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Models leak information 
about their training data

Carlini et al. (USENIX Security 2021)
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Models leak information about their training data reliably

Carlini et al. (USENIX Security 2021)





Differential privacy (DP)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006
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Differential privacy (DP)

A randomized algorithm is !-differentially private if the addition of  

one unit of data does not alter its output distribution by more than !
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Example-level Differential privacy (DP)

A randomized algorithm is !-differentially private if the addition of  

one example does not alter its output distribution by more than !

1

Randomized 
Algorithm

+

Dataset Output Distribution 
(e.g. over models)

ε

    Unit of data  
= example



Differential privacy nearly eliminates memorization

9

Nearly non-private 
loss

Huge 
improvement in 
memorization

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended 
Memorization in Neural Networks. USENIX Security 2019.

High privacy Low privacy High privacy Low privacy 



Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023
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Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023

Test on training distribution 
(in-domain / ID)

Test on shifted distribution 
(out-of-domain / OOD)

Robustness 
Gap

 y 
= 

xo
  

Which data do we use to train/finetune/align these models?

Best training data = in-domain data 



https://blog.google/products/gmail/gmail-ai-features/

https://blog.google/products/gmail/gmail-ai-features/


https://blog.google/products/gmail/gmail-ai-features/

https://blog.google/products/gmail/gmail-ai-features/


For many applications, in-domain data = user data 



14



For many applications, in-domain data = user data 



Example-level Differential privacy (DP)

A randomized algorithm is !-differentially private if the addition of  

one example does not alter its output distribution by more than !
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Dataset Output Distribution 
(e.g. over models)

ε

    Unit of data  
= example



    Unit of data  
= user

A randomized algorithm is !-differentially private if the addition of  

one user’s data does not alter its output distribution by more than !

1

Randomized 
Algorithm

+

Dataset Output Distribution 
(e.g. over models)

ε

Example-level Differential privacy (DP)
User



Why do we need user-level DP?



Why do we need user-level DP?

Standard LLM finetuning pipelines are susceptible to  
user inference attacks!

Nikhil Kandpal, P., Alina Oprea, Peter 
Kairouz, Chris Choquette-Choo, Zheng Xu. 
EMNLP (2024) Oral



User Inference Attack

You:  
Train AI model

Adversary:  
“Attack” the model



User Inference 
Attack

Model fine-tuned on user data



and

fresh i.i.d. samples from 
 a user distribution

Adversary Has:

User Inference 
Attack

Model fine-tuned on user data



and

fresh i.i.d. samples from 
 a user distribution

Adversary Wants to Infer:

Did samples

come from one of

Adversary Has:

User Inference 
Attack

Model fine-tuned on user data

?



User inference is effective when  
#users is small and data per user is large

More fine-tuning samples per user

More users



Short common phrases can exacerbate user inference



Example-level DP offers limited mitigation

AUROC:  
● non-private: 88%  
● " = 32: 70% 

Utility: 
● DP model reaches what the private 

model achieves in 1/3 epoch

Example-level DP does not help here

ROC Curves for Enron Emails



    Unit of data  
= user

User

A randomized algorithm is !-differentially private if the addition of  

one user’s data does not alter its output distribution by more than !

1

Randomized 
Algorithm

+

Dataset Output Distribution 
(e.g. over models)

ε

Example-level Differential privacy (DP)



How do we realize user-level DP?



Outline: how do we realize user-level DP?

Learning algorithms: 

Improve the runtime of SoTA correlated noise 
algorithms from  to   
at the same performance 

(  = number of steps)

O(n2) O(n log2 n)

n

Noise Error Time / step

Independent

Optimal 

Correlated

Ours

Θ( n) O(1)

log(n)
π O(n)

log(n)
π

+ c O(log2(n/c))



Outline: how do we realize user-level DP?

