Robust Aggregation for Federated Learning

IEEE Transactions on Signal Processing (2022)

Krishna Pillutla IIT Madras

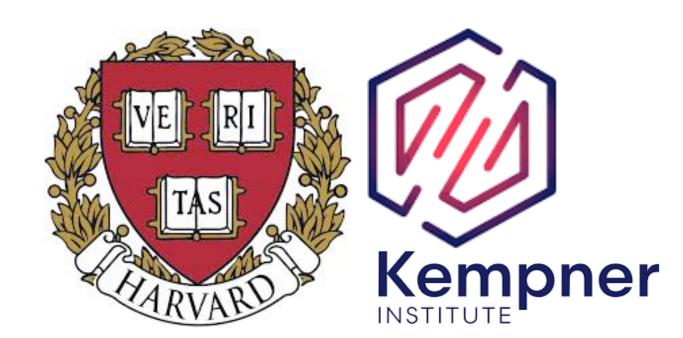
Team

Krishna Pillutla

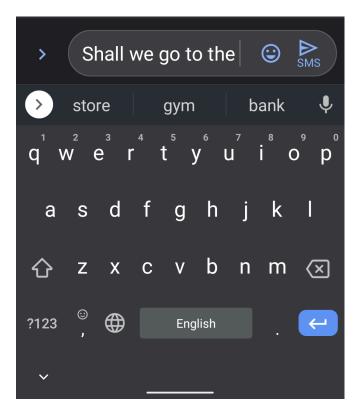
RBC NUT ON . Rightard . OGY MADAAS ROBERT BOSCH CENTRE FOR DATA SCIENCE AND ARTIFICIAL INTELLIGENCE IIT MADRAS eR

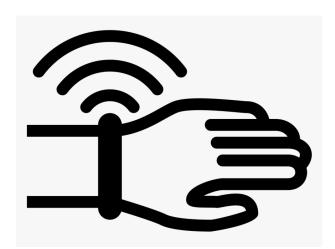
Centre for Responsible AI

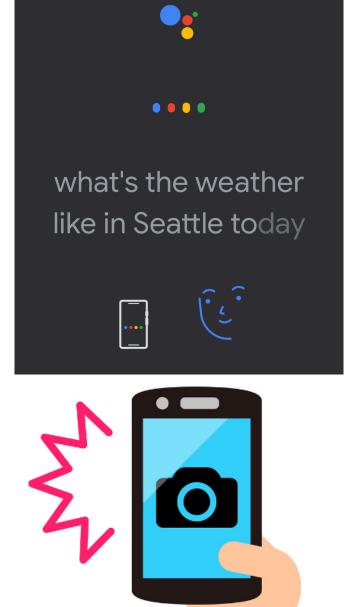
Sham Kakade



Zaid Harchaoui







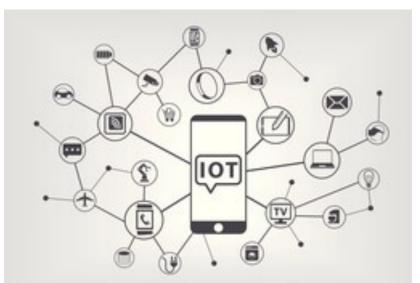
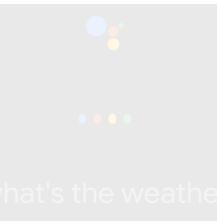


Image Credit: Robotics Business Review

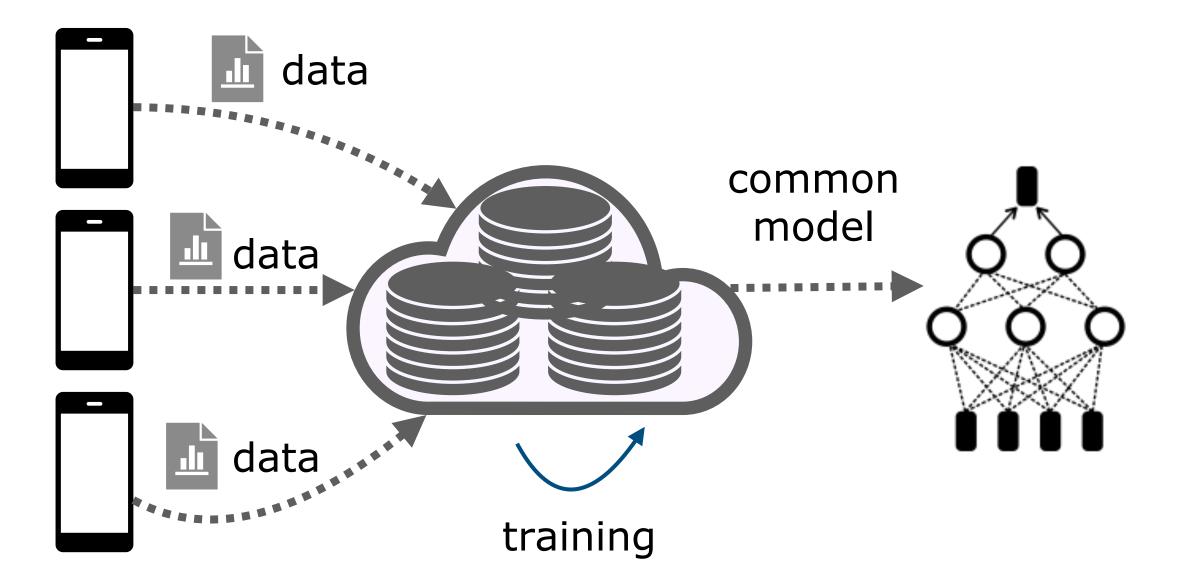
Rieke et al. NPJ Digit. Med. (2020) Image Credit: Wellcome



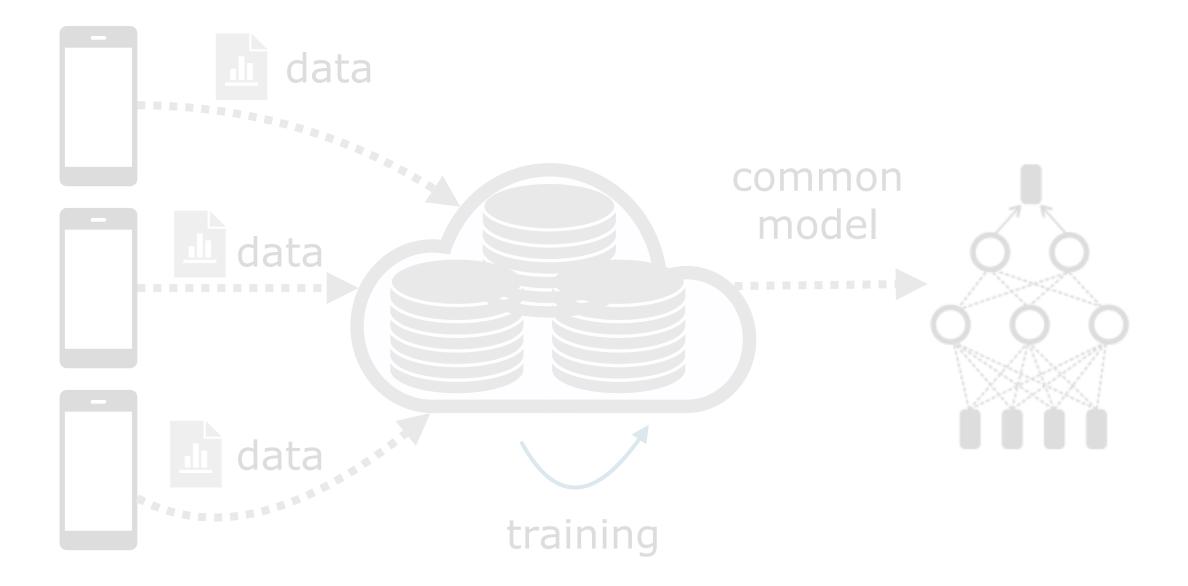
Data is decentralized and private

Rieke et al. NPJ Digit. Med. (2020) Image Credit: Wellcome

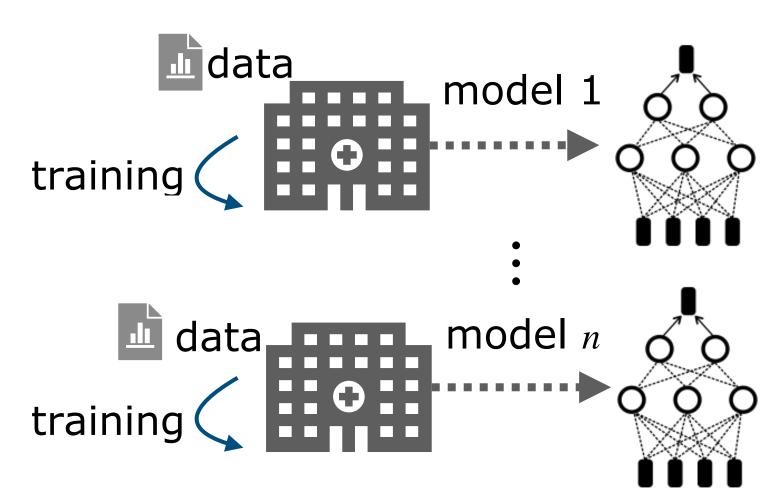
Datacenter



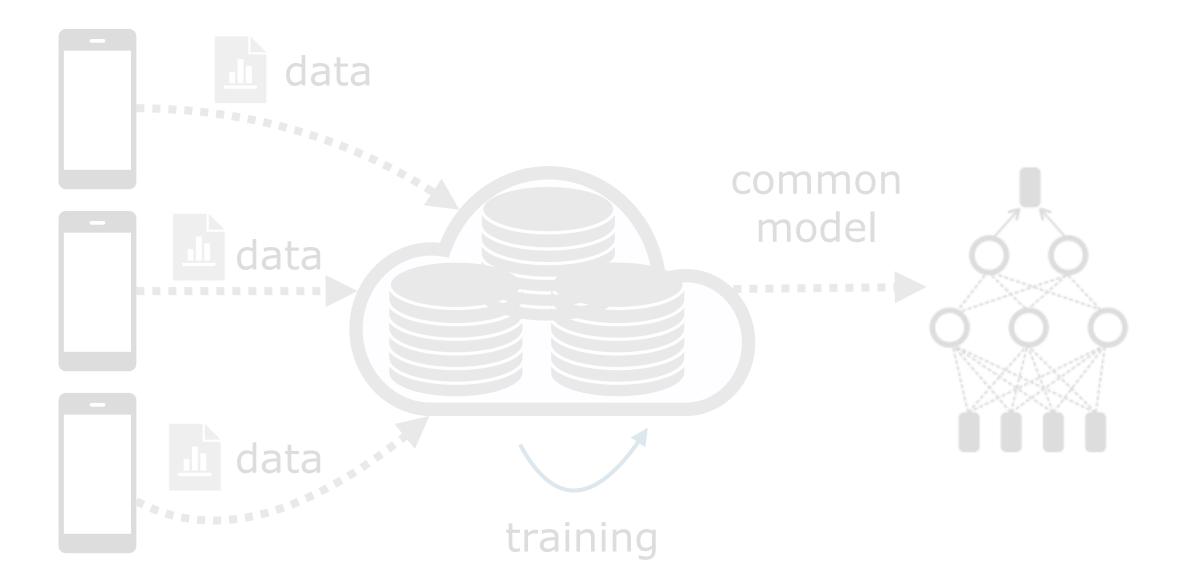
Datacenter

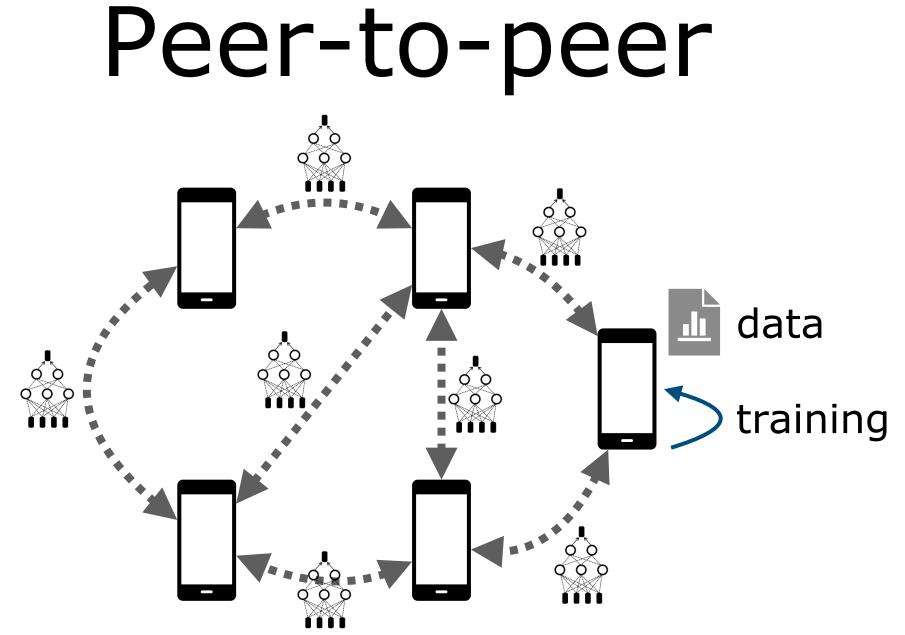


Non-collaborative

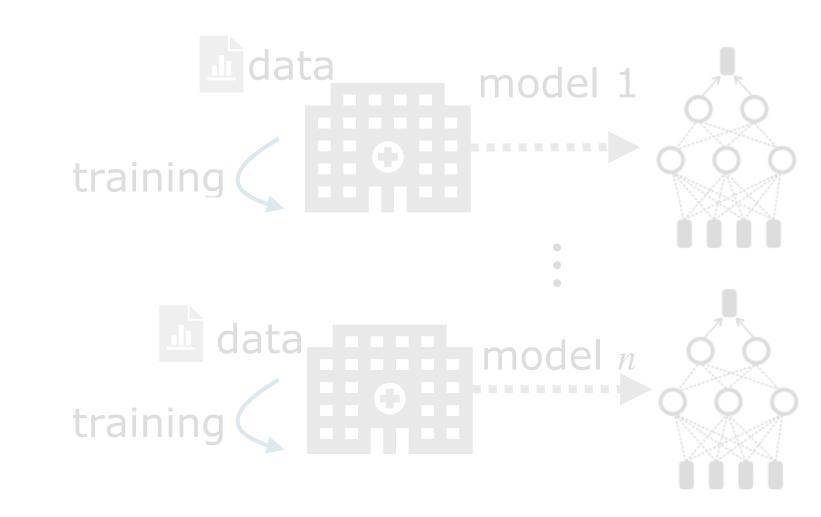


Datacenter





Non-collaborative



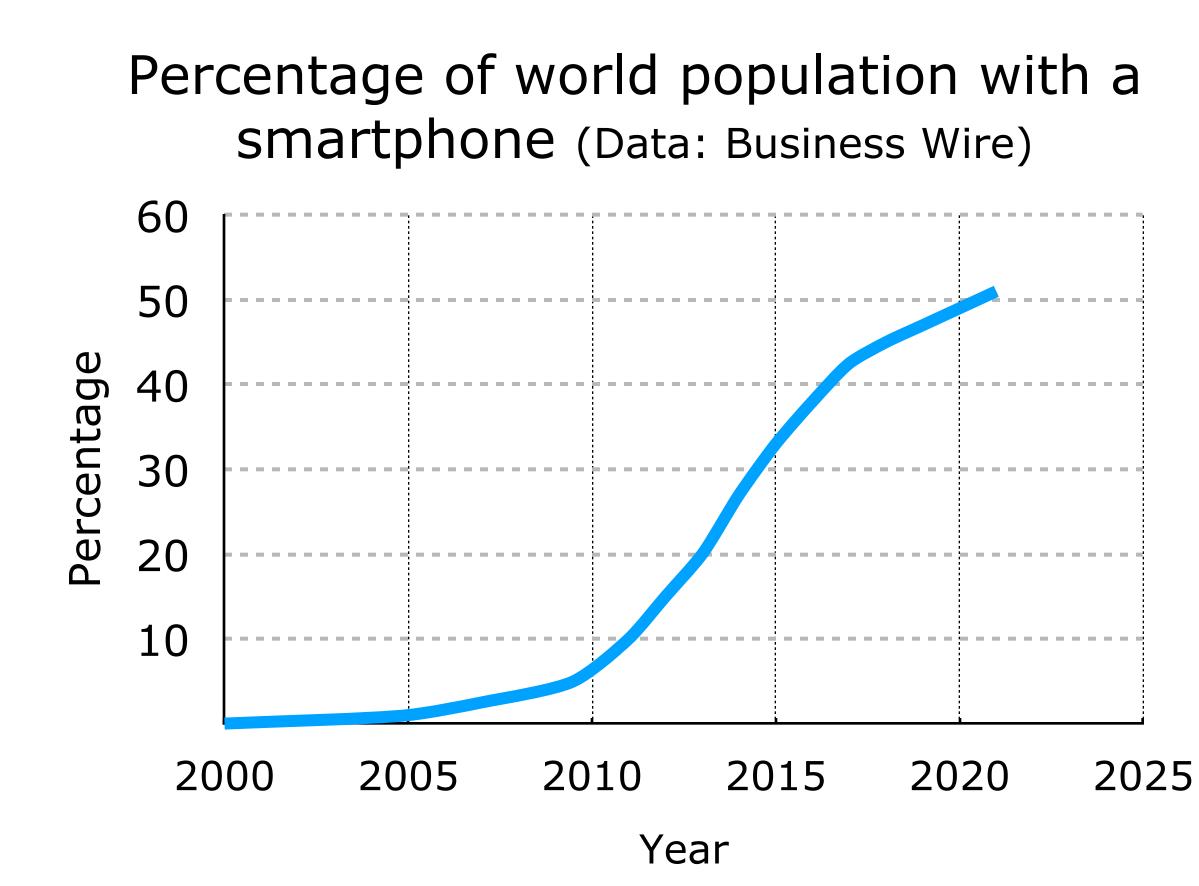
Advances and Open Problems in Federated Learning

