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Data is decentralized and private
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Challenge: 
Training is not robust to potentially malicious clients
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Training Deployment
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poisoning
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Usual mean aggregation is not robust to corruptions  Poor predictions!⟹
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(In 1D, we have that geometric median  usual median)≡

Nemirovski & Yudin (1983) | Jerrum, Valiant & Vazirani (1986) | Lopuhaa  & Rousseeuw (1991) 
Hsu & Sabata (2013) | Minsker (2015)  | Lugosi, Gabor & Mendelson (2019) | Lecué & Lerasle (2020)
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Smoothed Weiszfeld Algorithm

βi,t = 1
max{∥zt − wi∥2, ν}

zt+1 =
∑i βi,twi

∑i βi,t

Weiszfeld (1937). Sur le point par lequel la somme des distances de 
n points donnes est minimum. Tohoku Mathematical Journal.

Compute new weights &     Reweighted average
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[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]

x1

x2
x1 + x2

Client 1

Client 2

Server∑

Only reveal  to the server without revealing  or x1 + x2 x1 x2

Communication primitive: secure sum/average
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[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]

Perform all operations modulo   M
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Server

Server only sees  but calculates the correct sum (and average)x′ 1, x′ 2 ∼ Unif(◯)
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Real-world communication constraint:  
All client-to-server communication must go through secure average
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Secure aggregation

Only client-server communication 
is via secure average in the 
Smoothed Weiszfeld Algorithm

zt+1 =
∑i βi,twi

∑i βi,t
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Empirically, 3-5 iterations suffice:  

provably rapid convergence

Even 1 iteration 
improves 
robustness!
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Robust Federated Aggregation (RFA)
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More robust federated learning =  

Local SGD steps +  

Geometric median + secure aggregation



Step 1 of 3: Server broadcasts 
global model to sampled clients

Step 2 of 3: Clients perform some 
local SGD steps on their local data

So far, same as federated averaging
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Server



Step 3 of 3: Aggregate with multiple rounds of secure average 
                 (weights  from the Smoothed Weiszfeld Algorithm)βi

Round 1 of Aggregation Round 2 of Aggregation Round 3 of Aggregation

W
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TABLE I
EXAMPLES CORRUPTIONS AND CAPABILITY OF AN ADVERSARY THEY REQUIRE, AS MEASURED ALONG THE FOLLOWING AXES: DATA WRITE, WHERE A DEVICE
i ∈ C CAN REPLACE ITS LOCAL DISTRIBUTION Di BY ANY ARBITRARY DISTRIBUTION D̃i; MODEL READ, WHERE A DEVICE i ∈ C CAN READ THE SERVER

MODEL w(t) AND REPLACE ITS LOCAL DISTRIBUTION Di BY AN ADAPTIVE DISTRIBUTION D̃
(t)
i DEPENDING ON w(t); MODEL WRITE, WHERE A DEVICE i ∈ C

CAN RETURN AN ARBITRARY VECTOR TO THE SERVER FOR AGGREGATION AS IN (4), AND, AGGREGATION, WHERE A DEVICE i ∈ C CAN BEHAVE ARBITRARILY
DURING THE COMPUTATION OF AN ITERATIVE SECURE AGGREGATE. THE LAST COLUMN INDICATES WHETHER THE PROPOSED RFA ALGORITHM IS ROBUST TO

EACH TYPE OF CORRUPTION

where Hi is an arbitrary Rd-valued function which is allowed to
depend on the global model w(t), the uncorrupted updates w(t)

j,τ
as well as the data distributions Dj of each device j ∈ St.

This encompasses situations where the corrupted devices are
individually or collectively trying to “attack” the global model,
that is, reduce its predictive power over uncorrupted data. We
define the corruption level ρ as the total fraction of the weight
of the corrupted devices:

ρ =

∑
i∈C αi∑n
i=1 αi

. (5)

Since the corrupted devices can only harm the global model
through the updates they contribute in the aggregation step, we
aim to robustify the aggregation in federated learning. However,
it turns out that robustness is not directly compatible with the two
other desiderata of federated learning, namely communication
efficiency and privacy.

The Tension Between Robustness, Communication and
Privacy: We first argue that any federated learning algorithm
can only have two out of the three of robustness, commu-
nication and privacy under the existing techniques of secure
multi-party computation. The standard approach of FedAvg
is communication-efficient and privacy-preserving but not ro-
bust, as we discussed earlier. In fact, any aggregation scheme
A(w1, . . . , wm) which is a linear function of w1, . . . , wm is
similarly non-robust. Therefore, any robust aggregate A must
be a non-linear function of the vectors it aggregates.