Auditing: 

Randomness makes the audit more 
computationally efficient

Baseline

Ours
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Learning algorithms: 

Improve the runtime of SoTA correlated noise 
algorithms from  to   
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DP-SGD: How do we train models with example-level DP?

Learning 
rate

Stochastic gradient 
clipped to ‖g‖2 ≤ 1 

per-example

Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)

θt+1 = θt − η ( gt + zt )



DP-FedAvg: How do we train models with user-level DP?

Learning 
rate

Stochastic gradient 
clipped to ‖g‖2 ≤ 1 

per-user

Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)

θt+1 = θt − η ( gt + zt )



Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)

θt+1 = θt − η ( gt + zt )

DP-SGD: DP Training with Independent Noise



DP-FTRL: DP Training with Correlated Noise

(Anti-)correlated 
Gaussian noise  

(zt i.i.d. Gaussian)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021. 
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive 
Streams. NeurIPS 2022.



Prior work: (Empirically) correlated noise 
outperforms independent noise 

Independent noise (+ amplif.)

Correlated noise (no amplif.)

Correlated noise (+ amplif.)

Correlated noise 
uniformly beats 

independent noise

Experiment: user-level DP + 
language modeling  

Dataset: StackOverflow

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu. 
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

High privacy Low privacy



Production Training

“the first production neural 
network trained directly on user 
data announced with a formal 

DP guarantee.” 
 

- Google AI Blog post, Feb 2022

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html


How do we find the noise coefficients? 



How do we find the noise coefficients? 
Current Approach:  
Find the noise coefficients to minimize the cumulative noise added to 
the learning trajectory (such that a given DP constraint is satisfied)

Surrogate: 
max error



where the variance #2 is chosen so that $t’s satisfy a given DP constraint

Find the noise coefficients %t to minimize the max error (i.e. cumulative 

noise added to the learning trajectory):

Surrogate 
Objective

How do we find the noise coefficients? 



Theorem 
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23);  Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)] 

For any number n of steps, the optimal max error is obtained by 
coefficients %t* = t—3/2 and satisfies the bounds 

Toeplitz mechanism: optimal max error



Theorem 
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23);  Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)] 

For any number n of steps, the optimal max error is obtained by 
coefficients %t* = t—3/2 and satisfies the bounds 

Toeplitz mechanism: optimal max error

Exponential 
improvement over 
independent noise



Quadratic time complexity:  
Noise generation requires O(t) time in iteration t

%t = t —3/2 

Our challenge: running time



Surrogate: 
max error

Max Error Noise generation time  
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



A first attempt: the banded mechanism

Set %t = 0 for t > b  

Then, we only have to sum b terms in

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu. 
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

Linear complexity:  
Noise generation requires O(b) time in 

each iteration



Max Error Noise generation time  
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

Surrogate: 
max error

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



Our approach: Intuition

Consider an exponentially decaying sequence %t = & 't–1 . 

Then, we can compute the correlated noise  

using the recurrence  

Linear complexity:  
Noise generation requires O(dim) time in 

each iteration



Our approach: Intuition

Consider an exponentially decaying sequence %t = & 't–1 . 

Then, we can compute the correlated noise  

using the recurrence  

Linear complexity:  
Noise generation requires O(dim) time in 

each iteration



Our approach: Intuition

Consider sums of exponentials:           %t = &1 '1t–1 + &2 '2t–1 

Then, we can compute the correlated noise  

using
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Then, we can compute the correlated noise  
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Our approach: Intuition

Consider sums of exponentials:           %t = &1 '1t–1 + &2 '2t–1 

Then, we can compute the correlated noise  

using

%t’ + %t” 



Our approach: Intuition

Consider sums of exponentials:           %t = &1 '1t–1 + &2 '2t–1 

Then, we can compute the correlated noise  

using

%t’ + %t” 

Linear time + 
space



Approximate the optimal noise coefficients with d exponentials as

Time & space complexity:  
O(d x dimension)

Our approach: Buffered Linear Toeplitz (BLT) Mechanism



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time  
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                ??????



