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Models leak information

LONG UIVE THE REVOLUTION. : .
(DLNQ:NE:Xﬂr rqEIET"JGs‘u”(l_IBE: EilC)()l.lt: t:r]‘EEII— 1tf’Ei||'||f1HE] (:Ifii:fi
AT
" Prefix ]
East Stroudsburg Stroudsburg... J

AHA, FOUND THEM!

/

" Memorized text )

Corporation Seabank Centre
Marine Parade Southport

Peter W

~

@ . .com
+ 7 5 40
Fax: + /7 5

oo

\ J

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS, IT CAN
LEAK INFORMATION IN UNEXPECTED \JAYS.

Carlini et al. (USENIX Security 2021)



Models leak information about their training data reliably
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Differential privacy (DP)

Output Distribution
(e.g. over models)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006
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Example-level Differential privacy (DP) Unit of data
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Differential privacy nearly eliminates memorization
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Which data do we use to train/finetune/align these models?
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Best training data = in-domain data
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For many applications, in-domain data = user data
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For many applications, in-domain data = user data
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Why do we need user-level DP?



Why do we need user-level DP?

Standard LLM finetuning pipelines are susceptible to
user inference attacks!

Nikhil Kandpal, P., Alina Oprea, Peter
Kairouz, Chris Choquette-Choo, Zheng Xu.
EMNLP (2024) Oral




User Inference Attack
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User inference is effective when
#users is small and data per user is large

Reddit Comments (AUC = 0.56) CC News (AUC = 0.66) Enron Emails (AUC = 0.88) ROC Curves
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Short common phrases can exacerbate user inference

Shared Length — Reddit Comments Shared Length — CC News
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Example-level DP offers limited mitigation

AUROC:
e non-private: 88%
o = 32:70%

Utility:

e DP model reaches what the private

model achieves in 1/3 epoch

Example-level DP does not help here
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How do we realize user-level DP?



Outline: how do we realize user-level DP?

Learning algorithms:

Improve the runtime of SoTA correlated noise
algorithms from O#?) to O(nlog?n)
at the same performance

(n = number of steps)

Noise Error Time / step
Independent @(ﬁ) o(1)
Optimal log(n)

Correlated T On)
Ours log(n) |

¢ O(logi(n/c))



Outline: how do we realize user-level DP?

Auditing:

Randomness makes the audit more
computationally efficient
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Part 1: Faster learning algorithms

FOCS (2024)

Dj Brendan Krishna Thomas Abhradeep
Dvijotham McMahan Pillutla Steinke Thakurta



DP-SGD: How do we train models with example-level DP?

_ _ Independent
Stochastic gradient Gaussian noise

clipped to ligll, < 1
per-example

0,1 = 0, — n(gt_l_zt)

=

Learning
rate

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-FedAvg: How do we train models with user-level DP?

_ _ Independent
Stochastic gradient Gaussian noise
clipped to ligll, < 1

per-user

\

0,1 = 0, — n(gt_l_zt)

=

Learning
rate

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-SGD: DP Training with Independent Noise

Independent
Gaussian noise

0,1 = 0, — n(gt_l_zt)

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-FTRL: DP Training with Correlated Noise

(Anti-)correlated
Gaussian noise
(z¢ 1.1.d. Gaussian)

t
9t+1 = 0 — 77(915 T2t — Z /BTZt—T)
_ T=1 |

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive
Streams. NeurIPS 2022.



Experiment: user-level DP +
language modeling

Prior work: (Empirically) correlated noise
outperforms independent noise

Dataset: StackOverflow
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(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



22 Google Al Blog

Production Training

Federated Learning with Formal Differential Privacy

Guarantees
Monday, February 28, 2022

Posted by Brendan McMahan and Abhradeep Thakurta, Research Scientists, Google Research

In 2017, Google introduced federated learning (FL), an approach that enables mobile devices to
collaboratively train machine learning (ML) models while keeping the raw training data on each
user's device, decoupling the ability to do ML from the need to store the data in the cloud. Since its
introduction, Google has continued to actively engage in FL research and deployed FL to power

"the first production neural
network trained directly on user
data announced with a formal
DP guarantee.”

many features in Gboard, including next word prediction, emoji suggestion and out-of-vocabulary
word discovery. Federated learning is improving the “Hey Google” detection models in Assistant,
suggesting replies in Google Messages, predicting text selections, and more.