The approach of sending the updates to the server at a com-
munication of O(md) and utilizing one of the many robust
aggregates studied in the literature [e.g. [50], [52], [53]] has ro-
bustness and communication efficiency but not privacy. If we try
to make it privacy-preserving, however, we lose communication
efficiency. Indeed, the secure multi-party computation primitives
based on secret sharing, upon which privacy-preservation is
built, are communication efficient only for linear functions of
the inputs [68]. The additional O(m logm) overhead of secure
averaging for linear functions becomes Ω(md logm) for gen-
eral non-linear functions required for robustness; this makes it
impractical for large-scale systems [11]. Therefore, one cannot
have both communication efficiency and privacy preservation
along with robustness.

In this work, we strike a compromise between robustness,
communication and privacy. We will approximate a non-linear
robust aggregate as an iterative secure aggregate, i.e., as a
sequence of weighted averages, computed with a secure average
oracle with weights being adaptively updated.

Definition 1: A function A : (Rd)m → Rd is said to be an
iterative secure aggregate ofw1, . . . , wm withR communication
rounds and initial iterate v(0) if for r = 0, . . . , R− 1, there exist
weights β(r)

1 , . . . ,β(r)
m such that

i) β(r)
i depends only on v(r) and wi,

ii) v(r+1) =
∑m

i=1 β
(r)
i wi/

∑m
i=1 β

(r)
i , and,

iii) A(w1, · · ·wm) = v(R).
Further, the iterative secure aggregate is said to be s-privacy

preserving for some s ∈ (0, 1) if
iv) β(r)

i /
∑m

j=1 β
(r)
j ≤ s for all i ∈ [m] and r ∈ [R].

If we have an iterative secure aggregate with R communi-
cation rounds which is also robust, we gain robustness at a
R-fold increase in communication cost. Condition (iv) ensures
privacy preservation because it reveals only weighted averages
with weights at most s, so a user’s update is only available after
being mixed with those from a large cohort of devices.

The Tension Between Robustness and Heterogeneity: Het-
erogeneity is a key property of federated learning. The distribu-
tion Di of device i can be quite different from the distribution
Dj of some other device j, reflecting the heterogeneous data
generated by a diverse set of users.

To analyze the effect of heterogeneity on robustness, con-
sider the simplified scenario of robust mean estimation in
Huber’s contamination model [34]. Here, we wish to esti-
mate the mean µ ∈ Rd given samples w1, . . . , wm ∼ (1−
ρ)N (µ,σ2I) + ρQ, where Q denotes some outlier distribution
that ρ-fraction of the points (designated as outliers) are drawn
from. Any aggregate w̄ must satisfy the lower bound ‖w̄ −
µ‖2 ≥ Ω(σ2 max{ρ2, d/m}) with constant probability [69,
Theorem 2.2]. In the federated learning setting, more hetero-
geneity corresponds to a greater variance σ2 among the inlier
points, implying a larger error in mean estimation. This suggests
a tension between robustness and heterogeneity, where increas-
ing heterogeneity makes robust mean estimation harder in terms
of %2 error.

In this work, we strike a compromise between robustness
and heterogeneity by considering a family D of allowed data

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 05,2024 at 07:48:55 UTC from IEEE Xplore.  Restrictions apply. 
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to requiring that Hi = ∇2Fi(w) = Ex∼DX,i [φ(x)φ(x)
#], the

covariance of x on device i, has eigenvalues no smaller than
µ.

Quantifying Heterogeneity: We quantify the heterogene-
ity in the data distributions Di across devices in terms of
the heterogeneity of marginals DX,i and of the conditional
expectation E[yi|xi = x] = φ(x)#w!

i . Let H = ∇2F (w) =
(1/n)

∑n
i=1 Hi be the covariance of x under the mixture distri-

bution across devices, where Hi is the covariance of xi in device
i. We measure the dissimilarities ΩX ,ΩY |X of the marginal and
the conditionals respectively as

ΩX = max
i∈[n]

λmax(H
−1/2HiH

−1/2) , (9)

ΩY |X = max
i,j∈[n]

‖w!
i − w!

j ‖ , (10)

where λmax(·) denotes the largest eigenvalue. Note thatΩX ≥ 1
and it is equal to 1 iff eachHi = H . It measures the spectral mis-
alignment between each Hi and H . The second condition is re-
lated to the Wasserstein-2 distance [74] between the conditionals
DY |X,i as W2(DY |X,i, DY |X,j) ≤ RΩY |X . We define the de-
gree of heterogeneity between the variousDi = DX,i ⊗DY |X,i

as width(D) = ΩXΩY |X =: Ω. That is, if the conditionals are
the same (ΩY |X = 0), we can tolerate arbitrary heterogeneity in
the marginals DX,i.