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time  
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                ??????

Approximation Theory!!



From sequences to functions

Coefficients 
1, –%1, –%2,...

Generating 
Function r0(x)



From sequences to functions

Coefficients 
1, –%1, –%2,...

Generating 
Function r0(x)

Taylor expansion around x = 0



From sequences to functions

Coefficients %t = ((t —3/2 )    ⇔   generating function r0(x) = (1 — x) 1/2

Taylor expansion around x = 0

Coefficients 
1, –%1, –%2,...

Generating 
Function r0(x)



From sequences to functions

Taylor expansion around x = 0

BLT 
????

Coefficients 
1, –%1, –%2,...

Generating 
Function r0(x)



BLT generating functions

Theorem (Informal): 

The following properties are equivalent: 

• %’s are a (complex) BLT sequence: 

• Its generating function r(x) is a rational function of degree d 

• %’s satisfy a linear recurrence



From functions to efficient noise generation

How good 
is it?Generating Function 

r0(x) = (1 — x) 1/2
Rational approximation  

r(x) ≈ (1 — x) 1/2



Theorem [Dvijotham, McMahan, P., Steinke, Thakurta 2024] 

The max error of a sequence (%t) with generating function r(x) is 
  

where err(r) quantifies the approximation quality 



Theorem [Dvijotham, McMahan, P., Steinke, Thakurta 2024] 

The max error of a sequence (%t) with generating function r(x) is 
  

where err(r) quantifies the approximation quality 

There exists a degree-d rational function that satisfies the tight 
approximation bound:

Newman. Rational approximation to |x|. Michigan Math. J. (1964)



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time  
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                

Suffices to take d=O(log2n)!



Key difference: approximation quality

Banded: Set %t = 0 for t > b    ⇒  polynomial approximation  

BLT:                                      ⇒  rational approximation 



Coefficients

Approximation quality: banded mechanism

Note: here, we use a polynomial approximation to 1 / (1 — x)1/2  rather than (1 — x)1/2 



Coefficients

Approximation quality: BLT mechanism

Note: BLT approximation of 1 / (1 — x)1/2        ⇔     BLT approximation of (1 — x)1/2        

[McMahan and P. (2025)]



Empirical Results

Excess Max Error

Lower bound



Practical Impact:  
Google’s production language model (Portuguese)

Previous 
production 

system

BLT

Plot: McMahan, Xu, Zhang (2024)
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Aside: Theoretical evidence in favour of 
correlated noise for learning problems

70

Choquette-Choo*, Dvijotham*, P.*, Ganesh, Steinke, Thakurta.  
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning.  
ICLR (2024)



Prior work: (Empirically) correlated noise 
outperforms independent noise 

Independent noise (+ amplif.)

Correlated noise (no amplif.)

Correlated noise (+ amplif.)

Correlated noise 
uniformly beats 

independent noise

Experiment: user-level DP + 
language modeling  

Dataset: StackOverflow

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu. 
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

High privacy Low privacy



Is correlated noise provably better for learning problems?

The surrogate objective is not related to the learning objective

Koloskova, McKenna, Charles, Rush, McMahan. Gradient Descent with Linearly Correlated Noise: Theory and Applications to 
Differential Privacy. NeurIPS 2023

Coefficients = %

Coefficients = %’
Same max error but 

different  
learning performance



(Anti-) correlated noise provably 
beats independent noise 

For linear regression, dimension d 
improves to problem-dependent 
effective dimension deff  

Independent noise

Correlated noise 

Lower bound 

Our result: Correlated noise is provably better for learning problems

High 
effective 
dimension

Low 
effective 
dimension



Aside 2: Fine-tuning LLMs with user-level DP



Scaling up user-level DP to LLMs (on a budget)

● First user-level DP benchmarks for LLMs  
● Training with O(0.5B) params and O(100K) users 