While FL allows ML without raw data collection, differential privacy (DP) provides a quantifiable
measure of data anonymization, and when applied to ML can address concerns about models
memorizing sensitive user data. This too has been a top research priority, and has yielded one of
the first production uses of DP for analytics with RAPPOR in 2014, our open-source DP library,
Pipeline DP, and TensorFlow Privacy.

EEl True gradients I DP FTRL Estimates B DP SGD Estimates

The DP-FTRL
N model & stays
closer to

unnoised training.
Randomly N

initialized A —
model /] x/ [

- Google Al Blog post, Feb 2022

Arrows represent model updates in parameter space.

Data Minimization and Anonymization in Federated Learning
Along with fundamentals like transparency and consent, the privacy principles of data minimization
and anonymization are important in ML applications that involve sensitive data.

Have a good |

0 night day



https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html

How do we find the noise coefficients?



How do we find the noise coefficients?

Current Approach:
Find the noise coefficients to minimize the cumulative noise added to
the learning trajectory (such that a given DP constraint is satisfied)

Learning trajectories

Bl True gradients B Correlated noise (DP-FTRL) B 11D noise (DP-SGD)

Surrogate:
max error




How do we find the noise coefficients?

t
et—l-l — et o 77(9t T2t — Z 67‘216—7'
T=1

)

— . Wt

Find the noise coefficients 5 to minimize the max error (i.e. cumulative

noise added to the learning trajectory):

Surrogate 2 _
— I1l1aX
Objective _— g(6> t<mn

<

4

4

z2r~N(0,021)

/ 2

ZT:O Wr 2

where the variance ¢2 is chosen so that 6;'s satisfy a given DP constraint



Toeplitz mechanism: optimal max error
t

9t+1 = 0, — 77(915 T 2 — Z ﬁrzt_f)

T=1

Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML '23); Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by
coefficients B = t—3/2 and satisfies the bounds
logn

E(LT) = - - constant




Toeplitz mechanism: optimal max error
t

9t+1 = 0, — 77(915 T 2 — Z ﬁth_T)

T=1

Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML '23); Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by
coefficients B = t—3/2 and satisfies the bounds

|
E(PT) = %57 | constant
T \I
\ Exponential
SGDY\ __ Improvement over
EBTT) = @(\/ﬁ) independent noise




Our challenge: running time

t
Orr1 = 0, — 77(915 + 2t — Z 57215—7)
=1

/\‘L Be =t =32

Quadratic time complexity:.
Noise generation requires O(t) time in iteration ¢




Learning trajectories

N

HEl True gradients Bl Correlated noise (DP-FTRL) B |ID noise (DP-SGD)

P Surrogate:
}/ max error

/\,*_,/
/:“v_fg\\/”\/ Y
->->-;‘-:->->-> ->->\->*-F$>->->
Max Error
Independent noise O ( \/*
n)
Optimal correlated noise log

™

Noise generation time
(in iteration t)

O(dim)
O(t - dim)



A first attempt: the banded mechanism

Set gr=0fort >>b

b
Then, we only have to sum b terms in Zﬁth_T

T=1

Linear complexity:
Noise generation requires O(b) time in
each iteration

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Learning trajectories

HEl True gradients Bl Correlated noise (DP-FTRL) B |ID noise (DP-SGD)

/? N P Surrogate:
‘\// max error

**./

1’\/% N ¥

->->\->‘#>->->

Max Error Noise generation time
(in iteration t)

Independent noise @( \/ﬁ) O (dlm)

: : logn .
Optimal correlated noise i . O(t , dlm)

b-Banded O((\/n—/b —1)log b) ................................. O (b . dlm)