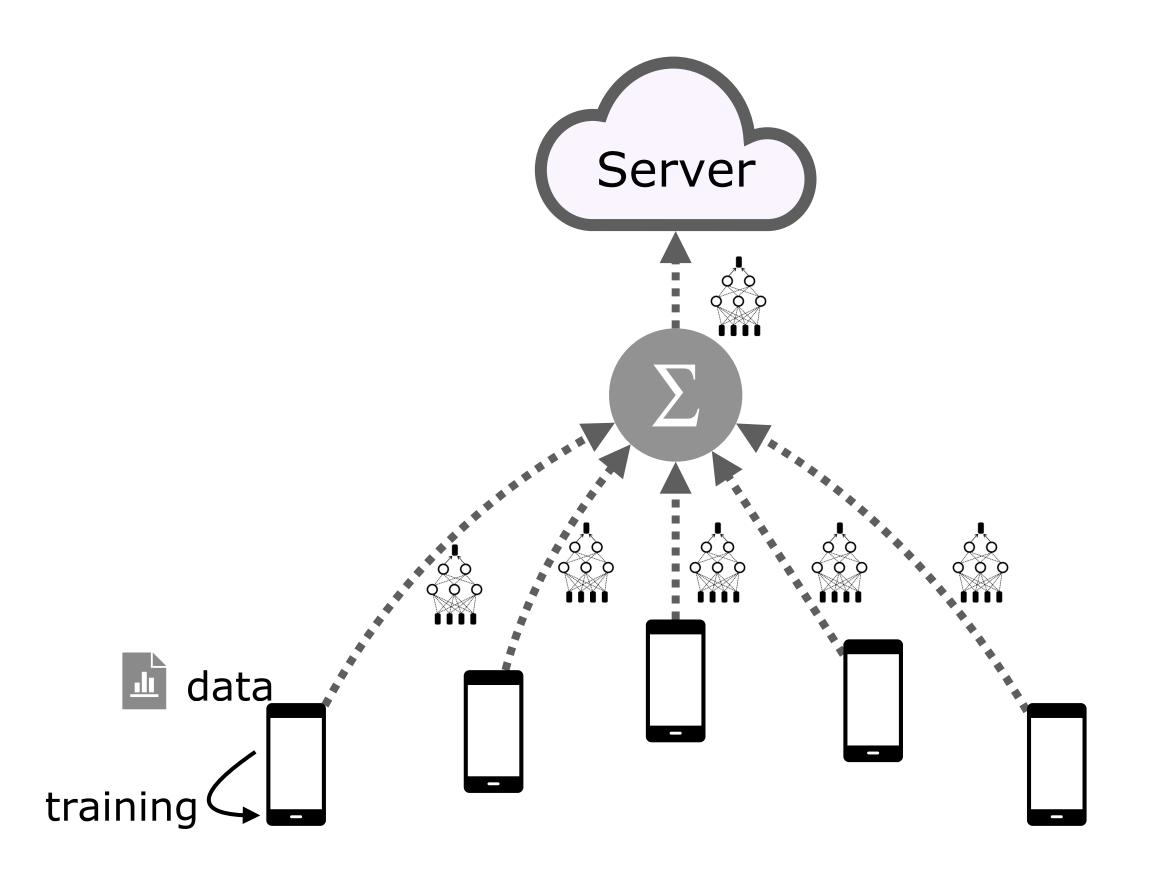
Peter Kairouz

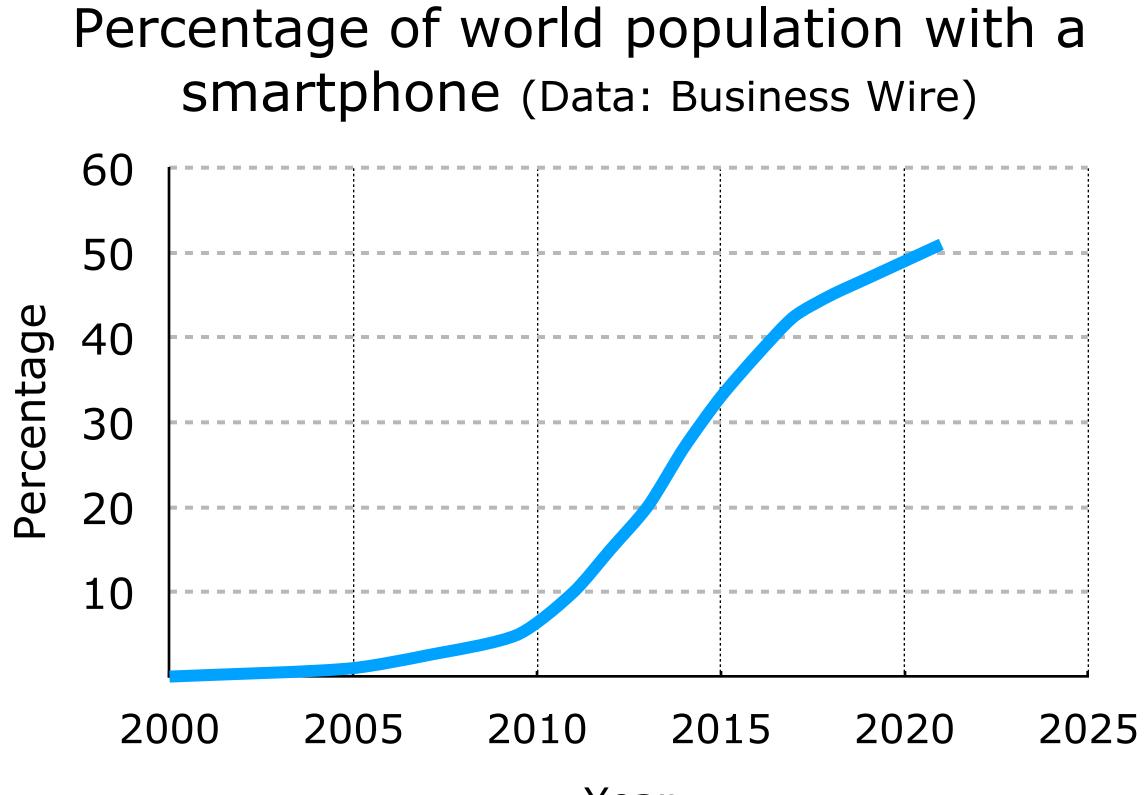
Google Research Kairouz@google.com

H. Brendan McMahan Google Research

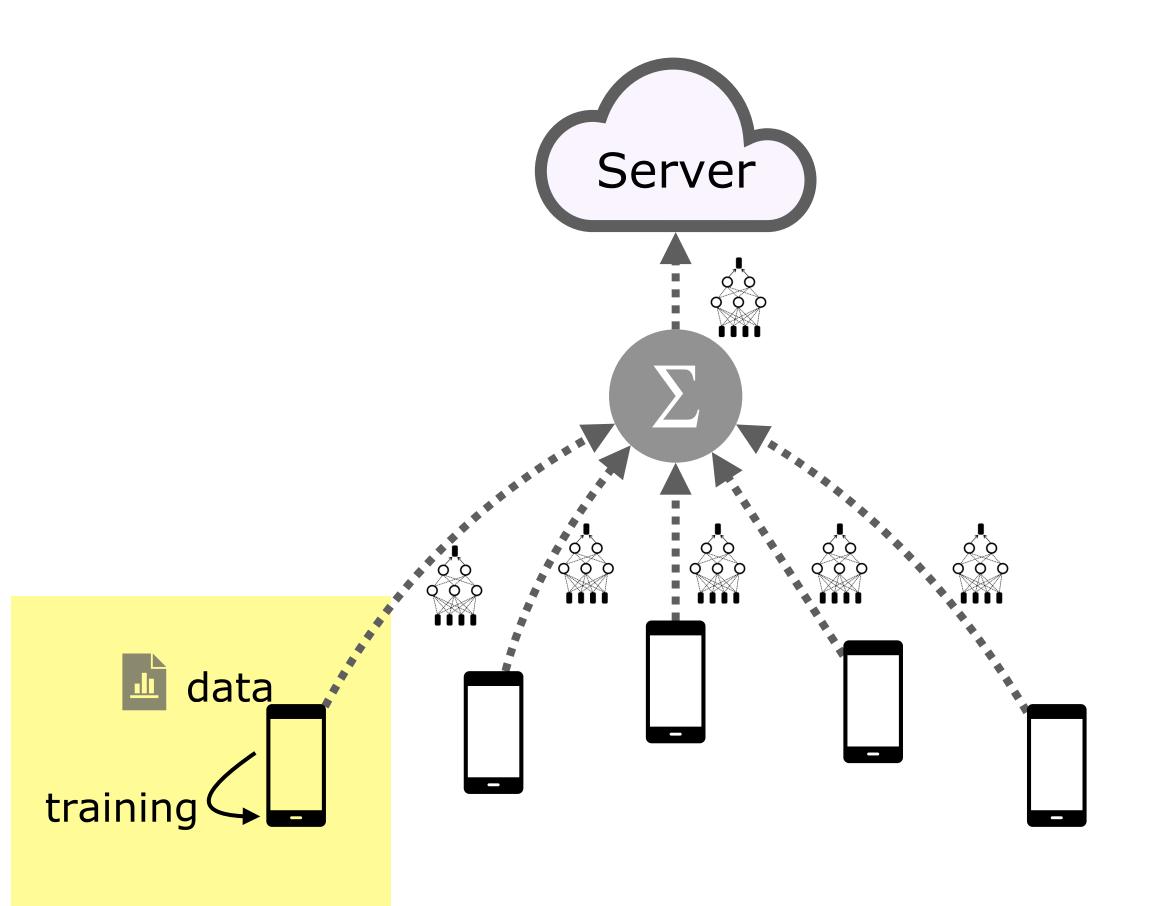
et al.