NeurIPS D&B 2023 

SaTML 2025

Stack Overflow

Reddit

FedC4
FedBookCO

Typical LM  
sequence  

length

Largest  
previous  
datasets

Our datasets



More words & groups than any previous benchmarks

Largest previous 
datasets Our datasets Our datasets

10x larger
30x larger

Largest previous 
datasets



Scaling up user-level DP to LLMs (on a budget)

Scaling user-level DP to LLMs (on a budget)  
with independent noise: 

● First user-level DP benchmarks for LLMs  
● Training with O(0.5B) params and O(100K) users 

NeurIPS D&B 2023 

SaTML 2025

Sample 
examples

Sample 
users

Pretrained 
model 



Coming soon: Monograph and tutorial on  
correlated noise mechanisms!



Open Problem: Continuous time limits

Precise analysis 
(better rates) 

Algorithm design



Open Problem: Adaptive Gradient Algorithms

Non-linear functions of the injected noise

SGD update (without noise) Adam update (without noise)



Part 2: How audit user-level DP?

Unleashing the power of randomness in auditing DP

Peter Kairouz Brendan McMahan Alina OpreaGalen Andrew Sewoong Oh

NeurIPS 2023

Krishna Pillutla



Empirical privacy auditing

Privacy 
Loss

Provable analytic DP ! (often loose)

Real privacy leakage

! empirical lower bound 

DP !

Our focus



Why empirical privacy auditing?
To verify that we actually provide the guarantee we claim 
(no bugs in proofs/implementation)

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022



Gap between DP guarantees and empirical behavior: Memorization

High privacy Low privacy Low privacyHigh privacy

Nearly non-
private loss

Huge 
improvement 
in 
memorization

Privacy guarantee is vacuous 
at this !! Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and 

Testing Unintended Memorization in Neural Networks. USENIX 
Security 2019



Empirical Privacy Auditing requires many samples 

● Trained w/ (0.21,10-5)-DP 
but empirically !>2.79 with 

confidence 1-10-8 ⇒ bug in 

implementation 

● This required training )=200,000 models

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022



Our goal: make empirical privacy auditing  
more sample-efficient



E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021 
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020 

*0

*1
*0 or *1

Train model 
with a 

mechanism 
in question

canary

Training data 

Privacy barrier 

Standard approaches for auditing privacy: binary hypothesis testing



*0

*1
*0 or *1

Train model 
with a 

mechanism 
in question

*0 (Null Hypothesis)  

or  *1  (Alternative Hypothesis) ?

canary

Training data

Privacy barrier 

Repeat many 
times and 

measure privacy 
leakage

Standard approaches for auditing privacy: binary hypothesis testing

True Positive Rate False Positive Rate

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021 
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020



● Confidence intervals based on n trials

Bottleneck: Bernoulli confidence intervals

Empirical TPR/
FPR

Actual 
TPR/FPR

Empirical TPR/
FPR

Actual TPR/
FPR

Sample size n needs to be large 
for good estimates



Our approach: leverage randomness 

● Lifted DP: Equivalent notion of DP with randomized datasets 

● Multiple randomized hypothesis tests 

● Adaptive confidence intervals capitalizing on low correlations



● Leave-One Out construction with i.i.d. random canaries

Random *0

Is +1 in *1?   

Is +’1 in *0?

Is +3 in *1? 

Is +’3 in *0?

*1 or *0
Train 
Model

Is +2 *1?    

Is +’2 *0?
Average  

test statistics

, Random 
canaries +1,+2,+3

Random *1

,-1 Random 
canaries

Multiple hypothesis tests for auditing Lifted DP



● Leave-One Out construction with i.i.d. random canaries

Random *0

Is +1 in *1?   

Is +’1 in *0?

Is +3 in *1? 

Is +’3 in *0?

*1 or *0
Train 
Model

Is +2 *1?    