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



Our approach: Intuition

Consider an exponentially decaying sequence 5 = a At-1 ,

t
Then, we can compute the correlated noise w; = E B2+
T=1

using the recurrence W41 = X 2y + A Wy_1

Linear complexity:
Noise generation requires O(dim) time in
each iteration




Our approach: Intuition

Consider an exponentially decaying sequence £ = a At-1 ,

t
Then, we can compute the correlated noise w; = § B2+
T=1

using the recurrence W41 = X 2y + A Wy_1

Linear complexity:
Noise generation requires O(dim) time in
each iteration




Our approach: Intuition

Consider sums of exponentials: Be = ag Ait71 + ao At-1

t
Then, we can compute the correlated noise w; = ZﬁTZt—T
T=1

using



Our approach: Intuition

Consider sums of exponentials: Bt =

t
Then, we can compute the correlated noise w; = ZﬁTZt—T
T=1

using



Our approach: Intuition

Consider sums of exponentials: Bt =

Then, we can compute the correlated noise w; = ZﬁTZt—T

T=1

using

t
/ E : /
wt o /BTZt—T
T=1

t
"o 2 : 7
wt I /67'Zt—7'
7=1

/ /!
Wy = Wy + W,



Our approach: Intuition

Consider sums of exponentials: Bt =

Then, we can compute the correlated noise w; = ZﬁTZt—T

T=1

using

t
/ } : /
wt o /BTZt—T
T=1

t
"o E : 7
wt T /BTZt—T
7=1

Wy = w;t —|—”LU£/ Linear time +

‘\\\\\\\\\\1 space




Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Approximate the optimal noise coefficients with d exponentials as

O(d x dimension)

d
B, & 5/ __ Z v\l _—— Time & space complexity:
i=1



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time
(in iteration t)

Independent noise @( \/ﬁ) O (dlm)

Optimal correlated noise 1079;” . O(t : dlm)
b-Banded O((v/b - 1)log b O(b - dim)
BLT of degree d 222222 O ( d . dlm)



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Independent noise

Optimal correlated noise

b-Banded

BLT of degree d

Max Error g:iiieeragggne;;ltion time
O(v/n) O(dim)

L O(t - dim)

O((Vn/b = 1)logb) O(b - dim)

222222 O(d . dlm)

Approximation Theory!!




From sequences to functions
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From sequences to functions
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From sequences to functions

r(z) =1— Pz — fox® — -

——-

g - oS ~
~
7 \

/ A
Coefficients Generating
1, =81, =B>,... Function ro(x)

\ /
~ /
~ 7’
~ >

- =

Taylor expansion around x = 0

Coefficients B = ©@(t —3/2) <=2 generating function rp(x) = (1 — x) 1/2



From sequences to functions
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BLT generating functions

The Concrete

Tetrahedron
Theorem (Informal):

Symbolic Sums, Recurrence Equations,
Generating Functions, Asymptotic Estimates

The following properties are equivalent:
d

e 3's are a (complex) BLT sequence: ﬂt — E :@i)\ﬁ_l
1=1

e [ts generating function r(x) is a rational function of degree d

d
e 3's satisfy a linear recurrence [; = E Gi Dt
1=1



From functions to efficient noise generation

Generating Function
ro(x) = (1 — x) 1/

How good
IS It?

Rational approximation
r(x) = (1 —x)?




Theorem |[Dvijotham, McMahan, P., Steinke, Thakurta 2024 ]

The max error of a sequence (8;) with generating function r(x) is

£(8) < logn

+ O(n - err(r))