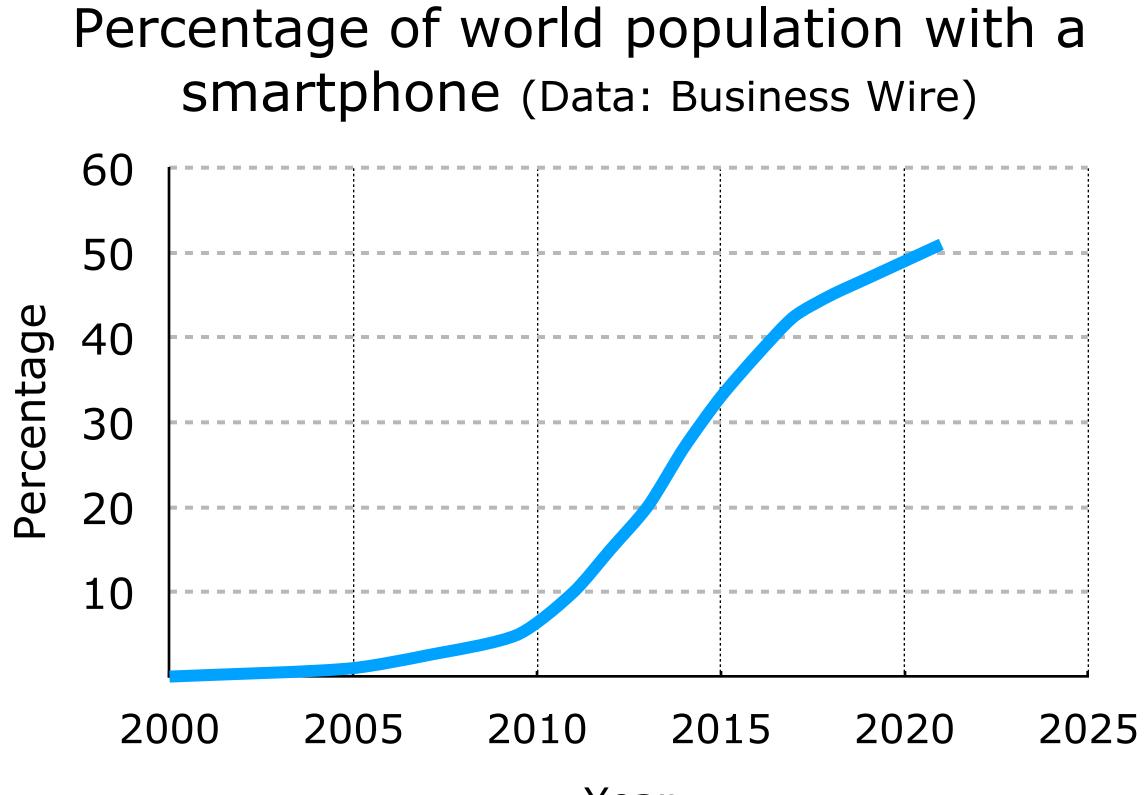




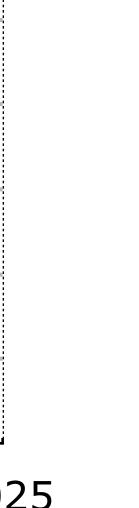


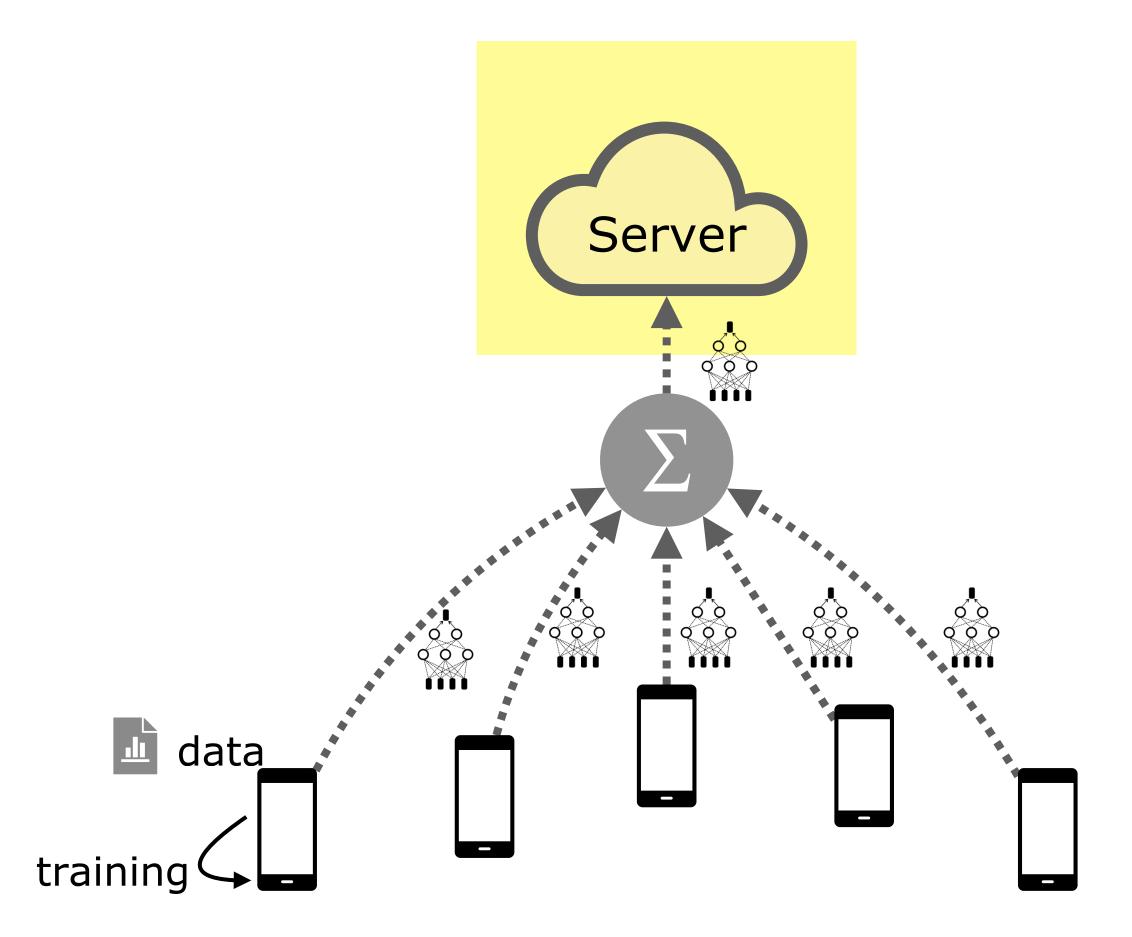
Year

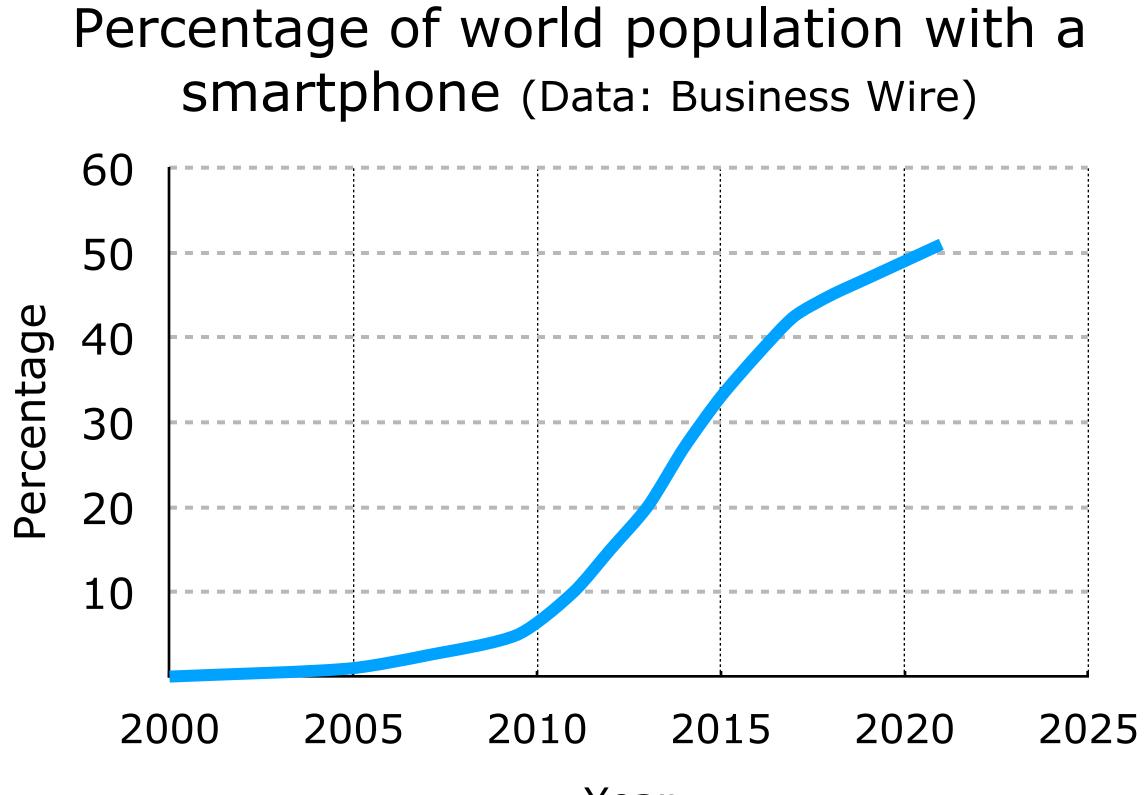




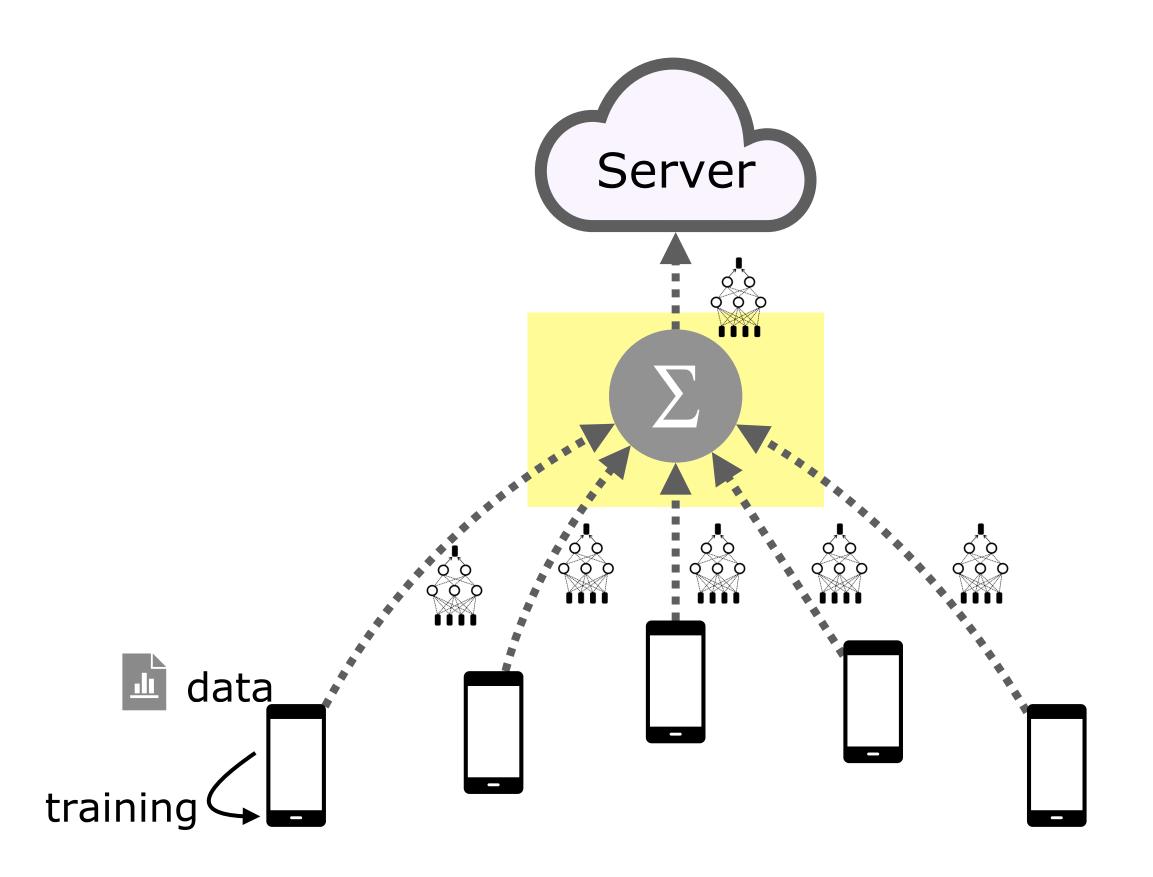
Year

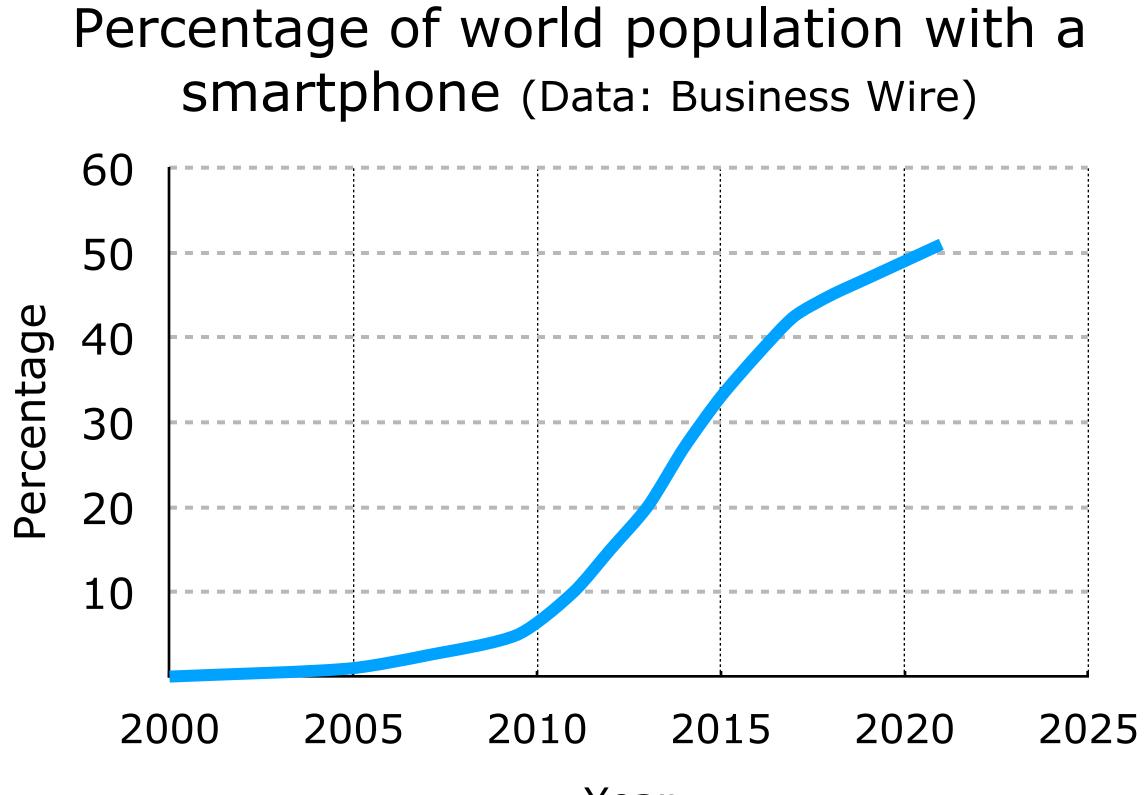




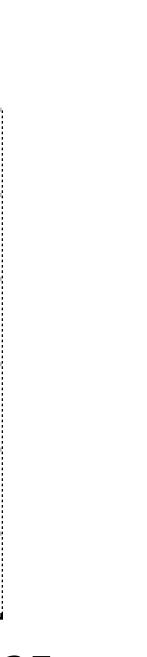


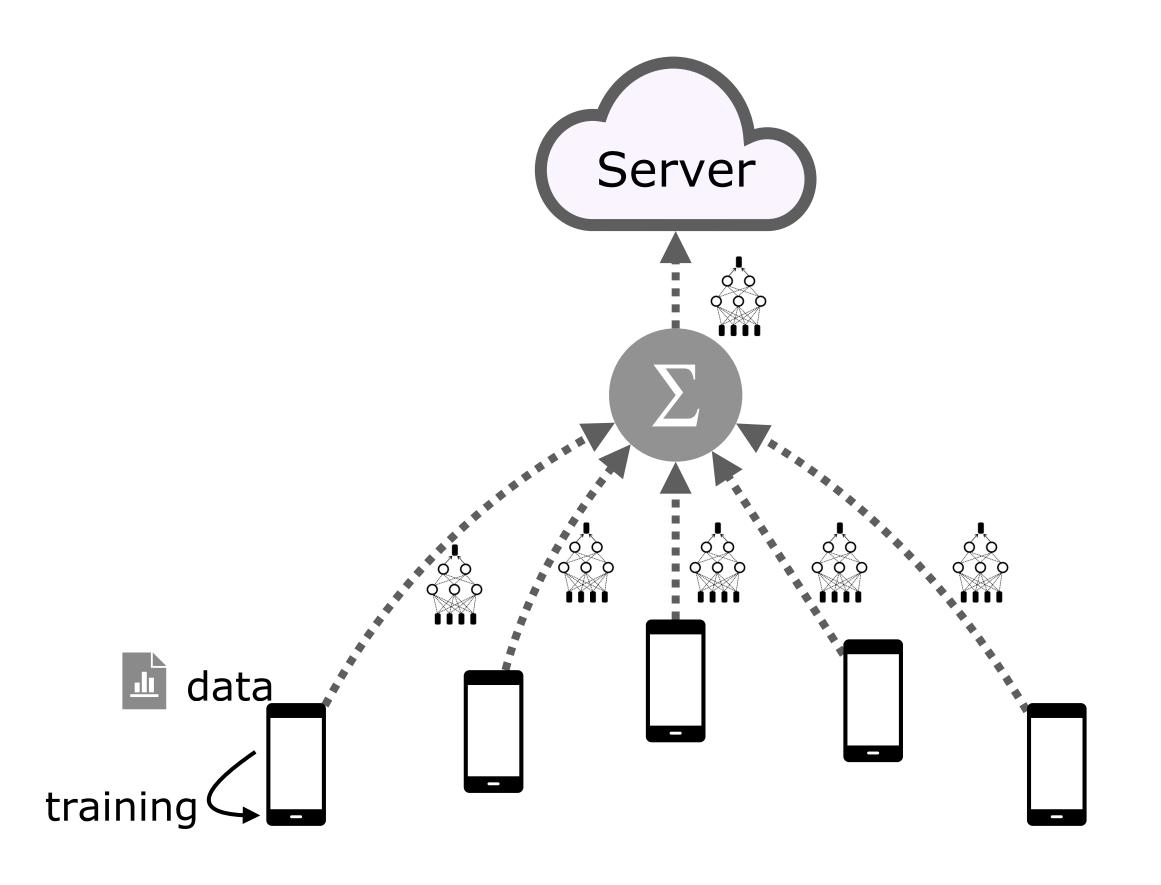
Year



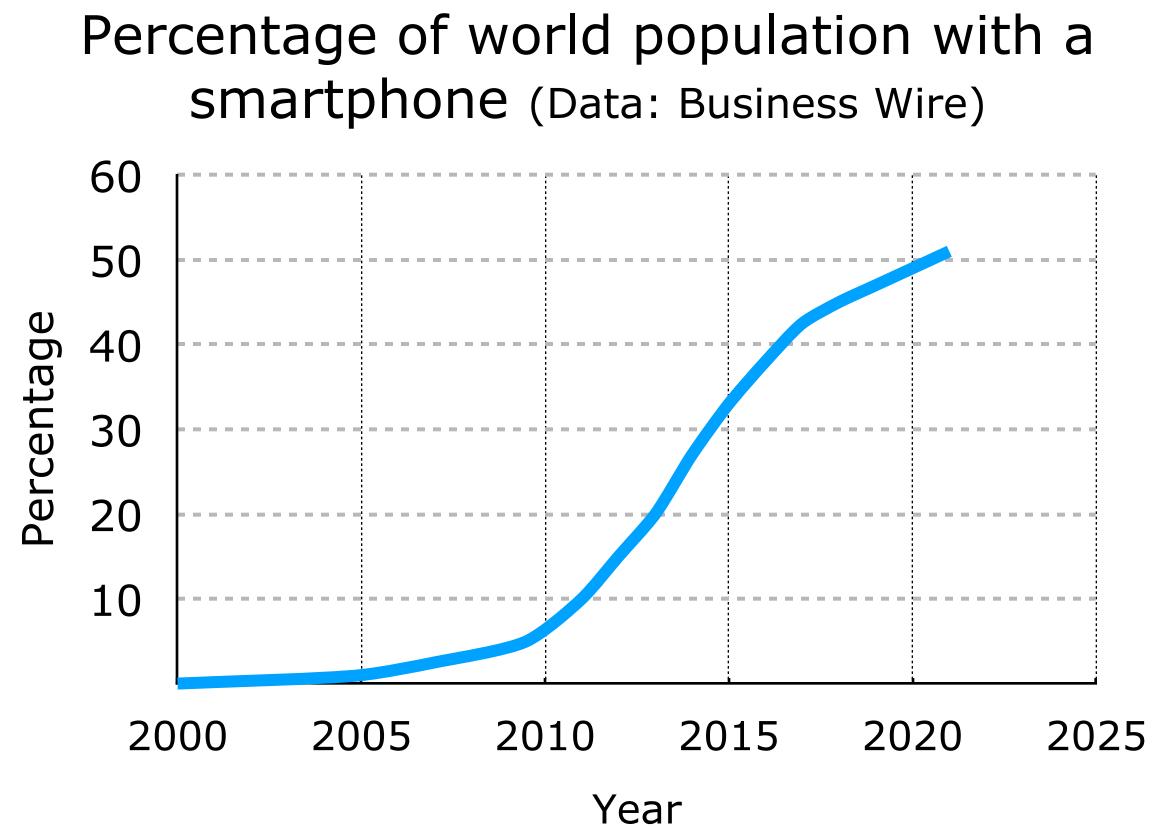


Year





Communication cost > computation cost!



Google Research

Federated Learning: **Collaborative Machine Learning** without Centralized Training Data

April 6, 2017 Posted by Brendan McMahan and Daniel Ramage, Research Scientists

Engineering at Meta

POSTED ON JUNE 14, 2022 TO AI RESEARCH, ML APPLICATIONS, PRODUCTION ENGINEERING, SECURITY

Applying federated learning to protect data on mobile devices

Federated Learning for Postoperative Segmentation of Treated glioblastoma (FL-PoST)

Federated learning in healthcare: the future of collaborative clinical and biomedical research

How Apple personalizes Siri without hoovering up your data

The tech giant is using privacy-preserving machine learning to improve its voice assistant while keeping your data on your phone.

By Karen Hao

December 11, 2019

IBM Federated Learning

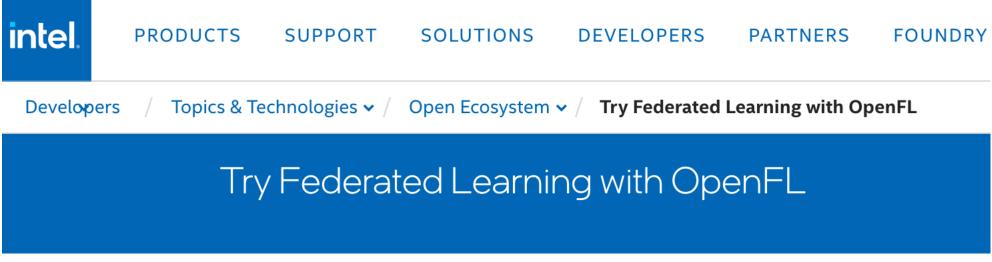
Federated Learning

BANKING & PAYMENTS

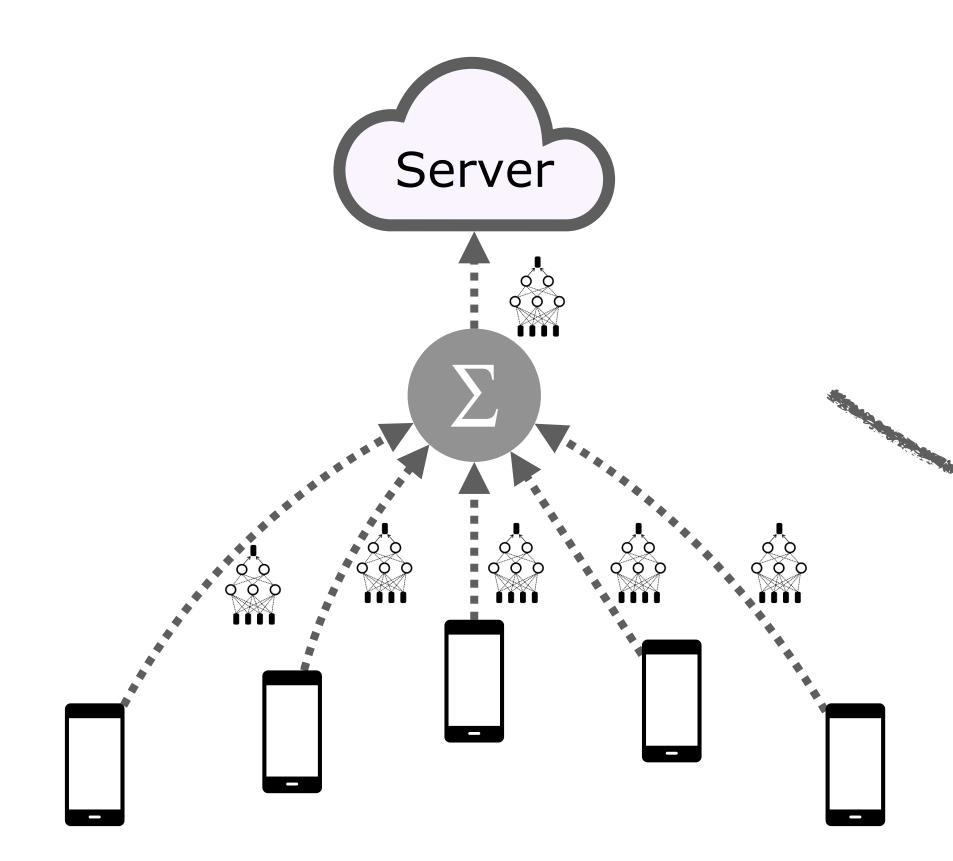
Tencent's WeBank applying "federated learning" in A.I.

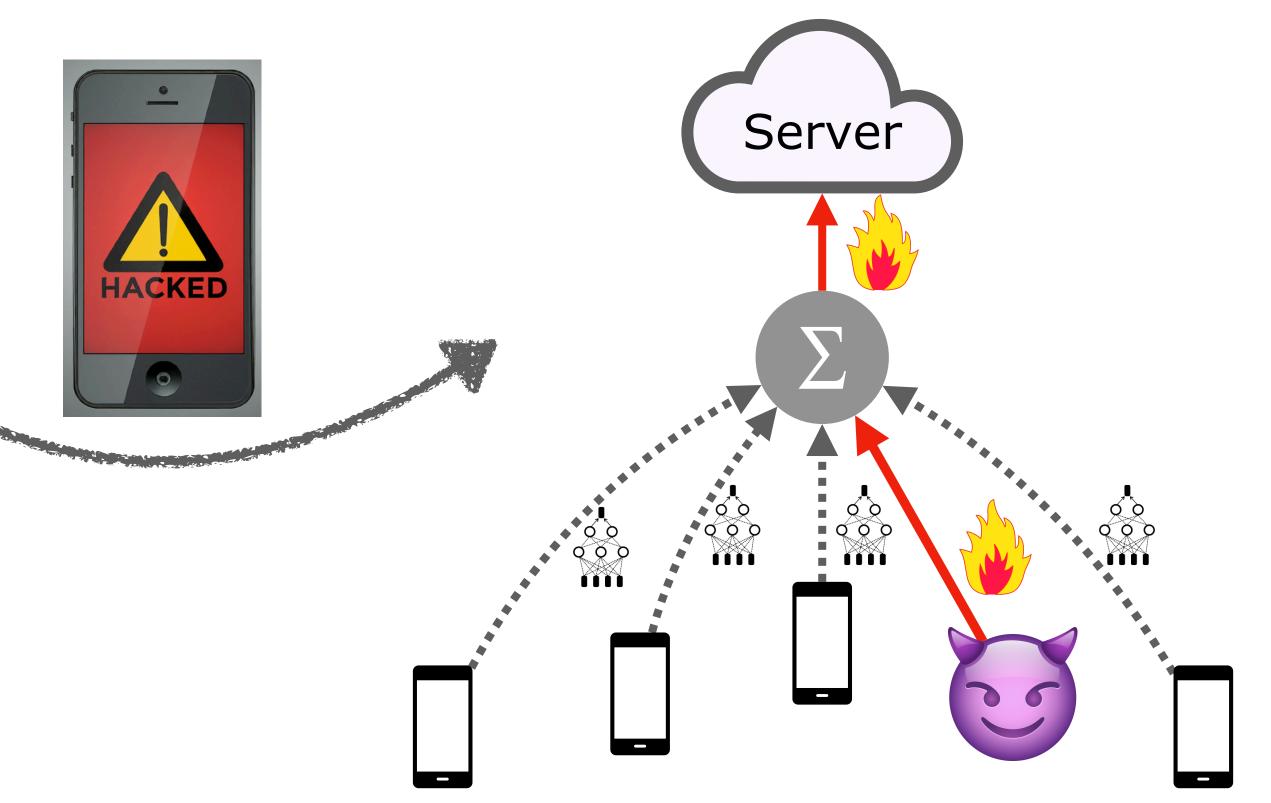
China's first mobile bank, Tencent's WeBank, is partnering with a H.K. startup to access decentralized sources of data.

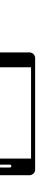
Published 5 years ago on July 29, 2019



Challenge: Training is *not robust* to potentially *malicious* clients





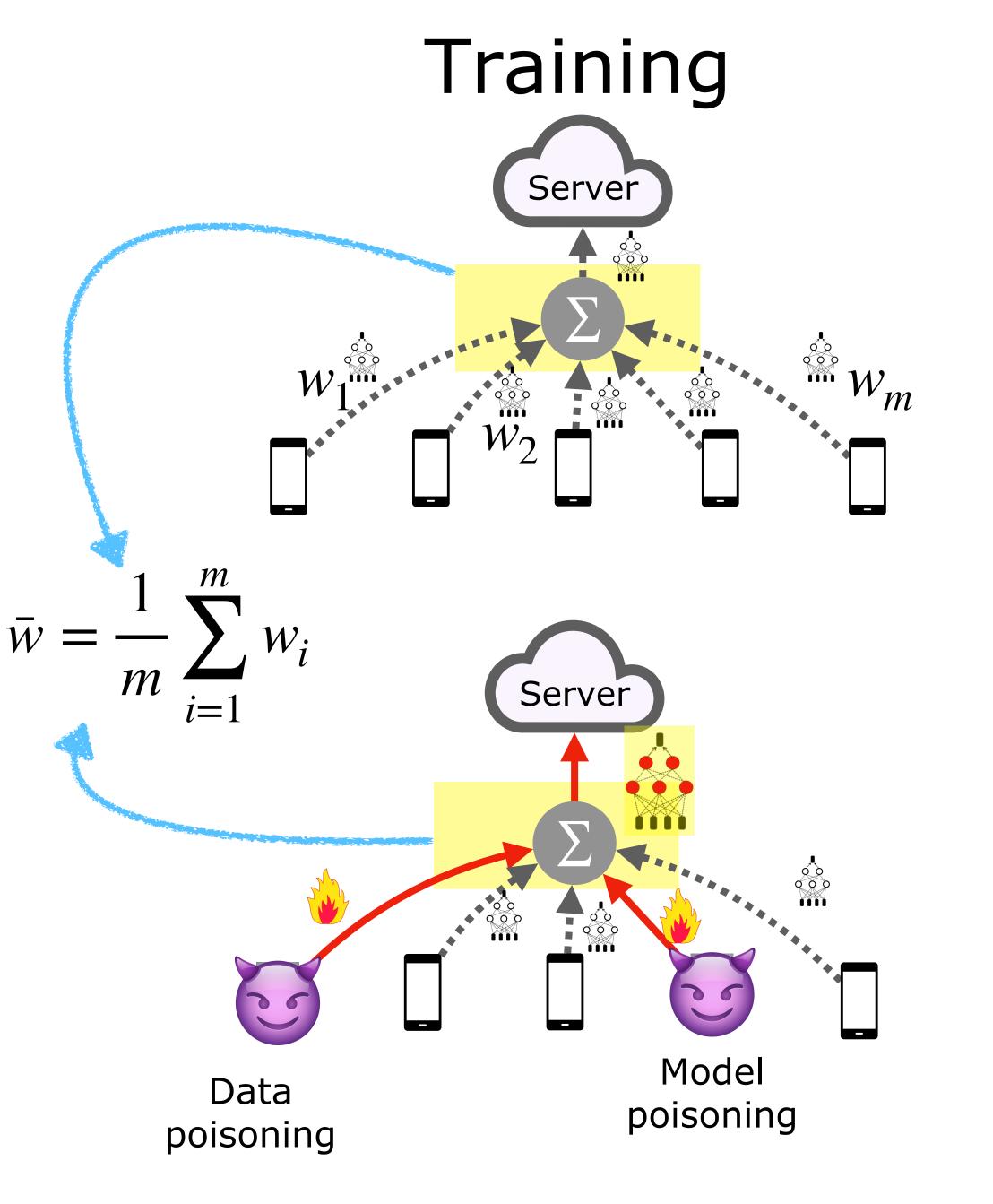


Alexa and Siri Can Hear This Hidden Command. You Can't.

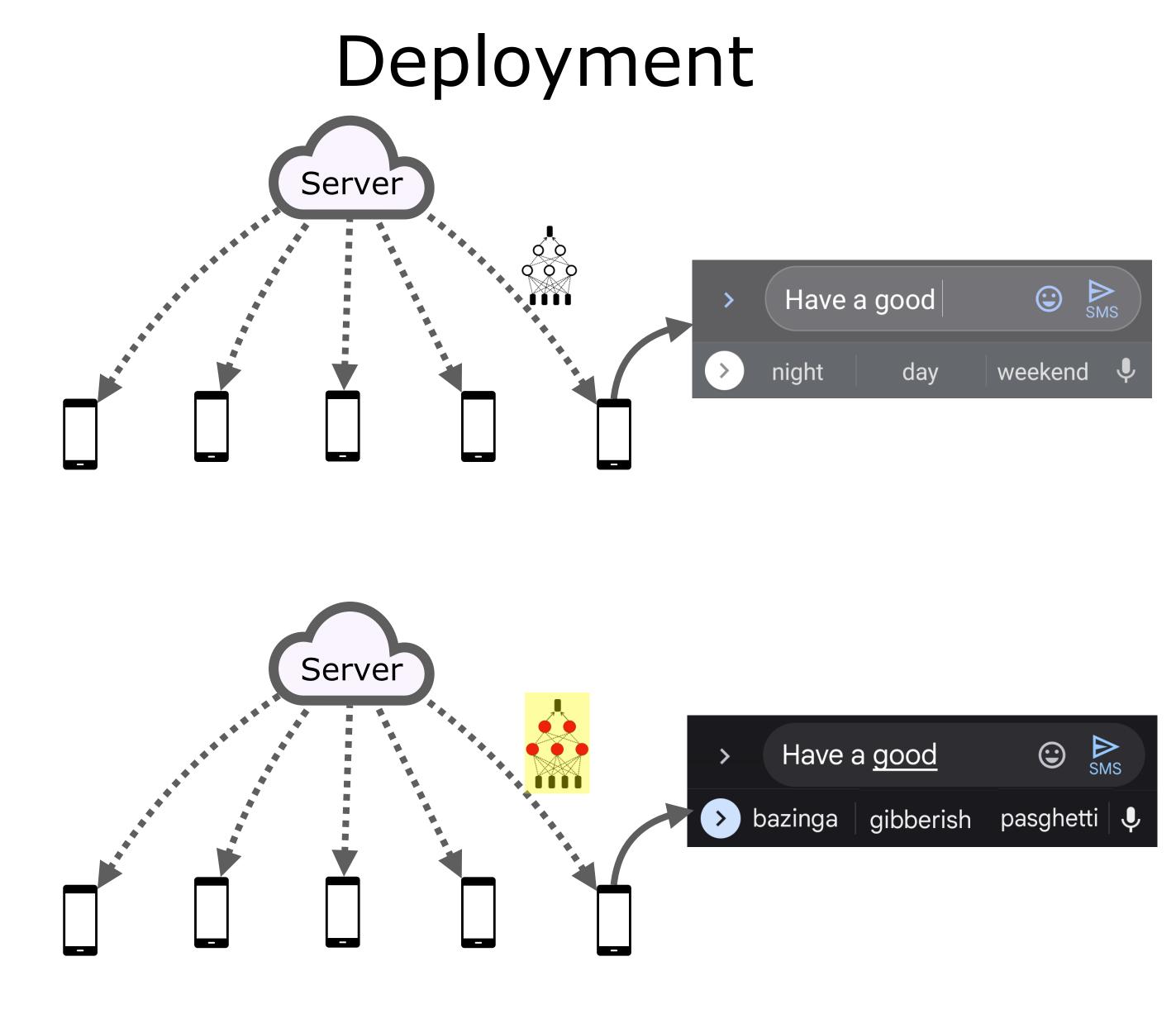
Researchers can now send secret audio instructions undetectable to the human ear to Apple's Siri, Amazon's Alexa and Google's Assistant.

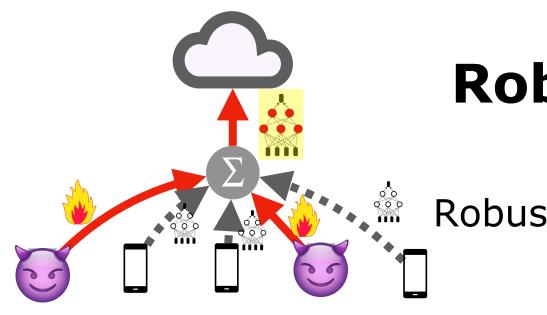
By Craig S. Smith

The New York Times



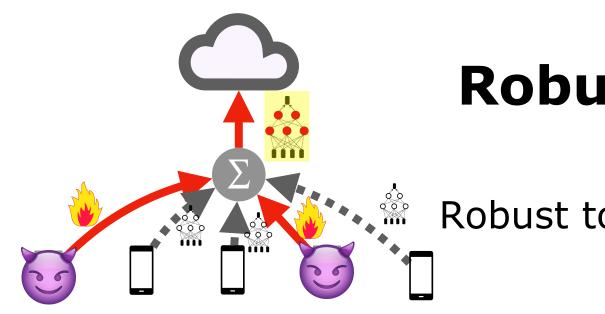
Usual mean aggregation is **not robust** to corruptions \implies Poor predictions!





