, MBA | Mentor/Advisor

Published Mar 7, 2023

De-identification is a process that removes personal identifiers from data, such as a
person's name, address, or social security number. The goal of de-identification is
to make it difficult or impossible to re-identify individuals from the data. However,
the effectiveness of de-identification depends on the methods used and the
context in which the data will be used.



Example scenario 2: Voice-enabled chatbot / transcription

Image Credit: Imagen 3

TrGo Seren
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Patient: [Patient Name]

Chief Complaint: Headache for the last week

History of Present Iliness:

Patient reports experiencing headaches
for the past 7 days.

Associated symptoms: nausea,
vomiting, sensitivity to light/sound,
dizziness, visual disturbances, etc..



Which data do we use to train/finetune/align these models?

2272?

Training Data Trained Model

Target Task



Which data do we use to train/finetune/align these models?
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Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023



Best training data = in-domain data



Blog

Introducing

ChatGPT

M Gmail
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https://blog.google/products/gmail/gmail-ai-features/




For many applications, in-domain data = user data



For many applications, in-domain data = user data

Each user can contribute multiple examples

additional
privacy risks!



ChatGPT leaks sensitive conversations,

ignites privacy concerns: Here’s what YOUTUBERS FURIOUSAFTER APPLE

happened

AND ANTHROPIC STEAL THEIR DATA
T0 TRAINAI

Privacy and security concerns have resurfaced after leaked conversations were
discovered on OpenAl's Al-driven chat platform, ChatGPT. The incident raises
questions about the vulnerabilities of Al systems despite assurances of
safeguards.

A giant dataset of YouTube subtitles has, per a new investigation, been
used to train countless Al models without the permission of the tens of
Updated + 31 Jan 2024, 06:31 PM IST thousands of creators whose work was scraped.

Gemini Al platform accused of scanning
Google Drive files without user permission

m By Craig Hale published 15 July 2024



This talk:

Was a user’s data used in fine-tuning LLMs?

Pre-trained LLM

Output Layer
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This talk:
Was a user’s data used in fine-tuning LLMs?

Finetuned LLM pg Target User U Adversary

Output Layer

Was user U’s data used in fine-tuning?

User U n

Training samples

Query access

|

.....................

Samples known by attacker




User Inference
Attack

Attacker Has:

% -

v
fresh i.i.d. sémples from
a user distribution

Model fine-tuned on user data
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B

Attacker Wants to Infer:

Did samples EI
® O ©o
come from one of w w w ?



A simple user inference attack

Finetuned LLM py Target User U Adversary

Output Layer

1. lex®, ..., x™ from D
GlUehyScEess Sample x X rom Dy

e ——— 2. For each x(® compute pg (x®)

3. Test statistic
i 1 po(x®)
T(x®, .., xM) = ;Z?Q log (p_ref(x(i)))

4. U was in training if T(x®), ...,x(M) > ¢

. o
....................




Evaluation

ROC Curves
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User inference is effective when

#users is small and data per user is large

Reddit Comments (AUC = 0.56) CC News (AUC = 0.66) Enron Emails (AUC = 0.88) ROC Curves
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Short common phrases can exacerbate user inference

Shared Length — Reddit Comments Shared Length — CC News
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User inference mechanism:
Overfitting to data distributions of training users

CC News / Attack AUROC

, 65 o

& 3.2 1 r. a \,on’tvno--- S./
O ."‘-".. so, Jfam s % @)
= e 1 Validation loss of | o &
S 3.0 - : held-out users &
"';’; Generalization <DE
o N\ gap s 5
O 2.8+ \\ I validation loss of O
= \v\_! training users 4=
RN ey g e | 50 <

0 50 100 150 200 250
Fine-Tuning lteration (x10°)

Spearman Correlation(Generalization gap, AUROC) = 0.995



Can user inference be mitigated?

Do not work

Data limits per user
Early stopping

Data deduplication
Gradient clipping

Differential privacy



Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)

‘B _ N
E Randomized

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)

BE _
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A randomized algorithm is e-differentially private if the addition of
*--one unit of data does not alter its output distribution by more than &




Unit of data
Example-level Differential privacy (DP) = example

Output Distribution
(e.g. over models)

—E—>

Dataset

B _, .
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A randomized algorithm is e-differentially private if the addition of

“*one example does not alter its output distribution by more than &



Models leak information
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Example-level DP eliminates memorization

Test Loss Memorization
1.7 10 jesseunnssnnssnnnsnnsnnnnnnnnnnnnnnnns
Non-private A
1.6 1 I
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| Huge
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X |
it 10! 7 _4
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Privacy Parameter ¢ Privacy Parameter ¢
High privacy Low privacy High privacy Low privacy

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. USENIX Security 2019.



Example-level DP offers limited mitigation for user inference

ROC Curves for Enron Emails
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User Unit of data
BExample-level Differential privacy (DP) = -

Output Distribution
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A randomized algorithm is e-differentially private if the addition of

*-one user’s data does not alter its output distribution by more than &




User-level DP: Provable protections against user inference
ROC Curve 0

10

e By differential privacy definition: 05 |
3
TPR < e*FPR + 9 < Sl
g 0.6 1
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‘E 0.4 1
e Fundamental limits on the success of % '
membership inference =
0.2
8]
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
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Kairouz, Oh, Viswanath. The composition theorem for differential privacy. ICML 2015
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Advances in
DP training

Published as a conference paper at ICLR 2024

ICLR 2024

CORRELATED NOISE PROVABLY BEATS INDEPENDENT
NOISE FOR DIFFERENTIALLY PRIVATE LEARNING

Google’s production LM
(Portuguese language)
for next-word prediction

Christopher A. Choquette-Choo* Krishnamurthy (Dj) Dvijotham™ Krishna Pillutla*

Arun Ganesh Thomas Steinke Abhradeep Guha Thakurta
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DP Guarantee €

Plot: McMahan, Xu, Zhang (2024).



Thank you!

User Inference Attacks on Large Language Models.
EMNLP 2024 (Oral Presentation)
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