T

where err(r) quantifies the approximation quality

err(r) = xec-ﬁi}f—n—l r(r) —V1—u




There exists a degree-d rational function that satisfies the tight

approximation bound: Error in the rational approximation of degree d
10-3 -
sup |r(z) — Vz| < 3-exp(—Vd). : il gl N
Z‘E[O,l] g 10-5 - '-Yo’\". ‘Y.. P .‘
| 074 i '.'. ‘-.‘..'.
Newman. Rational approximation to |x|. Michigan Math. J. (1964) B | .,.,!,'!. ‘3l : .
gt gsi E : - degree d = 2
fgii " " =—=-= degree d =4
gy E """ degree d = 8
0.0 0.2 0.4 0.6 0.8 1.0
T
where err(r) quantifies the approximation quality
err(r) = max r(z) —vV1—ux

reC: |z|=1-n—1




Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time
(in iteration t)
Independent noise O(y/n) O(dim)
Optimal correlated noise 107ng aye @, (t ; dim)
b-Banded O((\/n—/b — 1 log b) () (b . djm)
BLT of degree d 1oin - O(n - exp(—Vd)) O(d : dim)

Suffices to take d=0(log2n)!



Key difference: approximation quality

Banded: Set 3,=0fort >b = polynomial approximation

d
BLT: B, :Zo‘i)‘g_l = rational approximation
1=1

L YULODPRUA OF NATHEMATINLS ARD ITS AMYUOLATEINS B

»

APPROXIMANTS

amnd EDITION

GEORGE A. BAKER, JH.
PETER GRAVES-MORRIS




Approximation quality: banded mechanism

Generating function as © — 1 - Coefficients
100':
' 104
——— \/1 — T 10—4
— 10 bands .
o 0!
===+= b = 100 bands e
""" b = 1000 bands 1ot
—1077
0~
—10™"
—10° -
0.0 09 099 0999 0.9999 0.99999 w0 1wt 10
L n

Note: here, we use a polynomial approximation to 1 / (I — x)/2 rather than (1 — x)1/2



Approximation quality: BLT mechanism

Generating function as © — 1 - Coefficients
100':
— ] —
=== degree d = 2
=== degree d = 3 107
""" degree d = 4
degree d = 5
1077 5

0.0 0.9 0.99 0.999  0.9999 0.99999
L n

Note: BLT approximation of 1 / (1 — x)1/2 <  BLT approximation of (1 — x)1/2

[McMahan and P. (2025)]



Empirical Results

Excess Max Error
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Practical Impact:
Google’s production language model (Portuguese)

0.140
> 0.135 -
O
=
O
<C
~ 0.130 -
TreeAgg BLT6K
—— BLT
0.125 | | | |
2 4 6 8 10

DP Guarantee & Plot: McMahan, Xu, Zhang (2024)



Aside: Theoretical evidence in favour of
correlated noise for learning problems

Choquette-Choo*, Dvijotham*, P.*, Ganesh, Steinke, Thakurta.
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning.
ICLR (2024)

/70



Experiment: user-level DP +
language modeling

Prior work: (Empirically) correlated noise
outperforms independent noise

Dataset: StackOverflow
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Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Is correlated noise provably better for learning problems?

The surrogate objective is not related to the learning objective

-

= /

= E(B) =<E(F)

- 307 Coefficients = 3’

Q

=201 Same max error but
© different

.g’ 101 // learning performance
Q

5 0t . .

2 0 2000 4000

iteration

Koloskova, McKenna, Charles, Rush, McMahan. Gradient Descent with Linearly Correlated Noise: Theory and Applications to
Differential Privacy. NeurIPS 2023



Our result: Correlated noise Is provably better for learning problems

(Anti-) correlated noise provably * High
beats independent noise v effective

| | o dimension

dimension d
effective dimension d.+
Independent noise o(d) Low
effective

Correlated noise O (et dimension

Lower bound Q(desr)




Aside 2: Fine-tuning LLMs with user-level DP



Scaling up user-level DP to LLMs (on a budget)

NeurIPS D&B 2023

SaTML 2025
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More words & groups than any previous benchmarks
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Scaling up user-level DP to LLMs (on a budget)

Scaling user-level DP to LLMs (on a budget)
NeurIPS D&B 2023 with independent noise:

SaTML 2025
0(0.5B) params
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Coming soon: Monograph and tutorial on
correlated noise mechanisms!
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Open Problem: Continuous time limits

t
Ori1 =0 —nl g + 26 — Z Brzi—r
T=1

Proceedings of Machine Learning Research vol 195:1-44, 2023 36th Annual Conference on Learning Theory

Universality of Langevin Diffusion for Private Optimization, with
Applications to Sampling from Rashomon Sets

Arun Ganesh ARUNGANESH@ GOOGLE.COM
Google Research

Abhradeep Thakurta ATHAKURTA @ GOOGLE.COM
Google DeepMind

Jalaj Upadhyay JALAJ.UPADHYAY @ RUTGERS.EDU

Precise analysis
(better rates)

Algorithm design

Rutgers University




Open Problem: Adaptive Gradient Algorithms

SGD update (without noise) Adam update (without noise)
v = (1 = B1)ve—1 + Brgy

t—1
Ht . 90 — E gT St — (]- — 62)8;—1 =+ 629152
:O 9 — 0 — :
T t+1 t 77\/87_'_5

Non-linear functions of the injected noise



Part 2: How audit user-level DP?

Unleashing the power of randomness in auditing DP

NeurIPS 2023

Krishna Pillutla Galen Andrew Peter Kairouz Brendan McMahan Alina Oprea Sewoong Oh



Empirical privacy auditing

Provable analytic DP ¢ (often loose)

1 —

Privacy
LOsSsS

Real privacy leakage DP ¢

¢ empirical lower bound

Our focus



Why empirical privacy auditing?

To verify that we actually provide the guarantee we claim
(no bugs in proofs/implementation)

mnist_experiment.py d;

@@ -71,7 +71,7 @@ def forward(self, x):

rho_i,
epochs,
inp_clip,
grad_clip
grad_clip/BATCH_SIZE
)
tl, correct, set_len = uc.test(model, test loader)
print (f'MNIST_{BATCH_SIZE} {epochs}_{grad_clip} {inp_clip}_{rho_i}"', correct/set_len)

upstream_clipping.py ﬂ;

@@ -110,7 +110,7 @@ def run_experiment(model, train_loader, rho_i, epochs, input_bound, grad_bound):

model.train()

# sensitivity for everything with weights 1is just:

sensitivity = input_bound * grad_bound / train_loader.batch_size
sensitivity = input_bound * grad_bound

sigma = np.sqrt(sensitivityxx2 / (2xrho_i))
print('sensitivity:', sensitivity)

Tramer et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022



Gap between DP guarantees and empirical behavior: Memorization

Test Loss Memorization
1.7 4 107 L ssnnsninssanssssnsnesnsninspoasesnnns
Non-private p
1.6 - :
| Huge
- I -
; 1.5 1 Nearly non- g | l_mprovement
v private loss 2 | o
< o : memorization
o 101 "
10! 10 10° 107 10 10! 10% 107 107 10%,
. Y, : .
Privacy Parameter ¢ . Privacy Parameter ¢
High privacy Low privacy T _ High privacy Low privacy
Carllr_n, Liu, _Erllngsson, Kos, Sf)ng._ Th? Secret Sharer: Evaluating and . Privacy guarantee IS Vacuous
Testing Unintended Memorization in Neural Networks. USENIX *

Security 2019 ' at this &l




Empirical Privacy Auditing requires many samples

e Trained w/ (0.21,10->)-DP
but empirically ¢>2.79 with

confidence 1-10-8 = bug In

implementation

e This required training
n=200,000 models

Probability Density

Loss of model on poisoned example

Tramer et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022
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Our goal: make empirical privacy auditing
more sample-efficient




Standard approaches for auditing privacy: binary hypothesis testing

Do Privacy barrier
B
.\T’.)/)
Training data Train model
Do or D1 | witha
D mechanism
In question
e
—
—
_canary_