Robust to outliers/poisoning

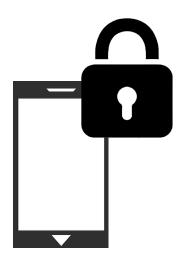
Usual approach Our approach (Direct) (Variational)



Robust to outliers/poisoning

Communication ((🕀) efficient

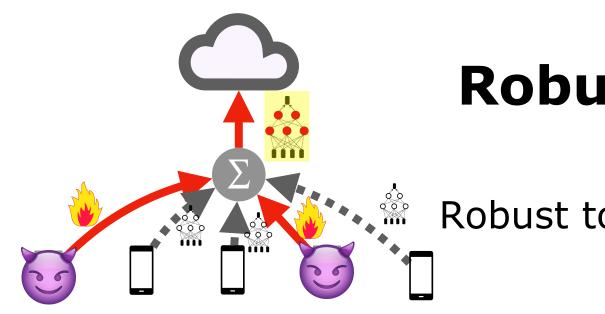
O(1) times the communication cost as non-robust aggregation



Secure aggregation

Individual updates not revealed

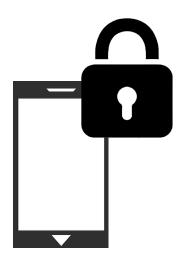
Usual approach Our approach (Variational) (Direct)



Robust to outliers/poisoning

Communication efficient

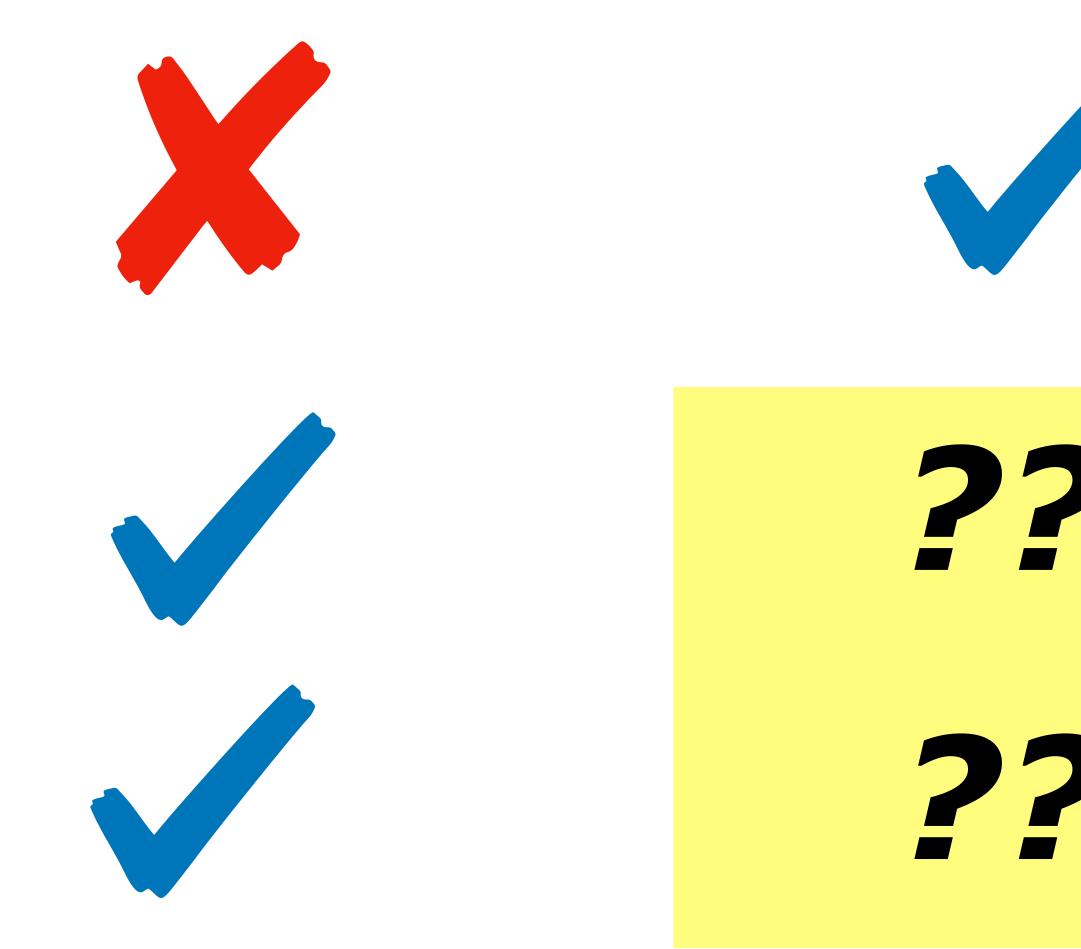
O(1) times the communication cost as non-robust aggregation



Secure aggregation

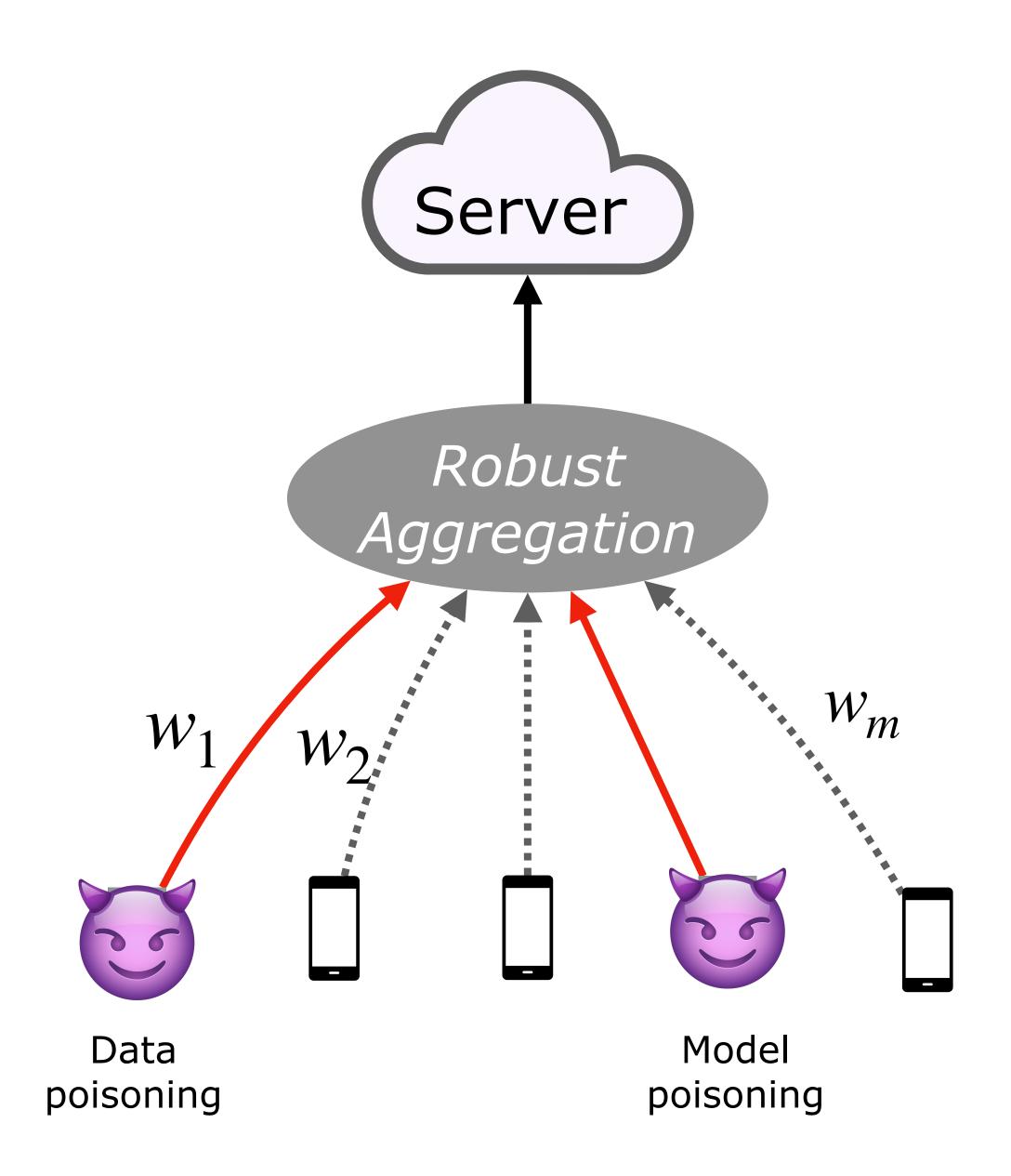
Individual updates not revealed

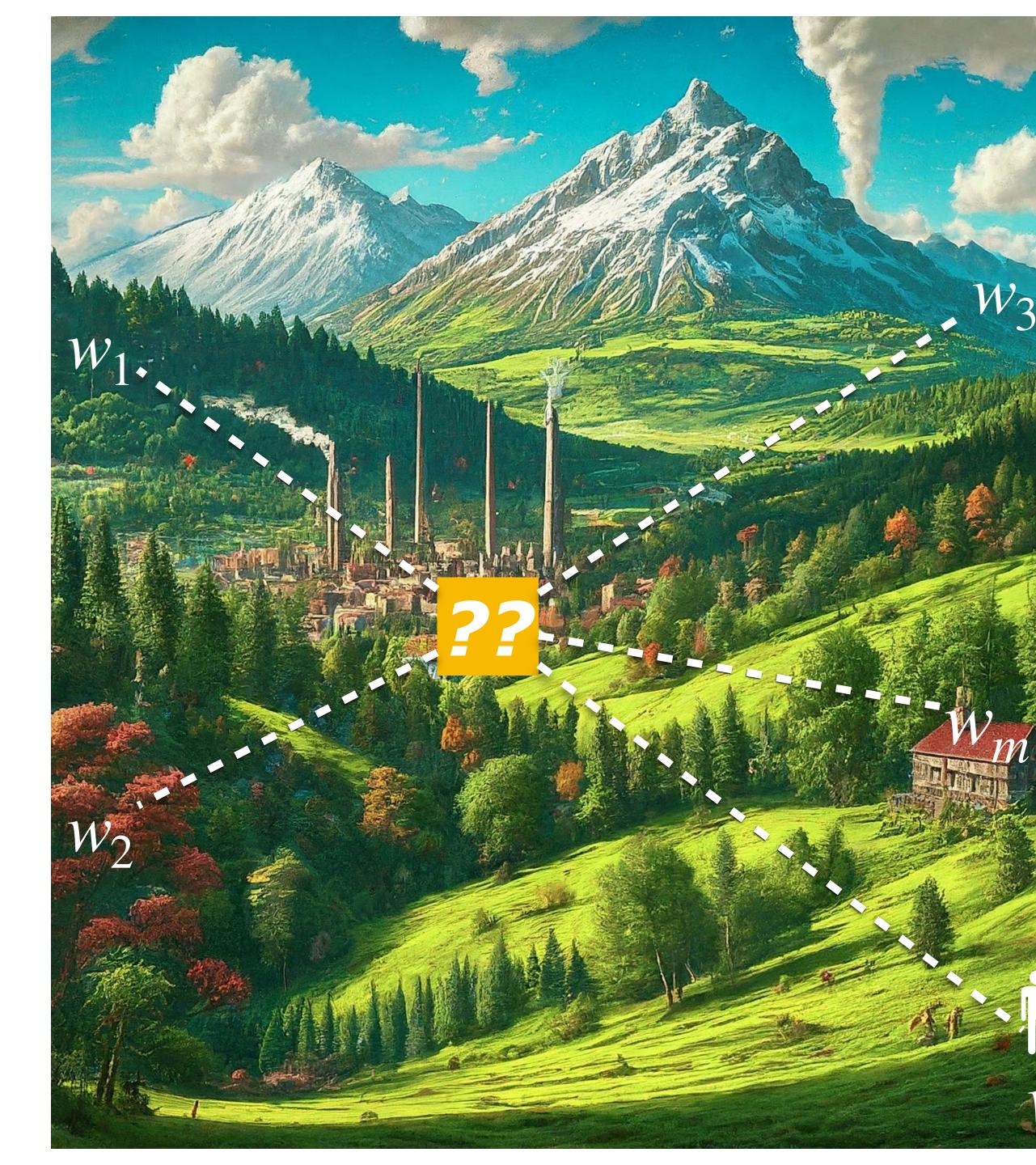
Usual approach Our approach (Variational) (Direct)



Robust aggregation approach

 $w_1, ..., w_m$: updates sent by the clients





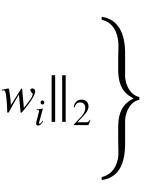
Geometric Median / **Spatial Median /** *L*₁ Median / Facility location

 $GM(w_1, \dots, w_m) = \arg\min_z \left\{ \sum_{i=1}^m \|z - w_i\|_2 \right\}$

Torricelli Fermat (~1600s)

 W_{m-1}

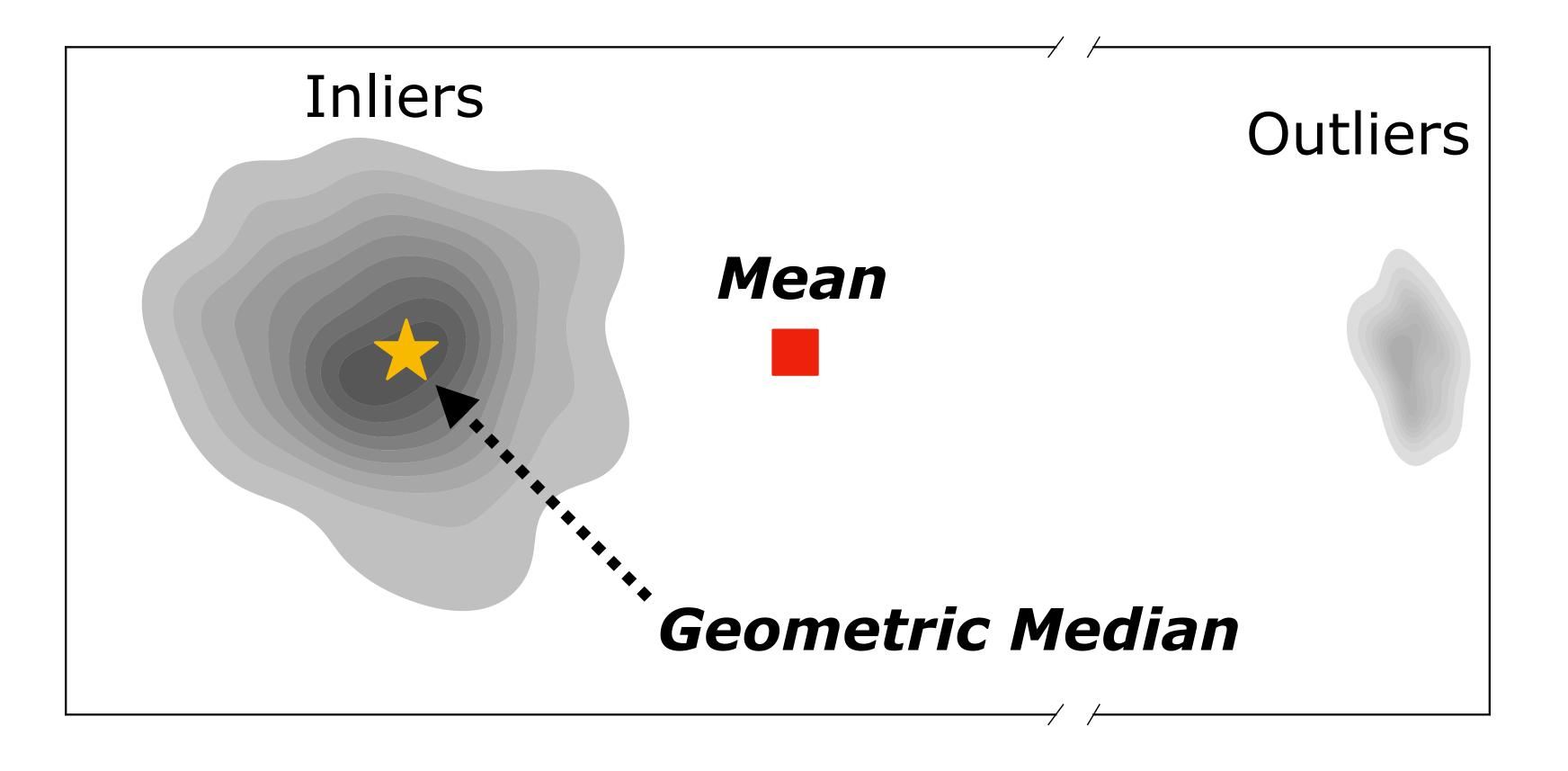
Weber (1909)



Fréchet (~1940s)

Robustness: Breakdown point = 1/2

(In **1D**, we have that **geometric median** \equiv **usual median**)



Nemirovski & Yudin (1983) | Jerrum, Valiant & Vazirani (1986) | Lopuhaa & Rousseeuw (1991) Hsu & Sabata (2013) | Minsker (2015) | Lugosi, Gabor & Mendelson (2019) | Lecué & Lerasle (2020)

Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$ & Reweighted average $z_{t+1} = \frac{\sum_i \beta_{i,t} w_i}{\sum_i \beta_{i,t}}$

Weiszfeld a.k.a. Vázsonyi (1916-2003)

Weiszfeld (1937). Sur le point par lequel la somme des distances de n points donnes est minimum. Tohoku Mathematical Journal.

Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$ & Reweighted average $z_{t+1} = \frac{\sum_i \beta_{i,t} w_i}{\sum_i \beta_{i,t}}$

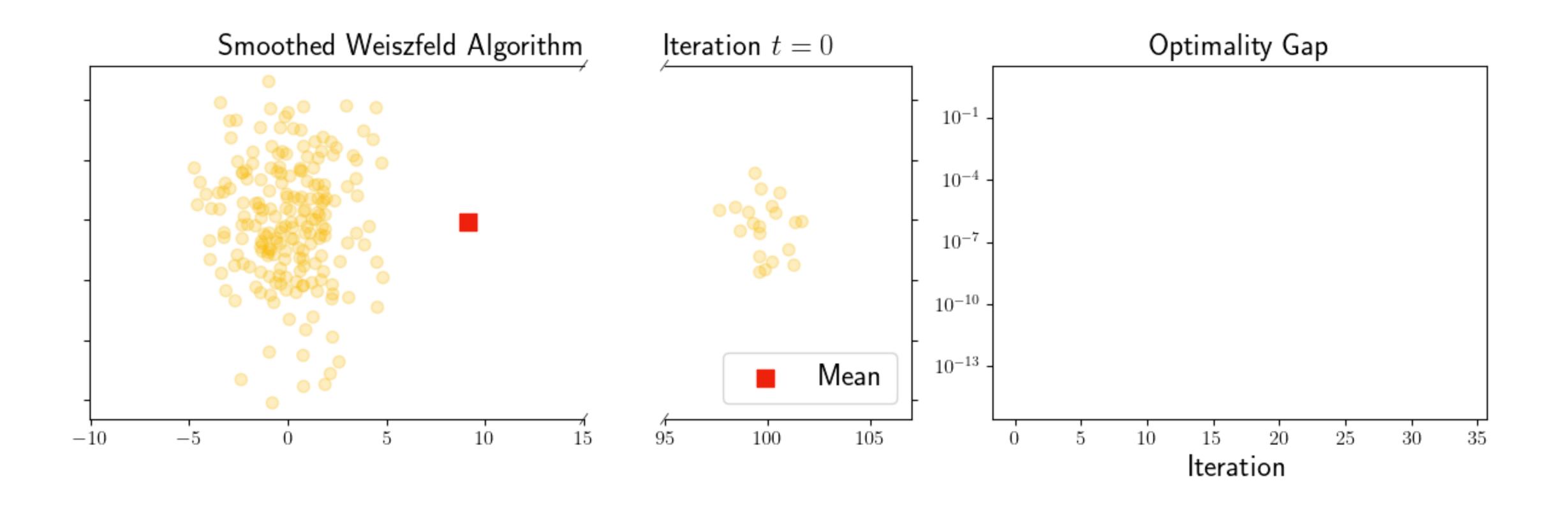
Weiszfeld a.k.a. Vázsonyi (1916-2003)

Weiszfeld (1937). Sur le point par lequel la somme des distances de n points donnes est minimum. Tohoku Mathematical Journal.

Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$ & Reweighted average $z_{t+1} = \frac{\sum_i \beta_{i,t} w_i}{\sum_i \beta_{i,t}}$

Weiszfeld a.k.a. Vázsonyi (1916-2003)

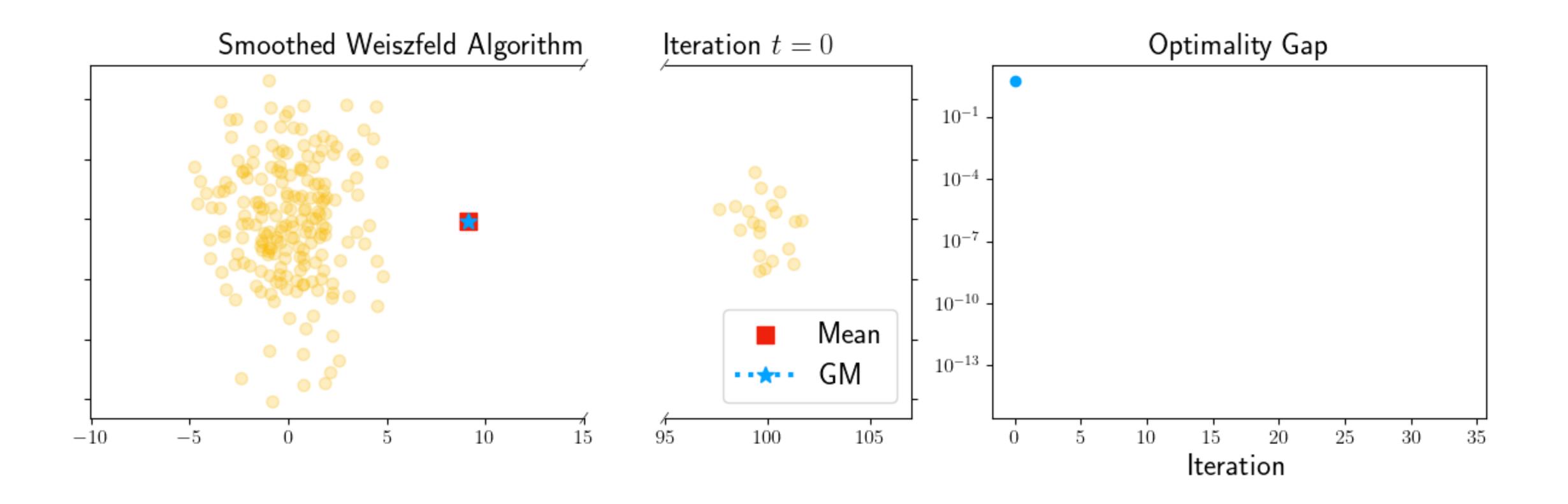
Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$



Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

& Reweighted average
$$z_{t+1} = \frac{\sum_{i} \beta_{i,t} w_{i}}{\sum_{i} \beta_{i,t}}$$

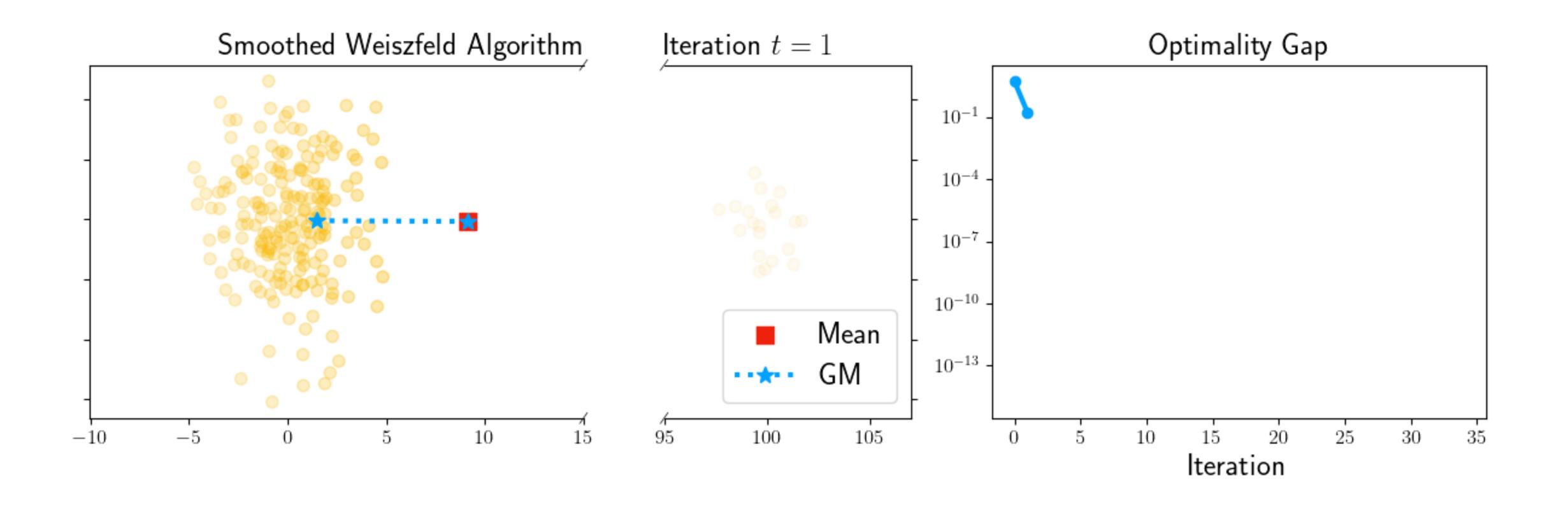
Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$



Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

& Reweighted average
$$z_{t+1} = \frac{\sum_{i} \beta_{i,t} w_{i}}{\sum_{i} \beta_{i,t}}$$

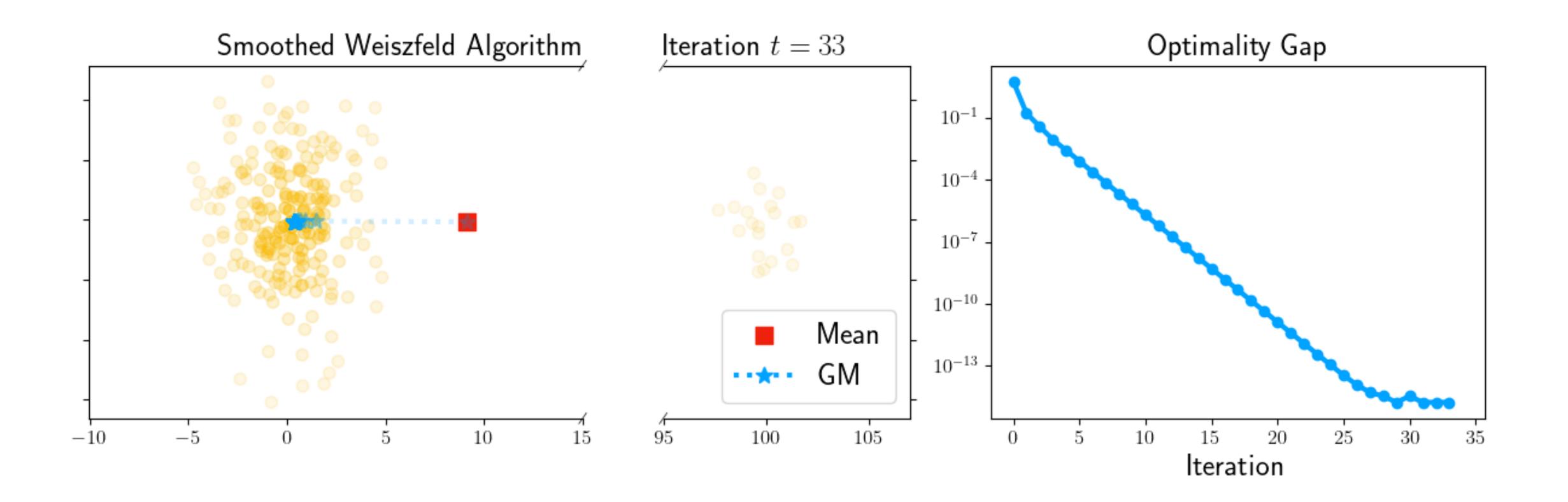
Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$



Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

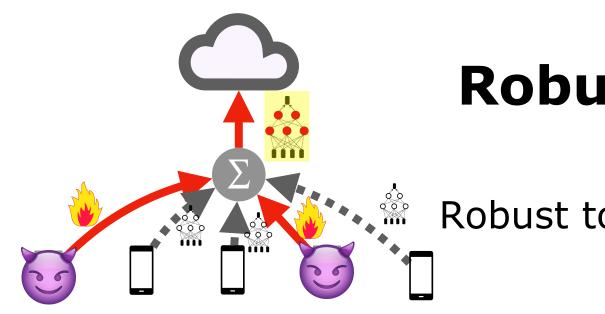
& Reweighted average
$$z_{t+1} = \frac{\sum_{i} \beta_{i,t} w_{i}}{\sum_{i} \beta_{i,t}}$$

Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$



Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

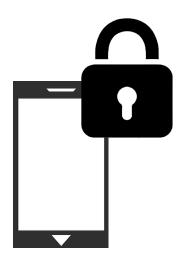
& Reweighted average
$$z_{t+1} = \frac{\sum_{i} \beta_{i,t} w_{i}}{\sum_{i} \beta_{i,t}}$$



Robust to outliers/poisoning

Communication efficient

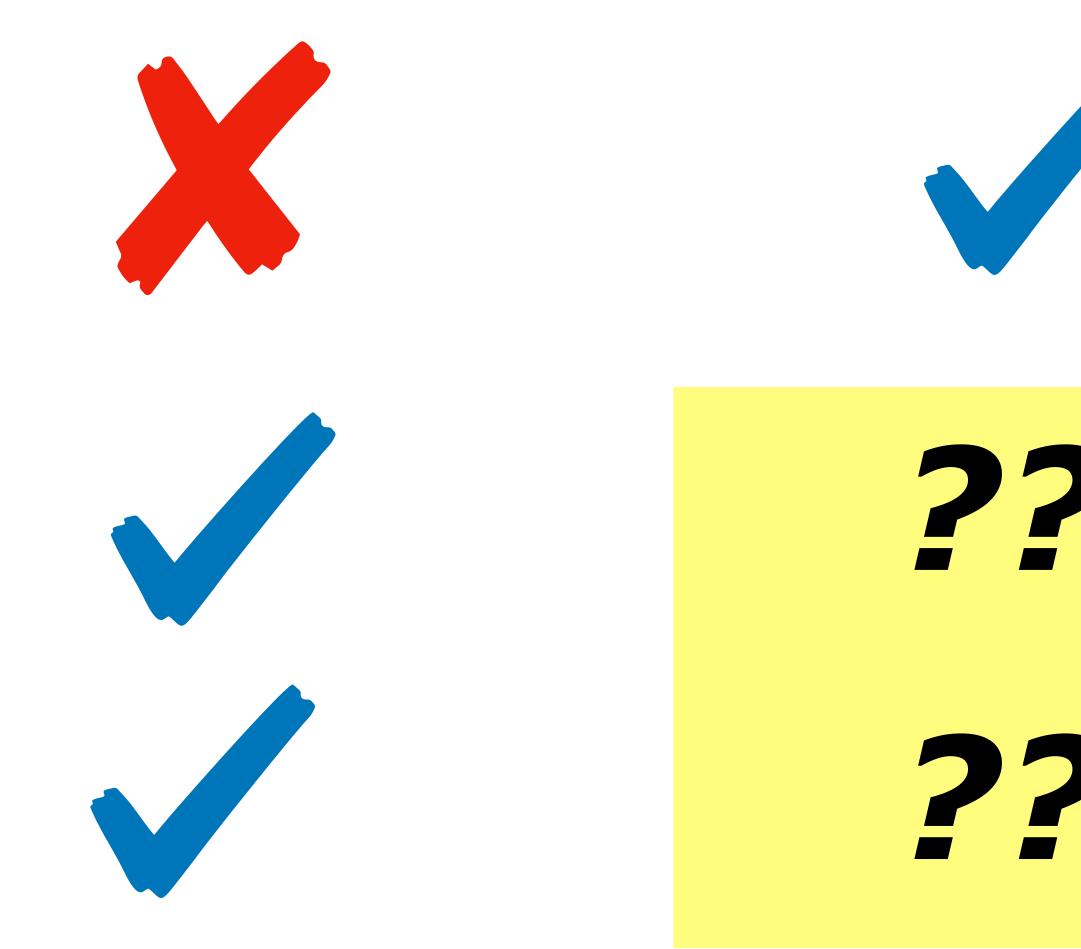
O(1) times the communication cost as non-robust aggregation



Secure aggregation

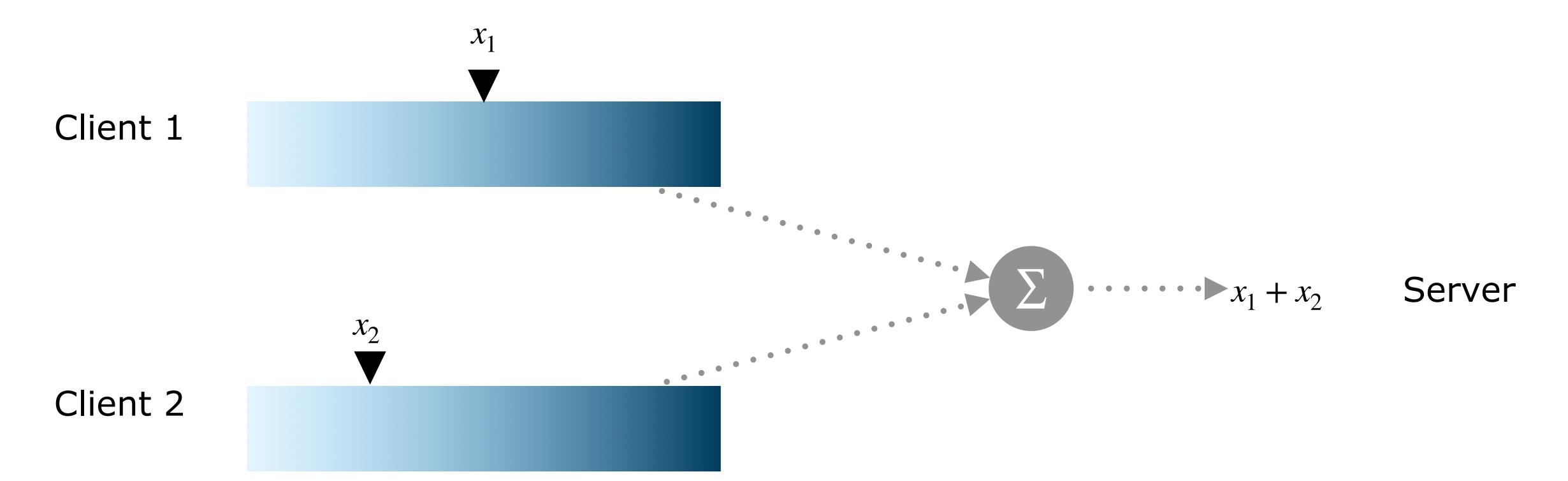
Individual updates not revealed

Usual approach Our approach (Variational) (Direct)



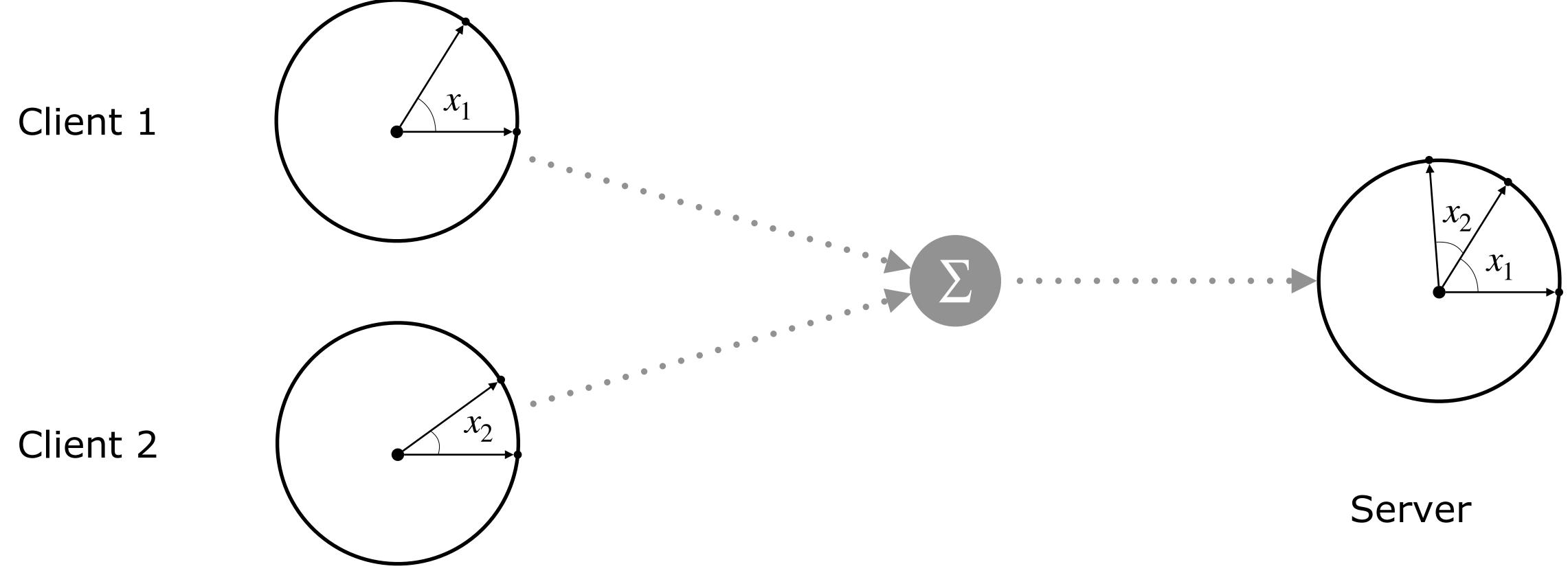
Communication primitive: secure sum/average

Only reveal $x_1 + x_2$ to the server without revealing x_1 or x_2

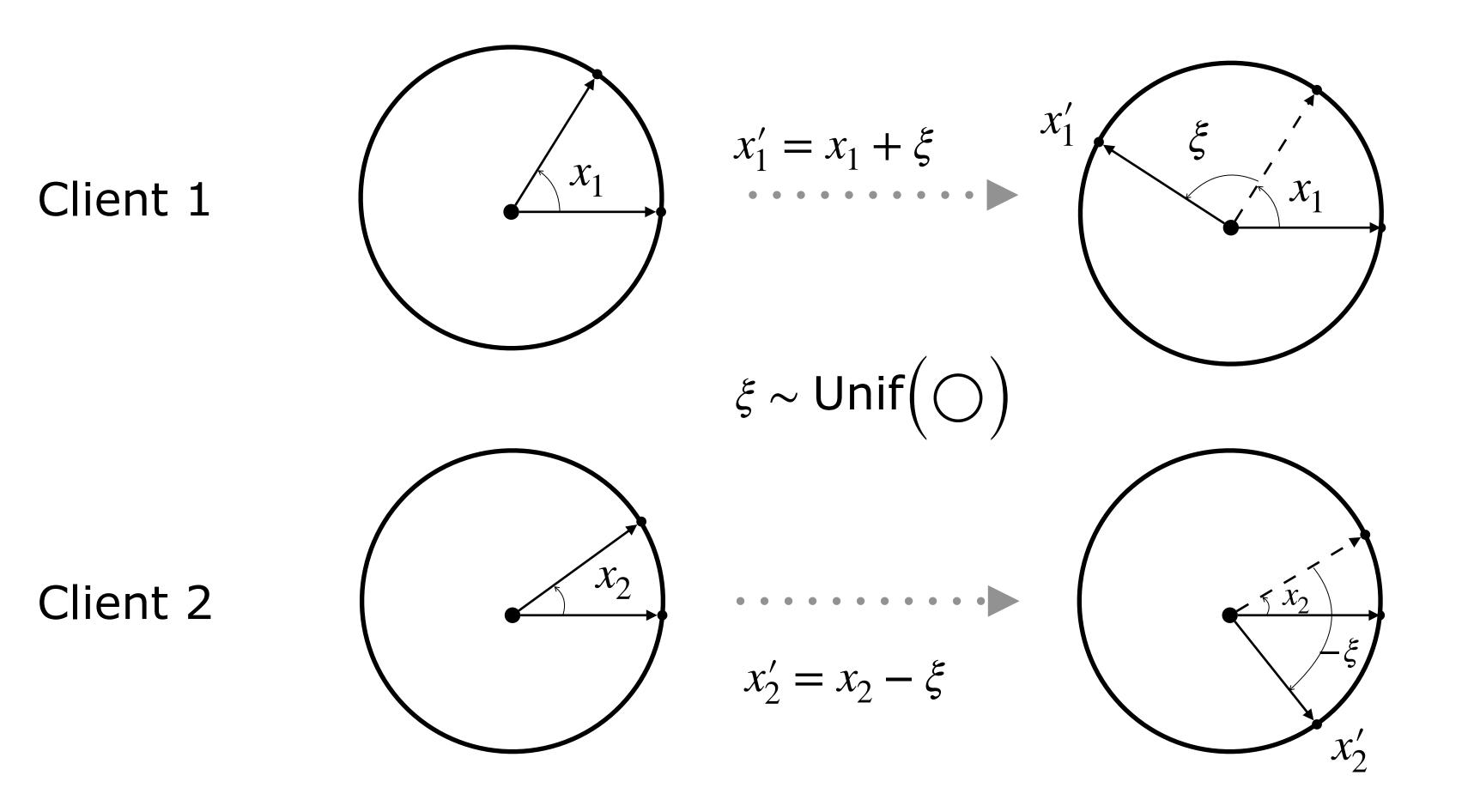


[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]