Is +’2 *0?
Average  

test statistics

, Random 
canaries +1,+2,+3

Random *1

,-1 Random 
canaries

Multiple hypothesis tests for auditing Lifted DP

If the statistics are independent ⇒ better confidence 

intervals 

Unfortunately, they are dependent  
(but highly uncorrelated)



Novel higher-order confidence interval 

● 2nd-order confidence interval using empirical correlations between two tests 
 
 
 
 

● Ideally, when correlation=O(1/,), the confidence interval improves as



Takeaway: Reduces variance from randomness in trials

Standard approach: 

Our approach: 

Lower variance =>  
Tighter confidence intervals

c -  Universal constant 

c’ - Data-dependent constant



Proof of concept with Gaussian mechanisms

● Sum query with sensitivity 1  
● Gaussian mechanism 
● , canaries uniformly random  

on the sphere 
● Test statistic is inner product 

  
 
 
 

Dwork, Smith, Steinke, Ullman, Vadhan. Robust traceability from trace amounts. FOCS 2015
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Suffices to train 200 models 
instead of 1000 models

Data poison

Gradient poison

E
q

u
a
l

LiDP is better 

Baseline 
is better 





Bias-variance tradeoff in the number of canaries , 
Variance gain

Net gain

Bias gain

G
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Summary

● Auditing Lifted DP (equivalent to usual DP) using multiple i.i.d. 
random canaries to improve sample dependence of the confidence 
intervals 
 

● Can integrate with existing recipes for designing canaries



Ongoing Projects
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Empirical Theory

Algorithms

State-of-the-art performance Analysis of convergence 
(statistical/optimization)

Problem
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Empirical Theory

Algorithms

State-of-the-art performance Analysis of convergence 
(statistical/optimization)

Problem

Real-World 
Applications

Solve a societally-relevant problem
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TB Detection with Privacy-Preserving AI
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TB Detection with Privacy-Preserving AI

Privacy-sensitive!
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TB Detection with Privacy-Preserving AI

Technical Problem: 
Mixed public-private  
multi-modal learning



Privacy-sensitive synthetic data generation

106

Financial fraud detectionText-to-speech data augmentation

Useful to address data imbalances, bias



Evaluating synthetic data from LLMs/Gen AI

107

Project Page: https://krishnap25.github.io/mauve-overview/ 

• Pillutla*, Liu*, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui. MAUVE Scores for Generative Models: 
Theory and Practice. Journal of Machine Learning Research (2023). 

• Pillutla, Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. MAUVE: Measuring the Gap Between Neural 
Text and Human Text using Divergence Frontiers. NeurIPS (2021). Outstanding Paper Award. 

• Liu, Pillutla, Welleck, Oh, Choi, Harchaoui. Divergence Frontiers for Generative Models: Sample Complexity, 
Quantization Effects, and Frontier Integrals. NeurIPS (2021).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NeurIPS 2021 
MAUVE: Measuring the Gap Between Neural Text and 

Human Text using Divergence Frontiers 

Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John 
Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui 

Alina Beygelzimer, Program Chair 



Privacy-sensitive synthetic data generation

108

Financial fraud detectionText-to-speech data augmentation

Useful to address data imbalances, bias



Thank you!

https://krishnap25.github.io 

@KrishnaPillutla 

https://www.linkedin.com/in/krishna-
pillutla-a0b1b2a8/ 
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https://krishnap25.github.io
https://www.linkedin.com/in/krishna-pillutla-a0b1b2a8/
https://www.linkedin.com/in/krishna-pillutla-a0b1b2a8/


● Areas of interest in ML/AI: 
○ Privacy-preserving AI 
○ Making (generative) AI more robust 
○ Applications in healthcare + public good 

● Flavour: 
○ Theoretical foundations +  
○ State of the art empirical performance +  
○ Real-world applications

Advertisement: MS/PhD Openings in my group at IIT Madras