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020



Standard approaches for auditing privacy: binary hypothesis testing

Do

Privacy barrier

B
.‘?'.}/)
Training data
Do or D1
D
—
—
-
_canary_

Train model
with a
mechanism
In question

P(A(Dl) c R) < ef ]P)(A(DO) c R) +0

True Positive Rate False Positive Rate
Do (Null Hypothesis) Repeat many
o times and
D1 (Alternative Hypothesis) ? Measure privacy
leakage

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020



Bottleneck: Bernoulli confidence intervals

e Confidence intervals based on n trials ACtUFaFlRTPR/
4
1 & Variance .
TPR ~ — (G ' t -
- Z:ZI (Guess i correct) —I—\/ - g TPR _ §
O
© =%\ " FPR
Actual Empirical TPR/ TPR,,
TPR/FPR FPR > log
FPR,
“V :

Sample size n needs to be large
for good estimates Empirical TPR/
FPR



Our approach: leverage randomness

e Lifted DP: Equivalent notion of DP with randomized datasets
e Multiple randomized hypothesis tests

e Adaptive confidence intervals capitalizing on low correlations



Multiple hypothesis tests for auditing Lifted DP

o Leave-One Out construction with 1.1.d. random canaries

Random Random
D1 Do
k Random k-1 Random
canaries Ci1,C2,C3 canaries

Is c1In D:?

Is Cll N Do?

D1 or Do

Train

| Model

Is c2 D:?

Is C’2 Do?

Average

: test statistics

)
AN

P

Is ¢3in D:.?

Is ¢'3in Do?




If the statistics are independent = better confidence
intervals

Unfortunately, they are dependent
(but highly uncorrelated)




Novel higher-order confidence interval

e 2nd-order confidence interval using empirical correlations between two tests

1 1

'TPR — Tﬁnk\ < \/ (Correlation | 7 | \/
n

4th moment)
n

e Ideally, when correlation=0(1/k), the confidence interval improves as

_ < |




Takeaway: Reduces variance from randomness in trials

TPR, —|— — ¢
> 1 s
Standard approach: ¢ Z 108 —
FPR,, + \/cﬁ

¢ - Universal constant )
Lower variance =>

¢’ - Data-dependent constant Tighter confidence intervals

TPRyx — \/:Tlé - n§/4 — 0

FPR,, . 1+ \/:% + n(;,/‘l

Our approach: e > log




Proof of concept with Gaussian mechanisms

e Sum query with sensitivity 1 e=20, k=+/n, d=10°

. . W
e (Gaussian mechanism c
* kcanaries uniformly random o os ——A
on the sphere § /
e Test statistic is inner product ™
<
®
— 0.4-
(O
O
s_ .
'g_oz 16 X gain
L) 1 canary 4x gain
99 911 913 015

Number of trials n

Dwork, Smith, Steinke, Ullman, Vadhan. Robust traceability from trace amounts. FOCS 2015



Suffices to train 200 models
Gain in sample complexity (FashionMNIST) instead of 1000 models

Data poison
e=8
Gradient poison
Baseline

©
] : —
IS better o LiDP is better



Privacy Auditing with One (1) Training Run

Thomas Steinke”™ Milad Nasr* Matthew Jagielski™
Google DeepMind Google DeepMind Google DeepMind

steinke@google.com srxzr@Qgoogle.com jaglielski@google.com



Gain in empirical

Bias-variance tradeoff in the number of canaries k
e =4.0, n = 4096, d = 10

Ji- - 3l | Variance gain
0.20 - ;

W { i*'*'*'*
c 0.15 - * R
O ,! * Net gain
© 0.10 -
-
S 0.05 -
e
a—) 0.00 -
E) —0.05 -

—0.10 - Bias gain

91 93 2%\/n 27 29
1 1

Number of canaries k TP < .
|TPR TPRn,k‘ S \/nk " 374



Summary

e Auditing Lifted DP (equivalent to usual DP) using multiple i.1.d.
random canaries to improve sample dependence of the confidence
intervals

e (Can integrate with existing recipes for designing canaries



Ongoing Projects



Problem

Algorithms

Empirical Theory

Analysis of convergence

State-of-the-art performance (statistical/optimization)
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Problem

Algorithms

Empirical Theory

Real-World

Applications Analysis of convergence

State-of-the-art performance (statistical/optimization)

Solve a societally-relevant problem 102



TB Detection with Privacy-Preserving Al

TB positive
patients Detection with

Usual WW@M CheSt X-ray S.