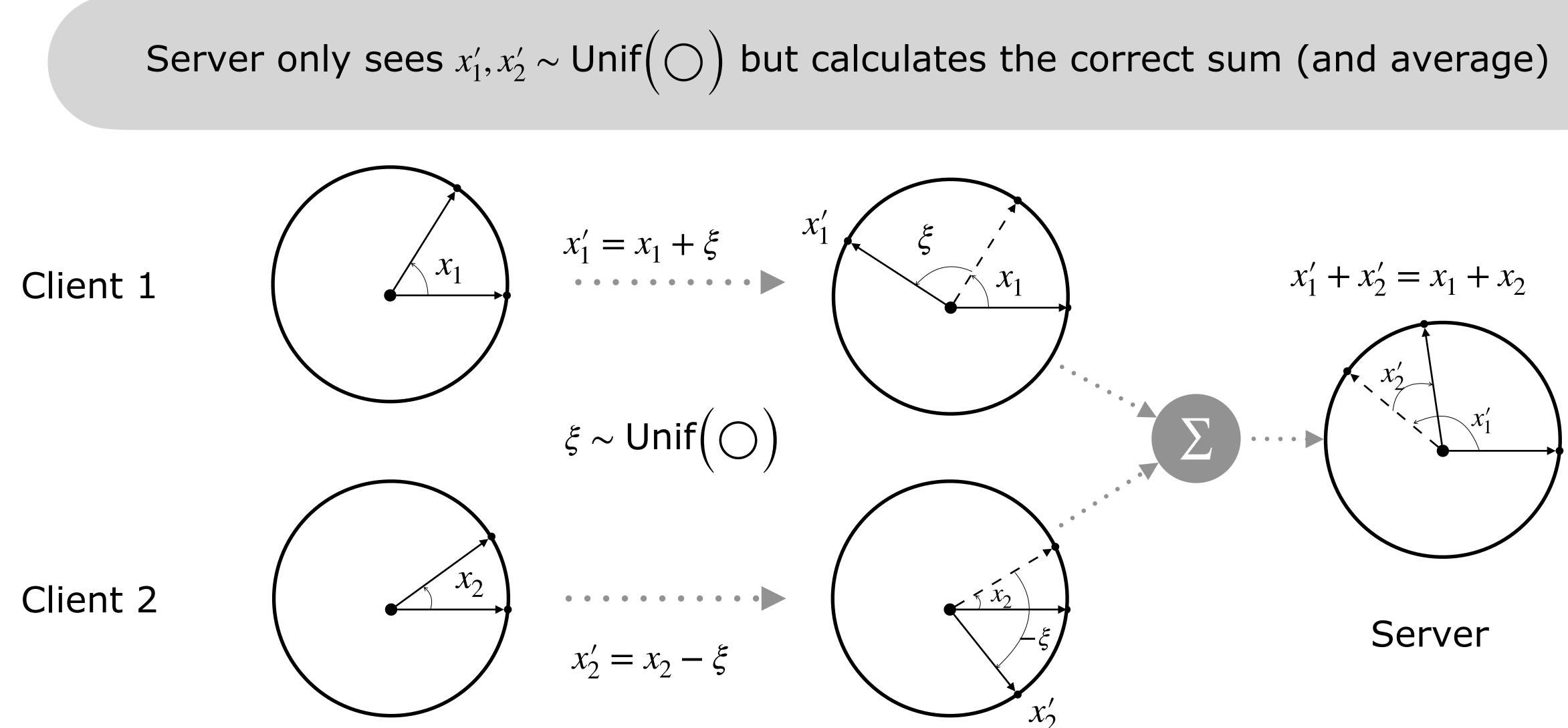
Perform all operations modulo M



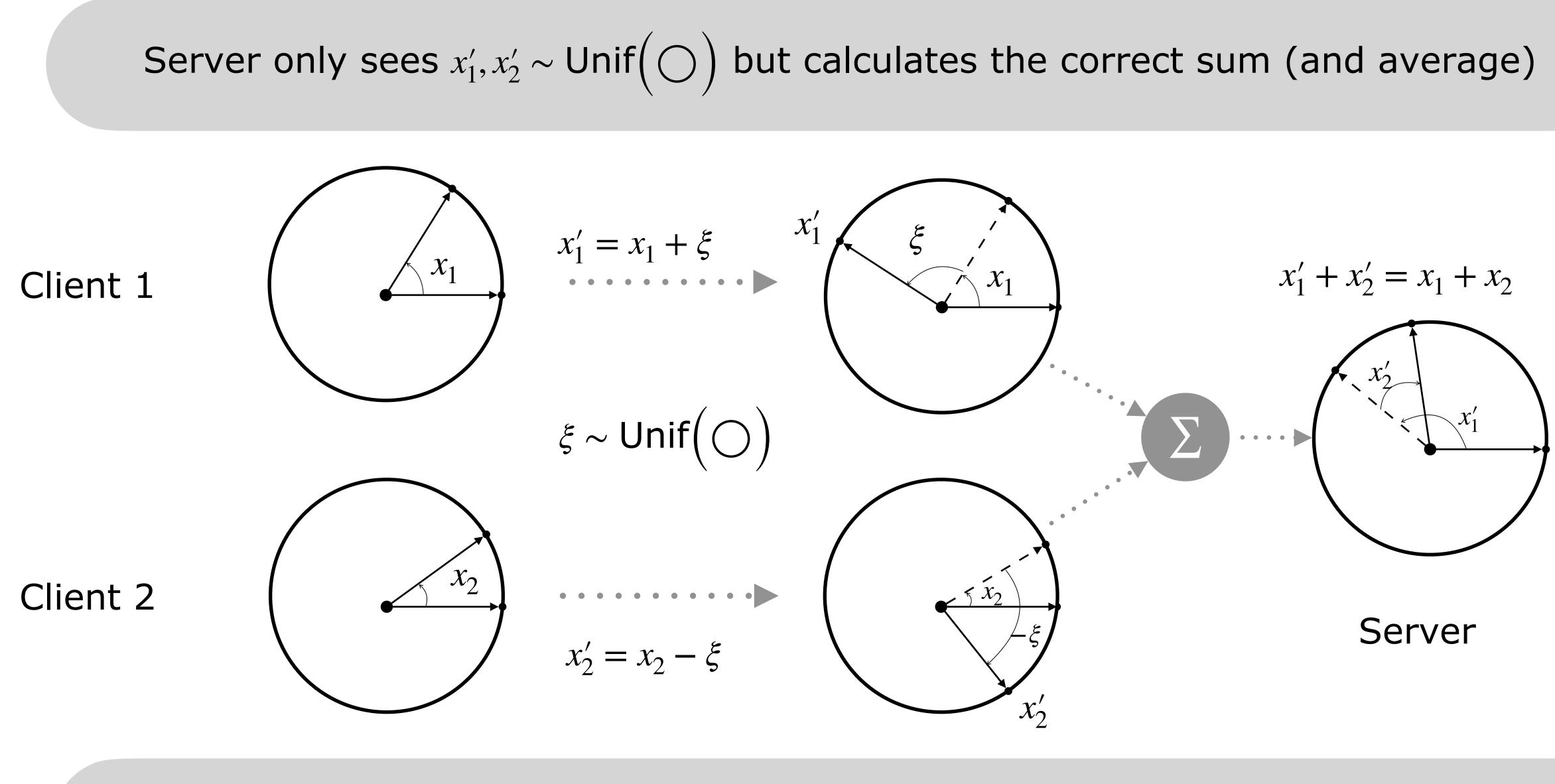
[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]



[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]



[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]



Total communication for m vectors in $\mathbb{R}^d = O(m \log m + md)$ numbers

Server only sees $x'_1, x'_2 \sim \text{Unif}($

Client 1

Real-world communication constraint: All client-to-server communication must go through secure average

Extensions: weighted sums/averages

Total communication for *m* vectors in $\mathbb{R}^d = O(m \log m + md)$ numbers

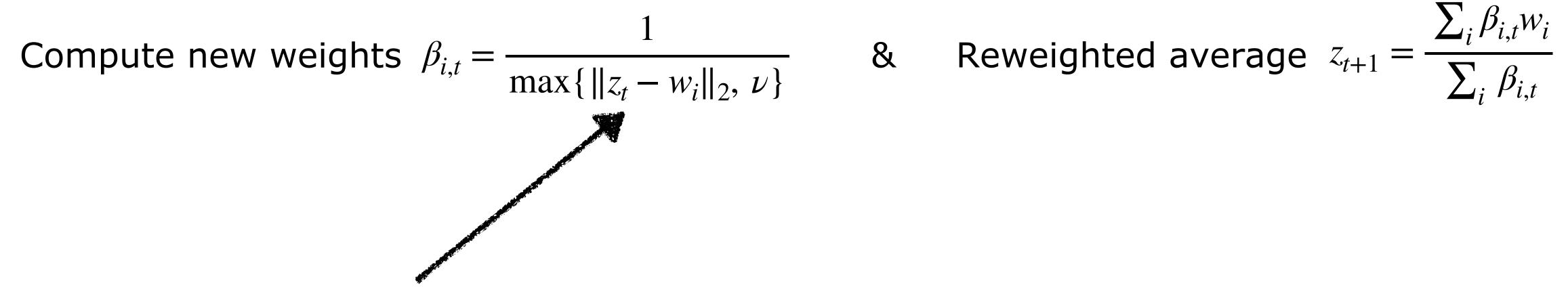
) but calculates the correct sum

Smoothed Weiszfeld Algorithm

Weiszfeld (1937). Sur le point par lequel la somme des distance *n* points donnes est minimum. Tohoku Mathematical Journal.

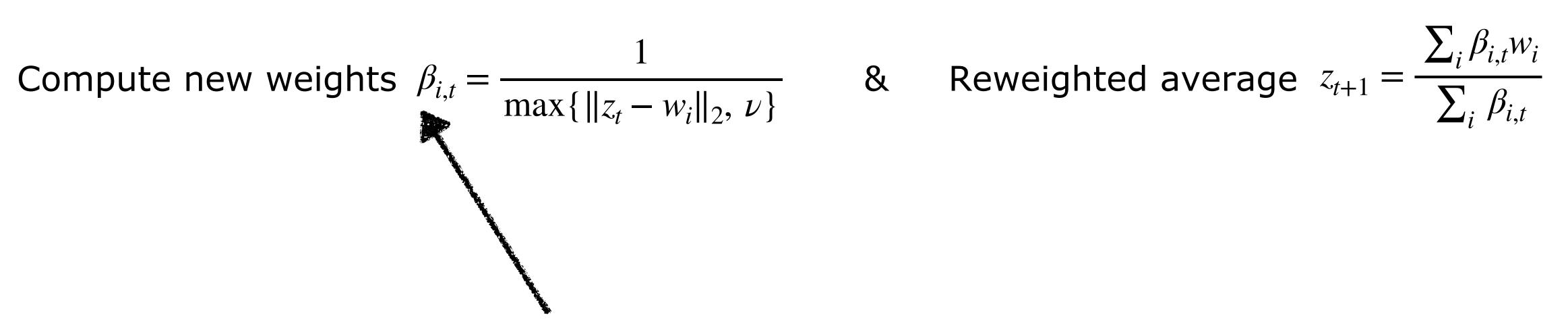
Compute new weights $\beta_{i,t} = \frac{1}{\max\{\|z_t - w_i\|_2, \nu\}}$ & Reweighted average $z_{t+1} = \frac{\sum_i \beta_{i,t} w_i}{\sum_i \beta_{i,t}}$

Smoothed Weiszfeld Algorithm



1. Server **broadcasts** current estimate z_t of the geometric median

Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.



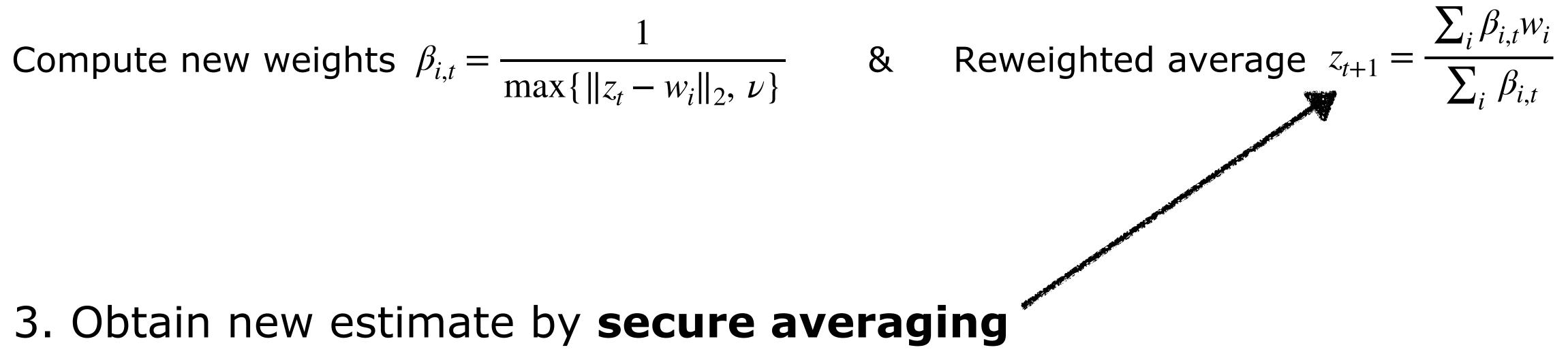
2. Clients compute new weights

Weiszfeld (1937). Sur le point par lequel la somme des distances de *n* points donnes est minimum. Tohoku Mathematical Journal.

Smoothed Weiszfeld Algorithm

3. Obtain new estimate by secure averaging

Weiszfeld (1937). Sur le point par lequel la somme des distance *n* points donnes est minimum. Tohoku Mathematical Journal.

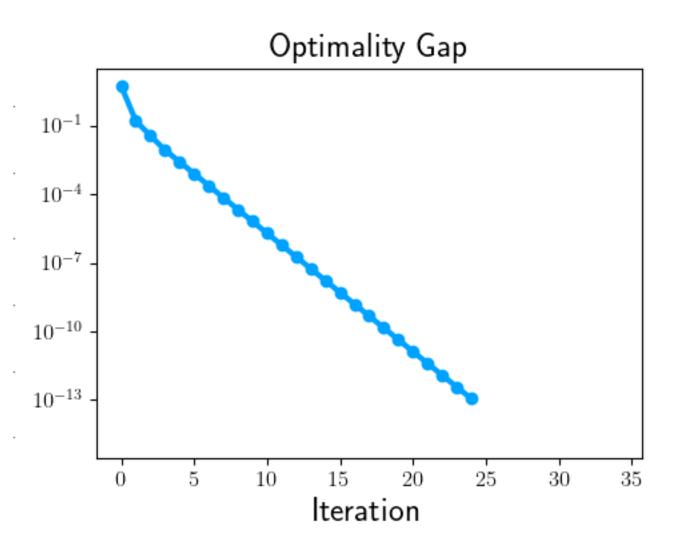


Only client-server communication is via **secure average** in the **Smoothed Weiszfeld Algorithm**

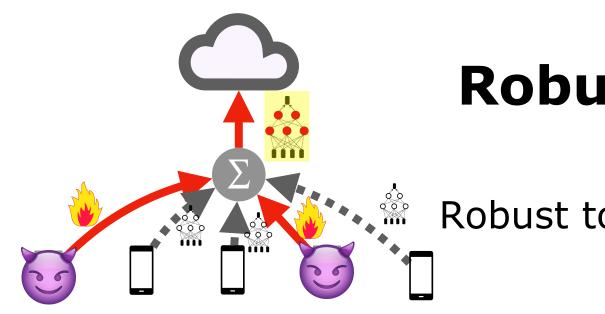
$$z_{t+1} = \frac{\sum_{i} \beta_{i,t} w_i}{\sum_{i} \beta_{i,t}}$$

Empirically, **3-5** iterations suffice:

provably rapid convergence



Even **1** iteration improves robustness!

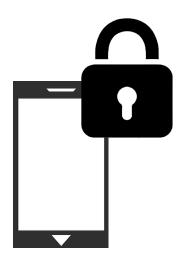


Robust

Robust to outliers/poisoning

Communication efficient

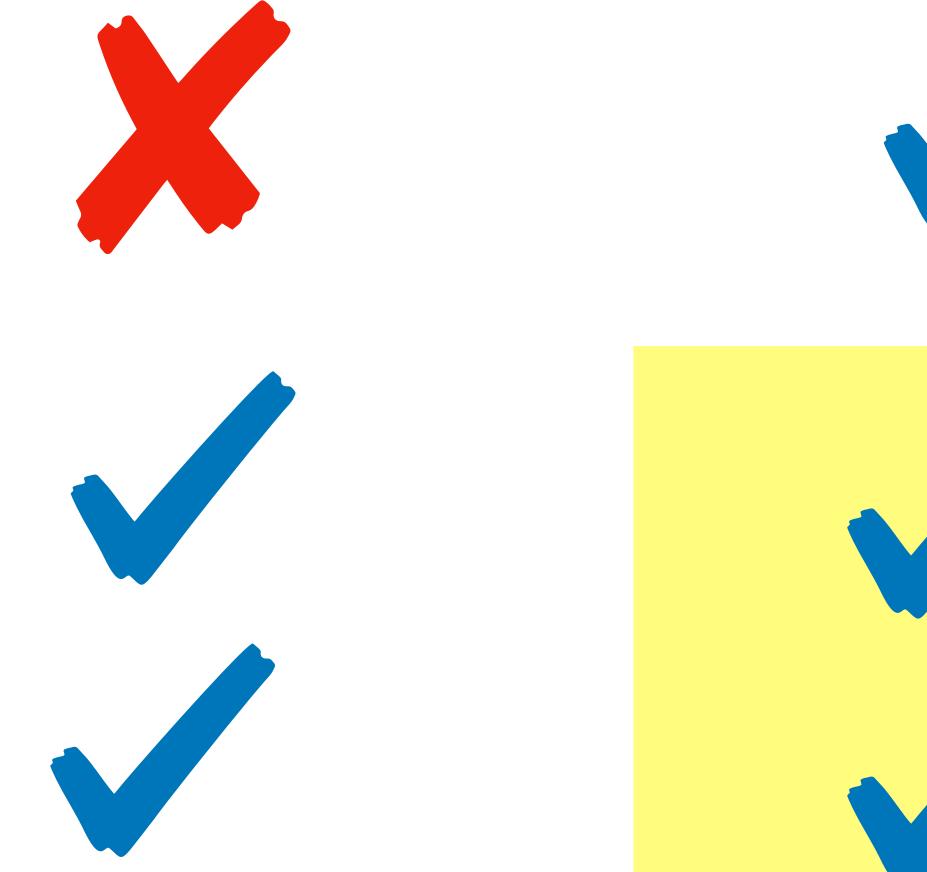
O(1) times the communication cost as non-robust aggregation



Secure aggregation

Individual updates not revealed

Usual approach Our approach (Variational) (Direct)

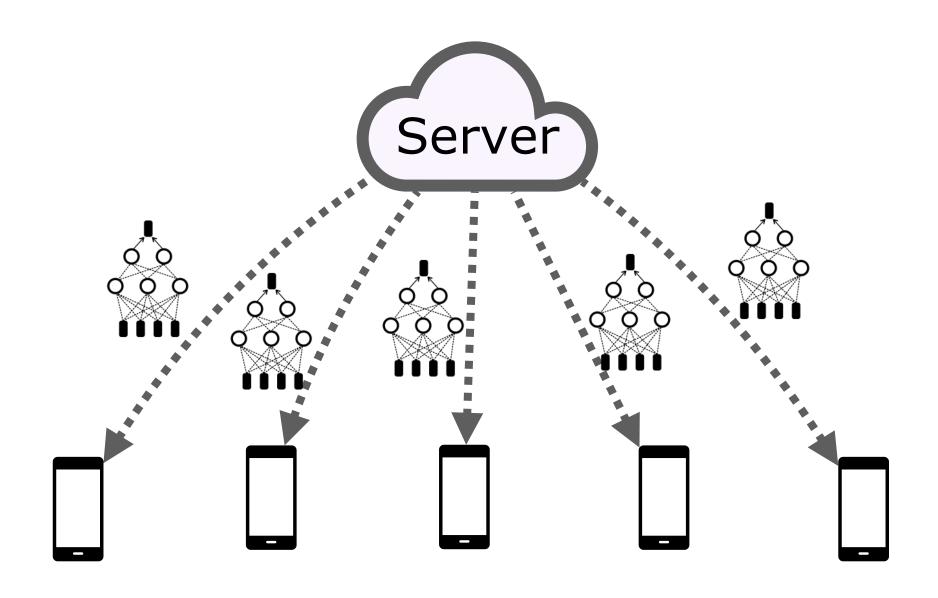


Robust Federated Aggregation (RFA)