Convergence: We now analyze RFA where the local SGD
updates are equipped with “tail-averaging” [73] so thatw(t+1)

i =

(2/τ)
∑τ

k=τ/2 w
(t)
i,k is averaged over the latter half of the tra-

jectory of iterates instead of line 9 of Algorithm 1. We show
that this variant of RFA converges up to the dissimilarity level
Ω = ΩXΩY |X when the corruption level ρ < 1/2.

Theorem 4: Consider F defined in (7) and suppose the cor-
ruption level satisfies ρ < 1/2. Consider Algorithm 1 run for T
outer iterations with a learning rate γ = 1/(2R2), and the local
updates are run for τt steps in outer iteration twith tail averaging.
Fix δ > 0 and θ ∈ (ρ, 1/2), and set the number of devices per
iteration, m as

m ≥ log(T/δ)

2(θ − ρ)2
. (11)

DefineCθ := (1− 2θ)−2,w! = arg min F ,F ! = F (w!),κ :=
R2/µ and ∆0 := ‖w(0) − w!‖2. Let τ ≥ 4κ log(128Cθκ). We
have that the event E =

⋂T−1
t=0 {|St ∩ C| ≤ θm} holds with prob-

ability at least 1− δ. Further, if τt = 2tτ for each iteration t, then
the output w(T ) of Algorithm 1 satisfies,

E
[
‖w(T ))− w!‖2

∣∣∣ E
]
≤ ∆0

2T
+ CCθ

(
dσ2T

µτ2T
+

ε2

m2
+ Ω2

)

whereC is a universal constant. If τt = τ instead, then, the noise
term above reads dσ2/µτ .

Theorem 4 shows near-linear convergence O(T/2T ) up to
two error terms in the case that ρ is bounded away from 1/2 (so
that θ and Cθ can be taken to be constants). The increasing local
computation τt = 2tτ required by this rate is feasible since local
computation is assumed to be cheaper than communication.

The first error term is ε2/m2 due to approximation ε in the
GM, which can be made arbitrarily small by increasing the

number m of devices sampled per round. The second error term
Ω2 is due to heterogeneity. Indeed, exact convergence asT →∞
is not possible in the presence of corruption: lower bounds
for robust mean estimation [e.g. 69, Theorem 2.2] imply that
‖w(T ) − w!‖2 ≥ Cρ2Ω2

Y |X w.p. at least 1/2. Consistent with
our theory, we find in real heterogeneous datasets in Section V
that RFA can lead to marginally worse performance than FedAvg
in the corruption-free regime (ρ = 0). Finally, while we focus
on the setting of least squares, our results can be extended to the
general convex case.

Remark 5: For unequal weights, we can perform the reduction
F̃i(w) = nαiFi(w), so the theory applies with the substitu-
tion (R2,σ2, µ,ΩX) -→ (c1 R2, c1 σ2, c2 µ, (c1/c2)ΩX), where
c1 = nmaxi αi and c2 = nmini αi.

We use the following convergence result of SGD [72, Theo-
rem 1], [73, Corollary 2].

Theorem 6 ([72], [73]): Consider a Fk from (7). Then, defin-
ing κ := R2/µ, the output vτ of τ steps of tail-averaged SGD
starting from v0 ∈ Rd using learning rate (2R2)−1 satisfies

E‖vτ − w!‖2 ≤ 2κ exp
(
− τ

4κ

)
‖v0 − w!‖2 + 8dσ2

µτ
.

Proof of Theorem 4: Define the event Et = {|St ∩ C| ≤ θm}
so thatE =

⋂T−1
t=0 Et. Hoeffding’s inequality gives P (Et) ≤ δ/T

for each t so that P (E) ≤ δ using the union bound. Below, let
Ft denote the sigma algebra generated by w(t).

Consider the local updates on an uncorrupted device i ∈ St \
C, starting from w(t). Theorem 6 gives, upon using τt ≥ τ ≥
4κ log(128Cθκ),

E
[
‖w(t+1)

i − w!
i ‖2

∣∣∣ E ,Ft

]
≤ 1

64Cθ
‖w(t) − w!

i ‖2 +
8dσ2

µτt
.

Note that w! = (1/n)
∑n

j=1 H
−1Hjw!

j , so that

‖w! − w!
i ‖ ≤

1

n

n∑

j=1

‖H−1Hj(w
!
j − w!

i )‖ ≤ Ω .