Approach *\ w,mw w v
e
dd

Missed detections

pbotics Technology Park, I-Hub @ 11Sc

Al & Rok
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TB Detection with Privacy- Preservmg Al

TB positive
patients Detection with
chest X-rays
Usual  TTTTET o, >
Approach
Missed detections
x spread to 10-15 others
x 50% mortality rate
TB positive
patients Detection with
chest X-rays +
Our patient details
ApproaCh ........................... .’

Fewer missed detections
by using patlent detalls

+ privacy-preserving Al t ed on

Privacy-sensitive!
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TB Detection with Privacy-Preserving Al

TB positive
patients Detection with

vsuat TR T

Approach ,*\ www w v
e
dd

Missed detections

/";\0\._‘
@S ARTPARK
® beo
@
’\‘.‘.') Al & Robotics Technology Park, I-Hub @ 1ISc

TB positive Technical Problem:

i Detecti ith : : '
PO et NS + Mixed public-private

multi-modal learning

Fewer missed detections
by usin
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Privacy-sensitive synthetic data generation

Text-to-speech data augmentation Financial fraud detection

e o g -
‘ - ". '\ L ’
r o ’
A
! ]
i=_2 ‘

Review of Gen AI Models for Financial Risk Management

& Satyadhar Joshi

ili BOFA Jersey City, USA

Useful to address data imbalances, bias
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Evaluating synthetic data from LLMs/Gen Al

Project Page: https://krishnap25.github.io/mauve-overview/

e Pillutia*, Liu*, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui. MAUVE Scores for Generative Models:
Theory and Practice. Journal of Machine Learning Research (2023).

e Pillutla, Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. MAUVE: Measuring the Gap Between Neural
Text and Human Text using Divergence Frontiers. NeurIPS (2021). Outstanding Paper Award.

e Liu, Pillutla, Welleck, Oh, Choi, Harchaoui. Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Effects, and Frontier Integrals. NeurIPS (2021).

Fidelity error

Type | Error:
The time is
the time is

Probability

the time is

the time - - -

Type I Error =DAQ||P)

Q: model
distribution

P: target
distribution

Diversity error

Type Il Error:
| just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

. .
.......

Type 11 Error = D(P||Q)

mauve-text 0.4.0

pip install mauve-text (@

import mauve

# call mauve.compute_mauve using raw text on GPU 0@; eac
out = mauve.compute_mauve(p_text=p_text, q_text=q_text,
print(out.mauve) # prints 0.9917

-~ Evaluate

OSTNEINE Pape

1., PROCESSING SYSTEMS

c'.v:’
i

NeurlPS 2021
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Privacy-sensitive synthetic data generation

Text-to-speech data augmentation Financial fraud detection

e o g -
‘ - ". '\ L ’
r o ’
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i=_2 ‘

Review of Gen AI Models for Financial Risk Management

& Satyadhar Joshi

ili BOFA Jersey City, USA

Useful to address data imbalances, bias
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Thank you!

‘@) https://Krishnap25.github.io

@KrishnaPillutla

= -r,

https://www.linkedin.com/in/krishna- 'I:;
- -ll-l"l- Yol

pillutla-aOb1b2a8/ 1! * -
hEaTa
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https://krishnap25.github.io
https://www.linkedin.com/in/krishna-pillutla-a0b1b2a8/
https://www.linkedin.com/in/krishna-pillutla-a0b1b2a8/

Advertisement: MS/PhD Openings in my group at IIT Madras

e Areas of interest in ML/AI:

o Privacy-preserving Al
o Making (generative) AI more robust
o Applications in healthcare + public good

e Flavour:

o Theoretical foundations +
o State of the art empirical performance +
o Real-world applications