More robust federated learning = Local SGD steps +

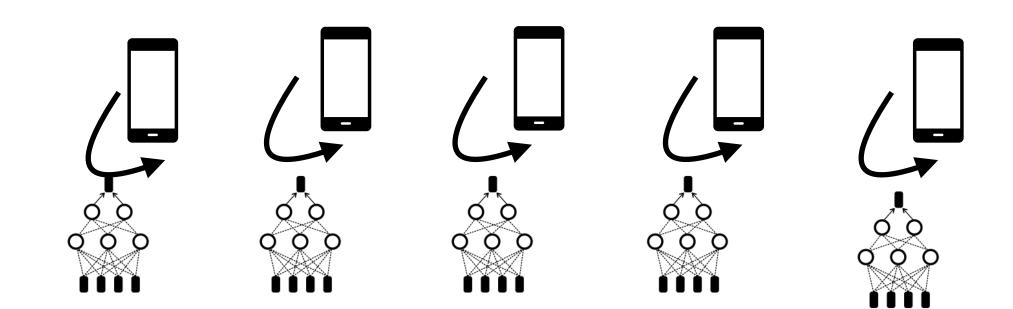
- Geometric median + secure aggregation

Step 1 of 3: Server broadcasts global model to sampled clients

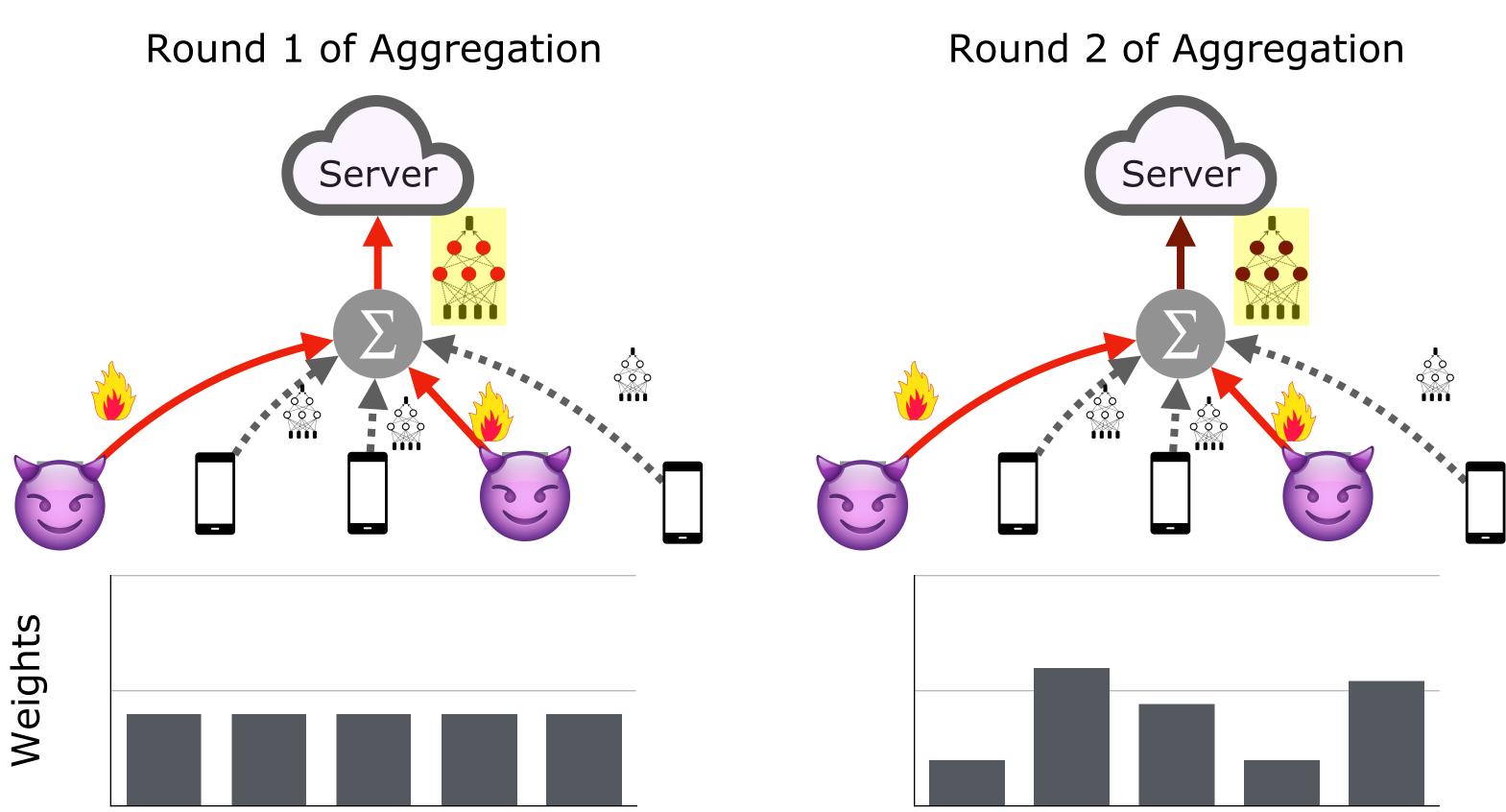


So far, same as federated averaging

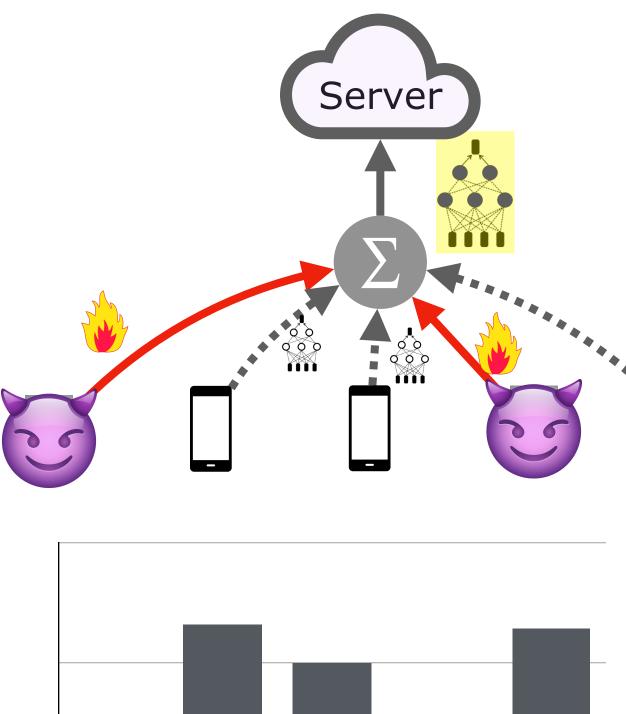
Step 2 of 3: Clients perform some local SGD steps on their local data



Step 3 of 3: Aggregate with multiple rounds of secure average (weights β_i from the Smoothed Weiszfeld Algorithm)



Round 3 of Aggregation



See the paper for:

The Tension Between Robustness and Heterogeneity: Heterogeneity is a key property of federated learning. The distribution D_i of device *i* can be quite different from the distribution D_i of some other device j, reflecting the heterogeneous data generated by a diverse set of users.

To analyze the effect of heterogeneity on robustness, consider the simplified scenario of robust mean estimation in Huber's contamination model [34]. Here, we wish to estimate the mean $\mu \in \mathbb{R}^d$ given samples $w_1, \ldots, w_m \sim (1 - 1)$ $\rho \mathcal{N}(\mu, \sigma^2 I) + \rho Q$, where Q denotes some outlier distribution that ρ -fraction of the points (designated as outliers) are drawn from. Any aggregate \bar{w} must satisfy the lower bound $\|\bar{w} - \bar{w}\|$ $\|\mu\|^2 \ge \Omega(\sigma^2 \max\{\rho^2, d/m\})$ with constant probability [69, Theorem 2.2]. In the federated learning setting, more heterogeneity corresponds to a greater variance σ^2 among the inlier points, implying a larger error in mean estimation. This suggests a tension between robustness and heterogeneity, where increasing heterogeneity makes robust mean estimation harder in terms of ℓ_2 error.

In this work, we strike a compromise between robustness and heterogeneity by considering a family \mathcal{D} of allowed data

analysis

IEEE TRANSACTIONS ON **SIGNAL PROCESSING**

2023

TSP Volume 70 | 2022

Discussion on heterogeneity

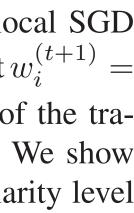
Convergence

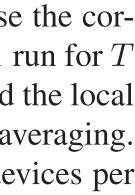
Convergence: We now analyze RFA where the local SGD updates are equipped with "tail-averaging" [73] so that $w_i^{(t+1)} =$ $(2/\tau) \sum_{k=\tau/2}^{\tau} w_{i,k}^{(t)}$ is averaged over the latter half of the trajectory of iterates instead of line 9 of Algorithm 1. We show that this variant of RFA converges up to the dissimilarity level $\Omega = \Omega_X \Omega_{Y|X}$ when the corruption level $\rho < 1/2$. *Theorem 4:* Consider *F* defined in (7) and suppose the corruption level satisfies $\rho < 1/2$. Consider Algorithm 1 run for T outer iterations with a learning rate $\gamma = 1/(2R^2)$, and the local updates are run for τ_t steps in outer iteration t with tail averaging. Fix $\delta > 0$ and $\theta \in (\rho, 1/2)$, and set the number of devices per iteration, m as

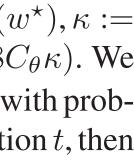
$$m \geq \frac{\log(T/\delta)}{2(\theta-\rho)^2}$$

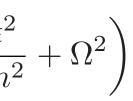
Define $C_{\theta} := (1 - 2\theta)^{-2}, w^* = \arg\min F, F^* = F(w^*), \kappa := 0$ R^2/μ and $\Delta_0 := \|w^{(0)} - w^\star\|^2$. Let $\tau \ge 4\kappa \log(128C_\theta \kappa)$. We have that the event $\mathcal{E} = \bigcap_{t=0}^{T-1} \{ |S_t \cap \mathcal{C}| \le \theta m \}$ holds with probability at least $1 - \delta$. Further, if $\tau_t = 2^t \tau$ for each iteration t, then the output $w^{(T)}$ of Algorithm 1 satisfies,

$$\mathbb{E}\left[\|w^{(T)}) - w^{\star}\|^{2} \left| \mathcal{E} \right] \leq \frac{\Delta_{0}}{2^{T}} + CC_{\theta} \left(\frac{d\sigma^{2}T}{\mu\tau 2^{T}} + \frac{\epsilon}{n}\right)$$