Using ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we get,

E
[
‖w(t+1)

i − w!‖2
∣∣ E ,Ft

]
≤ 2E

[
‖w(t+1)

i − w!
i ‖2

∣∣∣ E ,Ft

]

+ 2Ω2

≤ 1

32Cθ
‖w(t) − w!

i ‖2 +
16dσ2

µτt
+ 2Ω2

≤ q

16Cθ
‖w(t) − w!‖2 + 16dσ2

µτt
+ 4Ω2 .

We now apply the robustness property of the GM ([70, Thm.
2.2] or [75, Lem. 3]) to get,

E
[
‖w(t+1) − w!‖2

∣∣∣ E ,Ft

]

≤ 1

2
‖w(t) − w!‖2 + 128Cθdσ2

µτt
+ Γ ,
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Ours Usual



Reducing the communication cost

One round of our algorithm  3-5 rounds of communication 

Due to iterations of the smoothed Weiszfeld algorithm

⟹
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βi = 1
max{∥wi∥2, ν}

z =
∑i βiwi

∑i βi

Does 1 round of communication 

improve robustness?



1 communication round already improves robustness
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How do we get rid of this gap?
1.4pp 

gap at zero 
corruption



Shared Params u

Personal Params vi

Full model wi = (u, vi)
+

=Shared Params u

The model has a global component  
and a per-client component

58

Model personalization

Shared Personal

Input

Pred.

+



Shared

Personal

Pred.

Input

Personal

Shared

Pred.

Input

Personalization Architectures

Arivazhagan et al. (2019) 
Collins et al. (2021) 

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004), 
Collobert & Weston (2005), Argyriou et al. (2008), … 

Liang et al. (2019) 
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Shared part of the model is 
updated with robust aggregation

60

+ =

Shared Params u Personal Params vi Full model wi = (u, vi)

Optimization

Personal part of the model 
stays with the client
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1.4pp 
gap at zero 
corruption

Does personalization get rid of this gap?



EMNIST Linear

Te
st

 A
cc

ur
ac

y
0.36

0.45

0.54

0.63

0.72

0 0.05 0.1 0.15 0.2

Corruption Level

0.3pp gap 
at zero 

corruption

Robust + pers.

Robust + no pers.

Non-robust + pers.  
(baseline)

Yes, we can improve robust aggregation with personalization!
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+
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In the literature: 

Robust Federated Aggregation (RFA)
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RFA is certifiably more robust to backdoor attacks

64

[Xie et al. (ICML 2021)]

Wang et al. 
(NeurIPS 2020)

50-100x more robust!

Xie, Chen, Chen, Li. CRFL: Certifiably Robust Federated 
Learning against Backdoor Attacks. ICML 2021.



RFA is asymptotically strategy-proof

With a large number of independent 
devices, RFA is approximately 
strategy-proof

65

[AISTATS 2023]

Strategy-proof: Can a device 
lie to bring the aggregate to a 
desired point?



RFA is a strong baseline

66

Wang et al. 
(NeurIPS 2020)

See also Sejwalkar et al. (IEEE Security & Privacy 2022), Jin & Li 
(Medical Image Analysis 2023), Li et al. (IEEE Trans. Big Data 2023), …

Li et al. (IEEE Trans. Industrial Informatics 2023) 



Algorithmic advances based on RFA

67

Park et al. (NeurIPS 2021): RFA + Entropy-based reweighting 

Karimireddy et al. (ICLR 2022): RFA + Bucketing 

Li et al. (IEEE Trans. Ind. Inform. 2023): RFA + adaptive weighting 

Allouah et al. (AISTATS 2023): RFA + nearest neighbhors 

                                 ⋮



import torch 
from geom_median.torch import compute_geometric_median   # PyTorch API 
# from geom_median.numpy import compute_geometric_median  # NumPy API 

points = [torch.rand(d) for _ in range(n)]   # list of n tensors of shape (d,) 
# The shape of each tensor is the same and can be arbitrary (not necessarily 1-dimensional) 
weights = torch.rand(n)  # non-negative weights of shape (n,) 
out = compute_geometric_median(points, weights) 
# Access the median via `out.median`, which has the same shape as the points, i.e., (d,)

Fast and differentiable geometric median

Install: pip install geom-median 

Documentation: github.com/krishnap25/geom-median

68
GitHub Link

http://github.com/krishnap25/geom_median


Summary
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Heterogeneity, fairness, equity 
with differential privacy 
in federated learning

72
m
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High 
Error

Low 
Error

Error

C
ou

nt

Error

Minimize the tail 
error directly

Distribution shift  
large tail errors

⟹

Usual

Ours

Misclassification Error

We reduce tail error 
+ support differential 
privacy

Paper:



Thank you!

73

https://github.com/krishnap25/tRFA 

@KrishnaPillutla

Software

Code

Paper:

https://github.com/krishnap25/tRFA