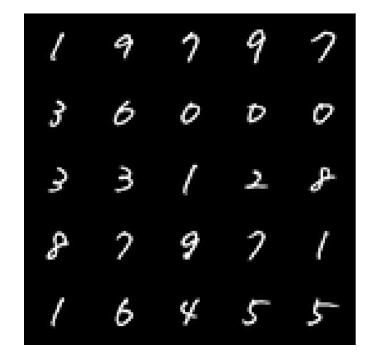


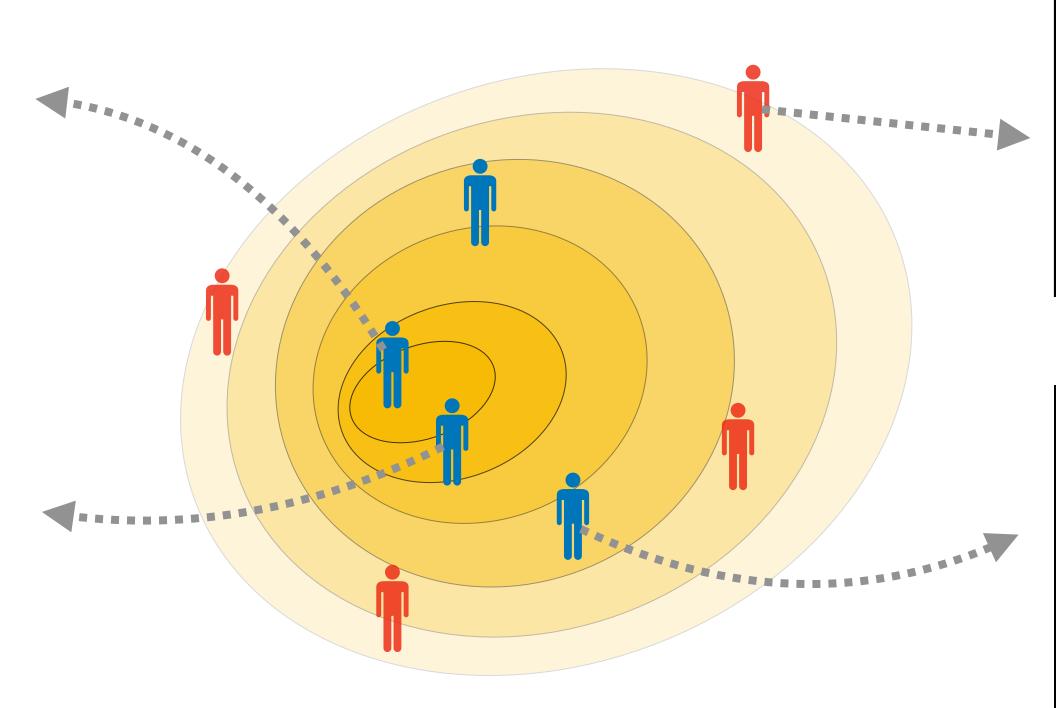






Experiments and Improvements

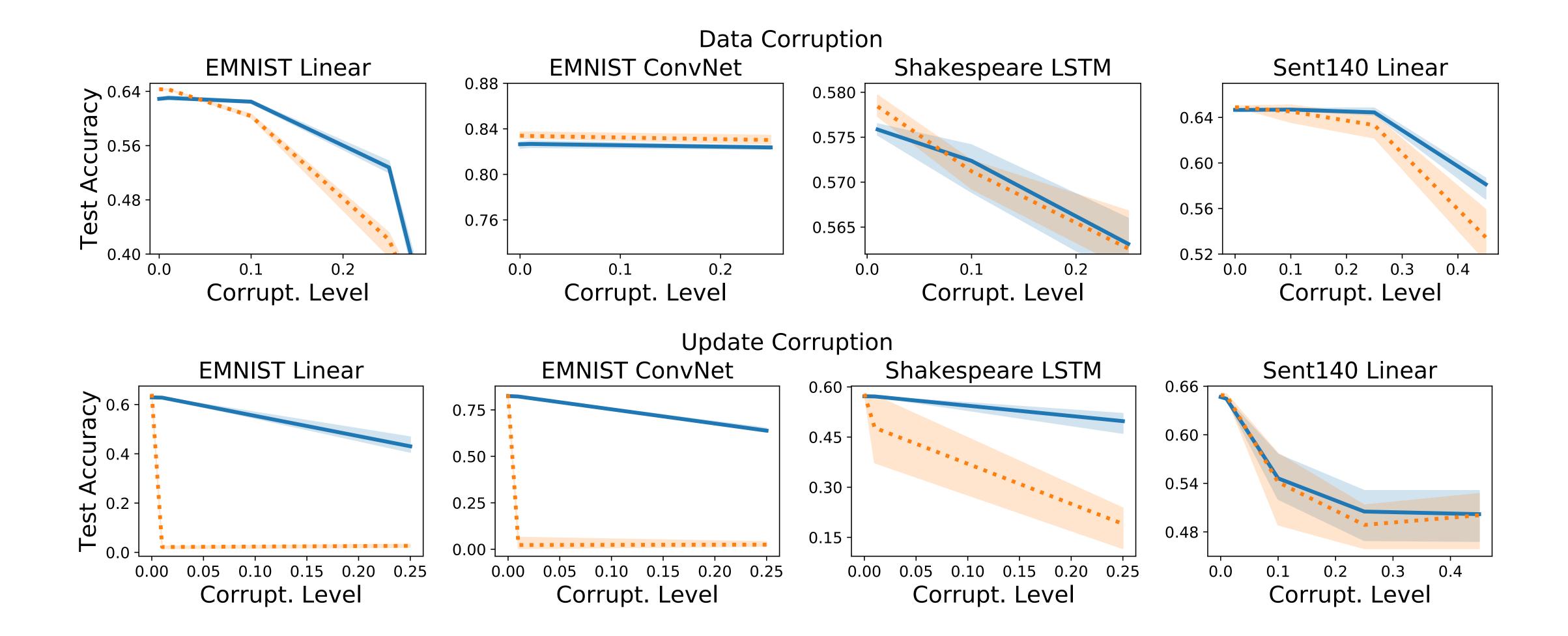


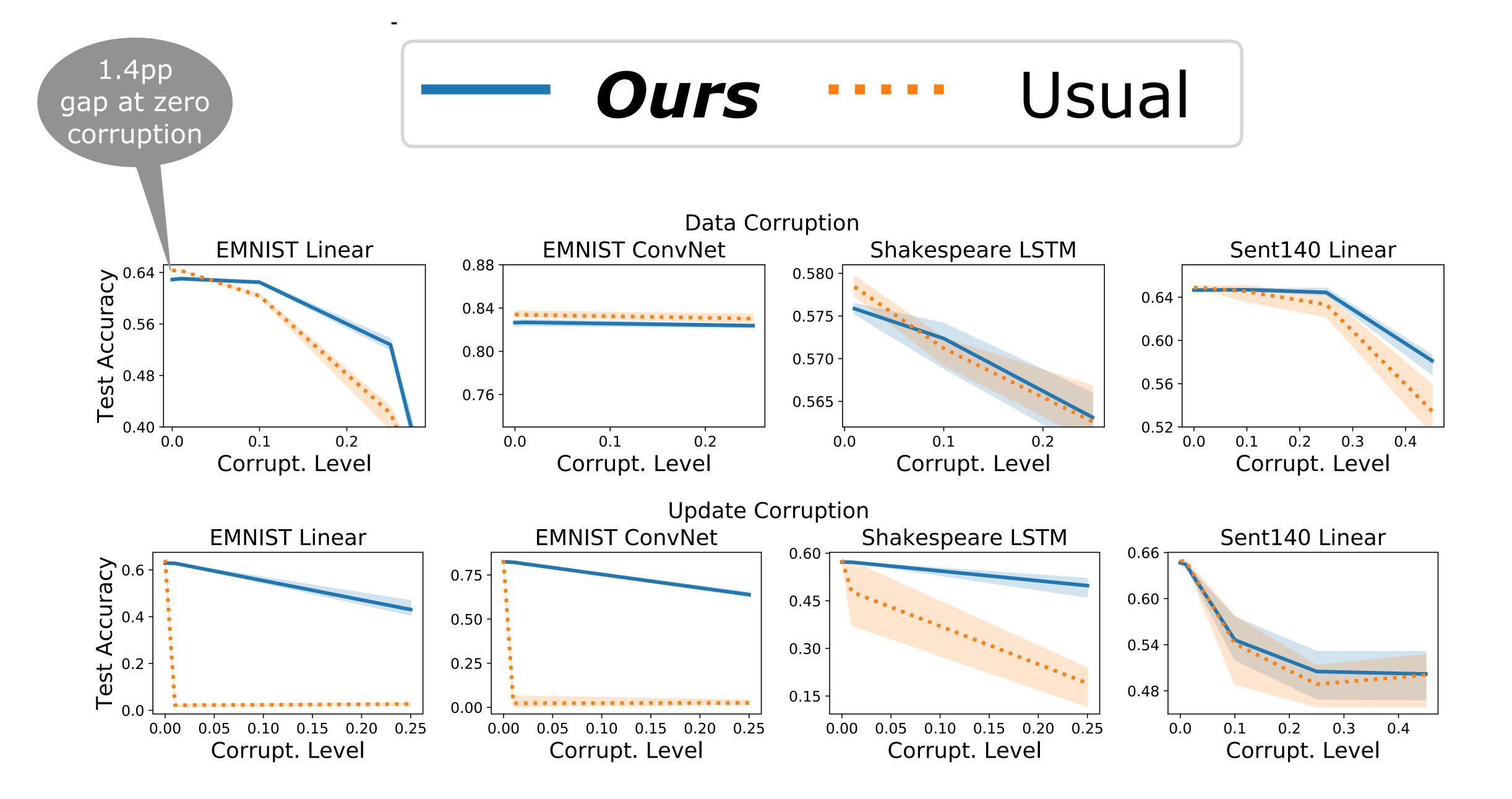


Γ,	١	٦	Q	Ŀ
x	١	ŝ	8	Ţ
Ŧ	a	Ф	ø	æ
٦	4	٩	٥	Ø
۶	đ	ð	١	φ

ł	5	۱		ч
7	3	3	η	6
8	0	5	0	η
η	ł	ŋ	η	Ь
2	4	a		ч

Ours

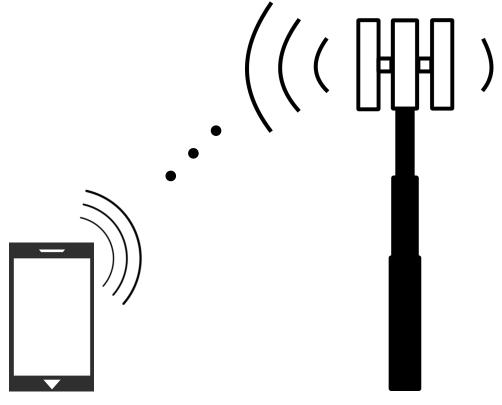


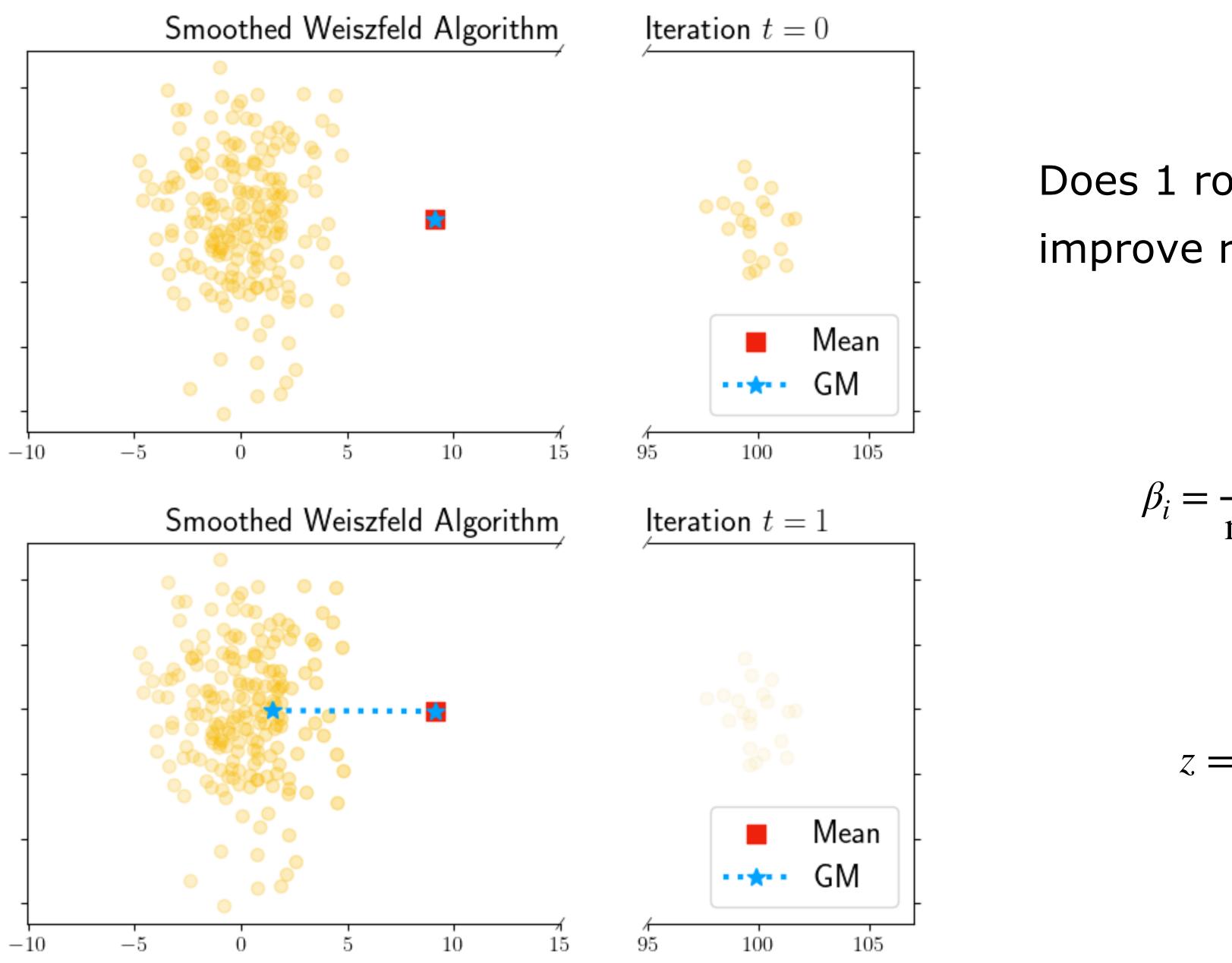


Reducing the communication cost

One round of our algorithm \implies 3-5 rounds of communication

Due to iterations of the smoothed Weiszfeld algorithm



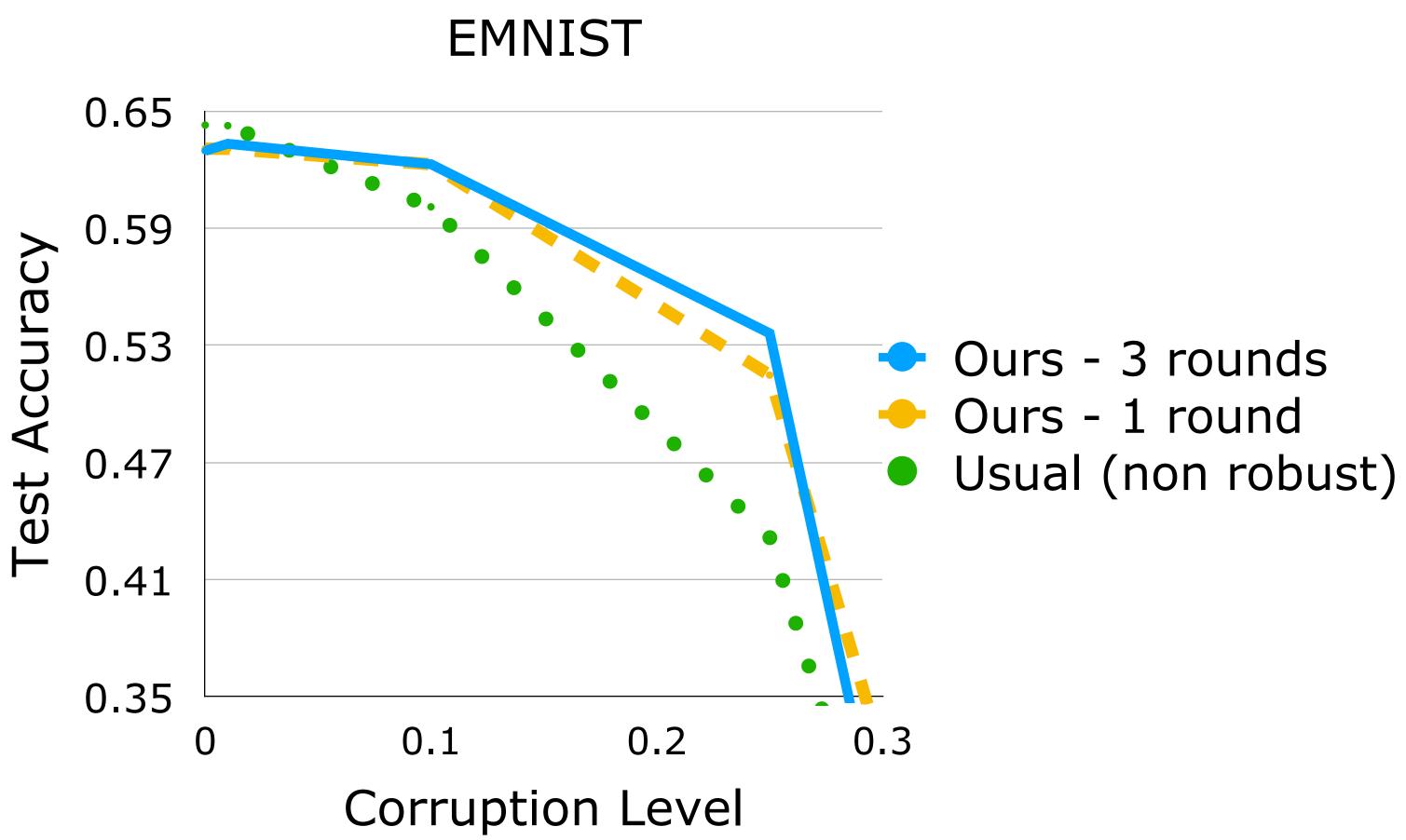


Does 1 round of communication improve robustness?

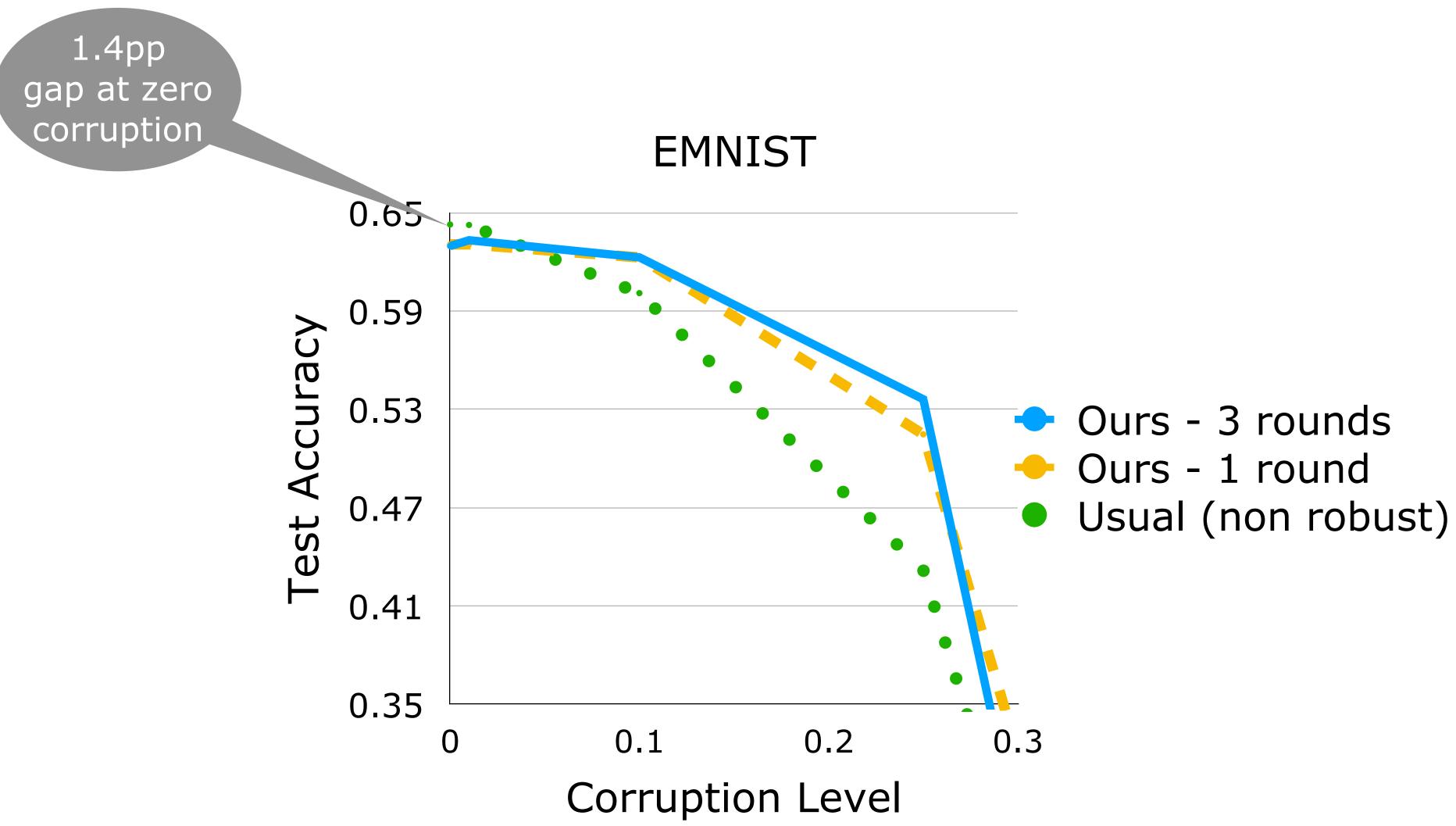
$$\beta_i = \frac{1}{\max\{\|w_i\|_2, \nu\}}$$

$$z = \frac{\sum_{i} \beta_{i} w_{i}}{\sum_{i} \beta_{i}}$$

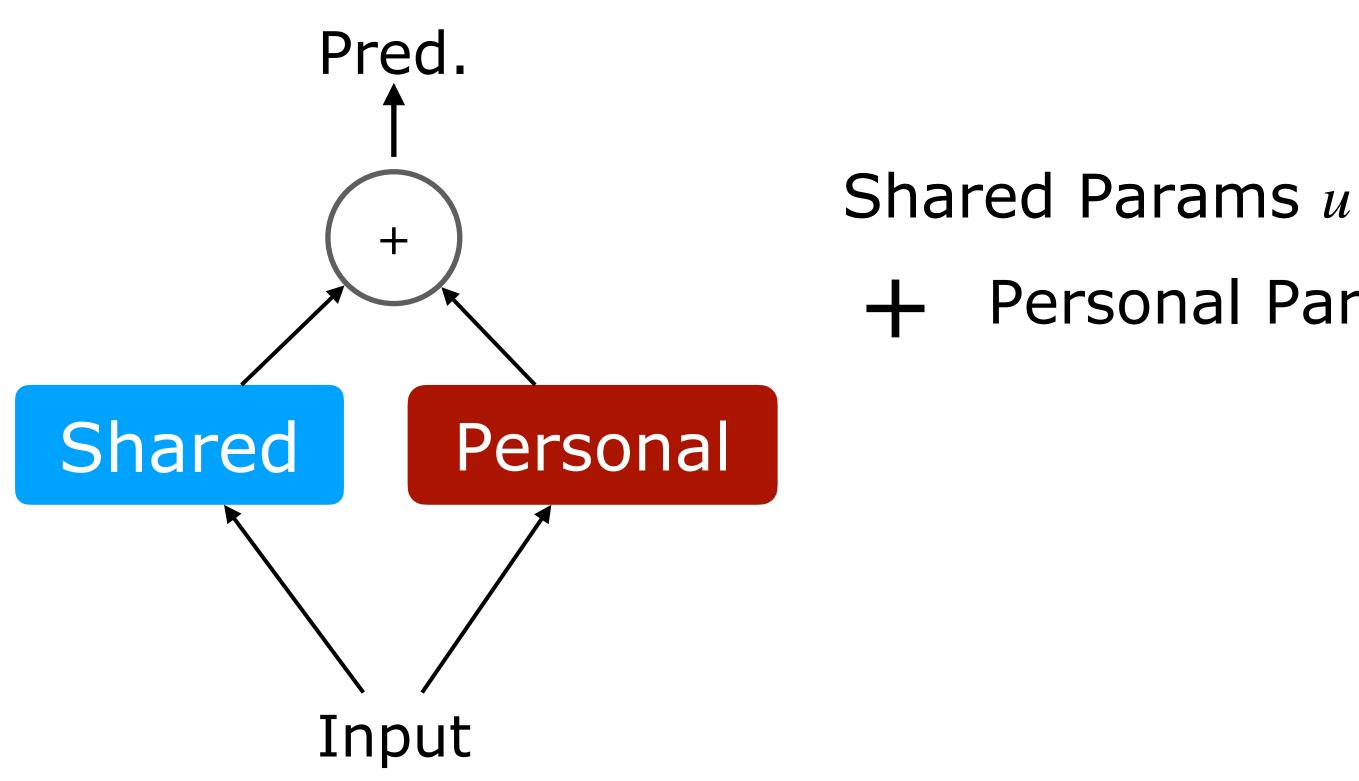
1 communication round already improves robustness



How do we get rid of this gap?



Model personalization The model has a global component

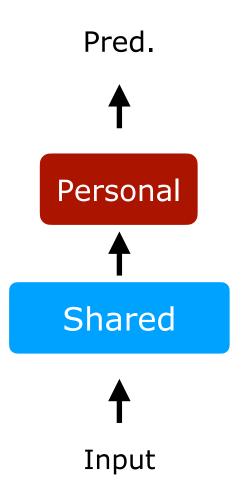


and a per-client component

Personal Params v_i

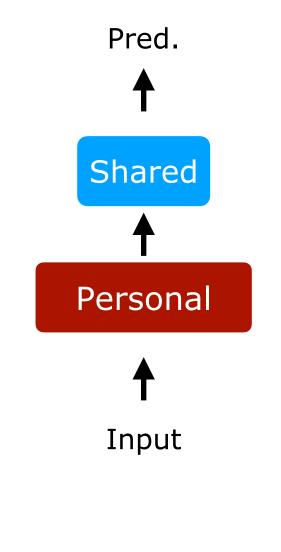
Full model $w_i = (u, v_i)$

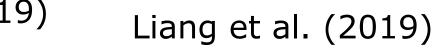
Personalization Architectures



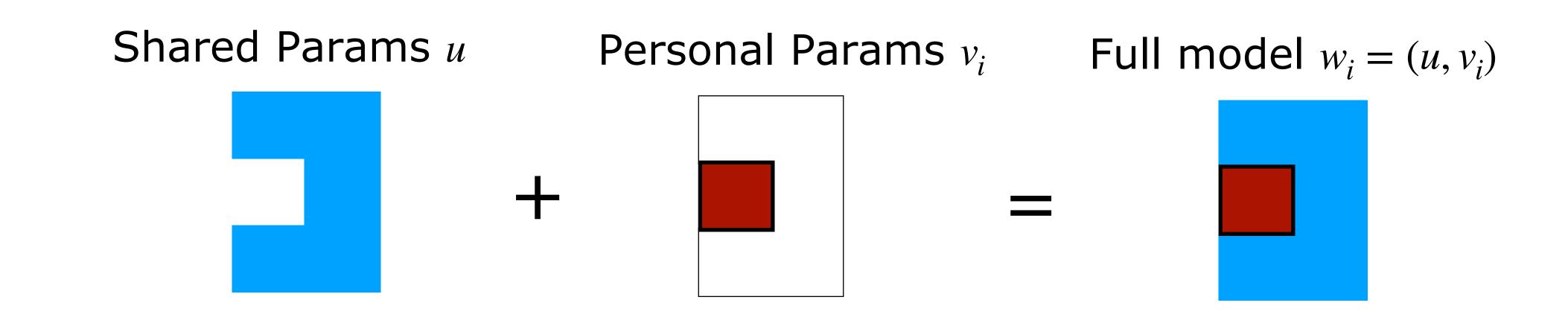
Arivazhagan et al. (2019) Collins et al. (2021)

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004), Collobert & Weston (2005), Argyriou et al. (2008), ...





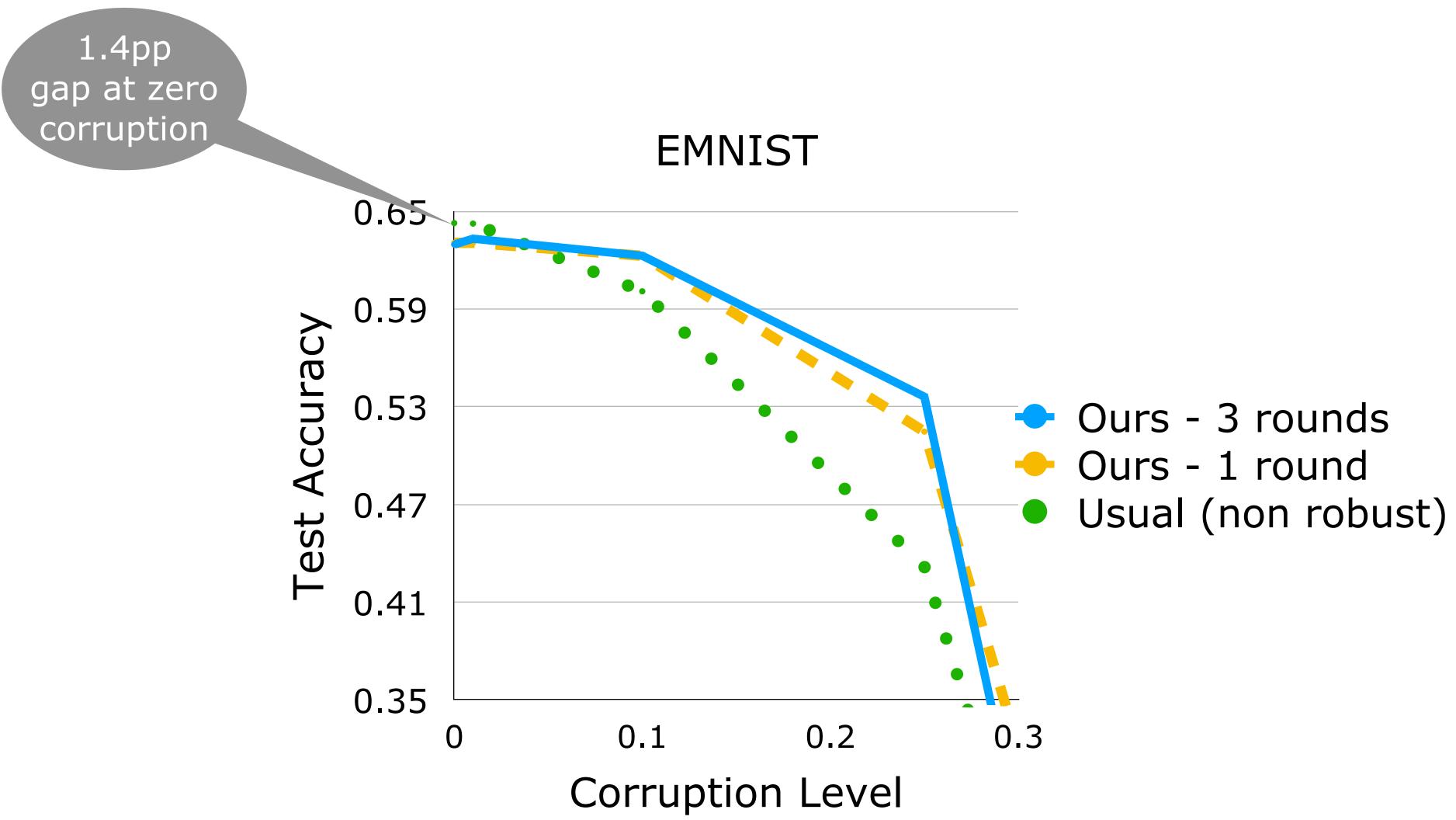
Optimization



Shared part of the model is updated with robust aggregation

Personal part of the model stays with the client

Does personalization get rid of this gap?



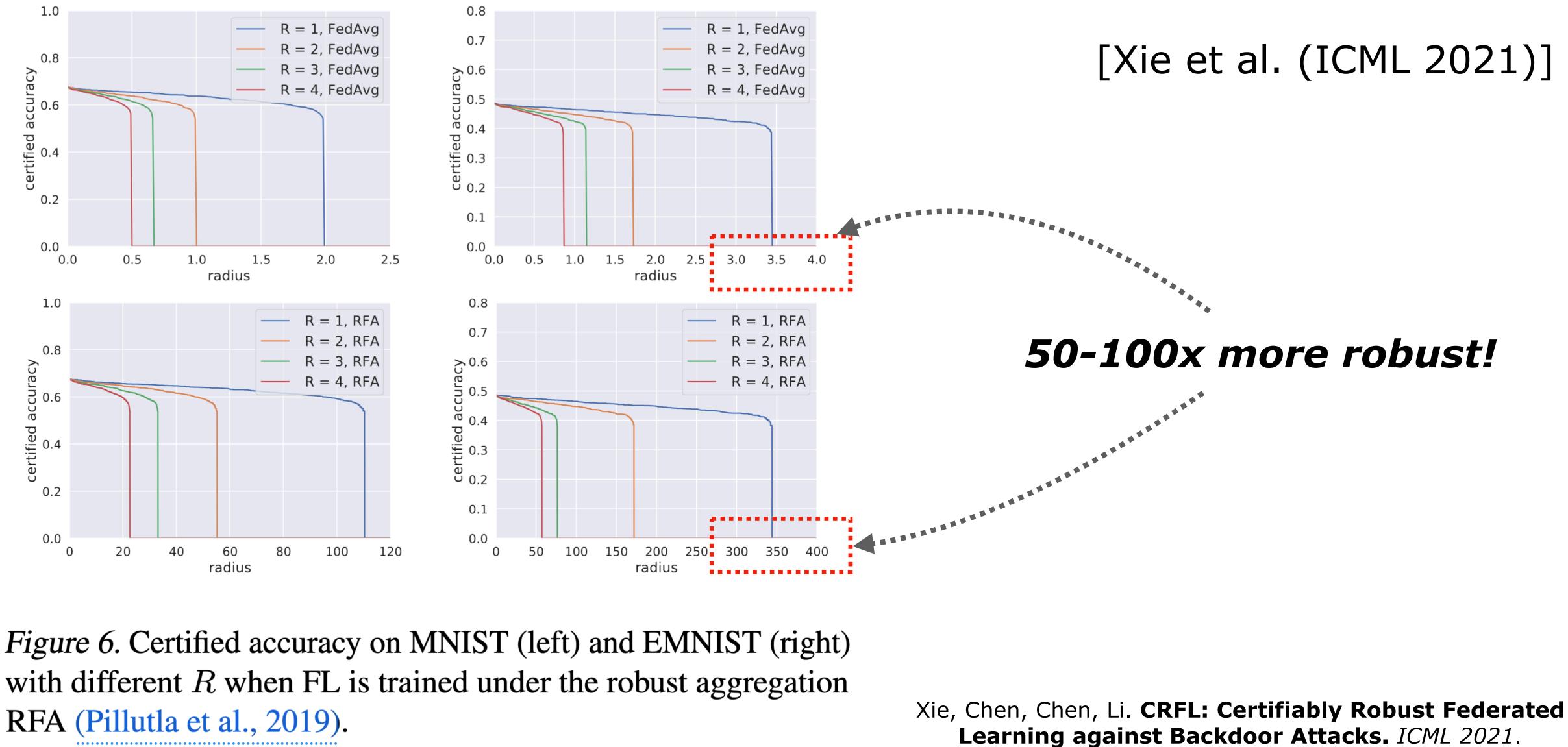
Yes, we can improve robust aggregation with personalization 0.3pp gap at zero corruption **EMNIST** Linear Pred. 0.72 ╉ 0.63 Test Accuracy 0.54 Shared Personal 0.45 Input



0	n	

In the literature: Robust Federated Aggregation (RFA)

RFA is certifiably more robust to backdoor attacks



RFA (Pillutla et al., 2019).

RFA is asymptotically strategy-proof

Strategy-proof: Can a device lie to bring the aggregate to a desired point?

With a large number of independent devices, RFA is approximately strategy-proof

On the Strategyproofness of the Geometric Median

El-Mahdi El-Mhamdi Calicarpa, École Polytechnique

> Rachid Guerraoui EPFL

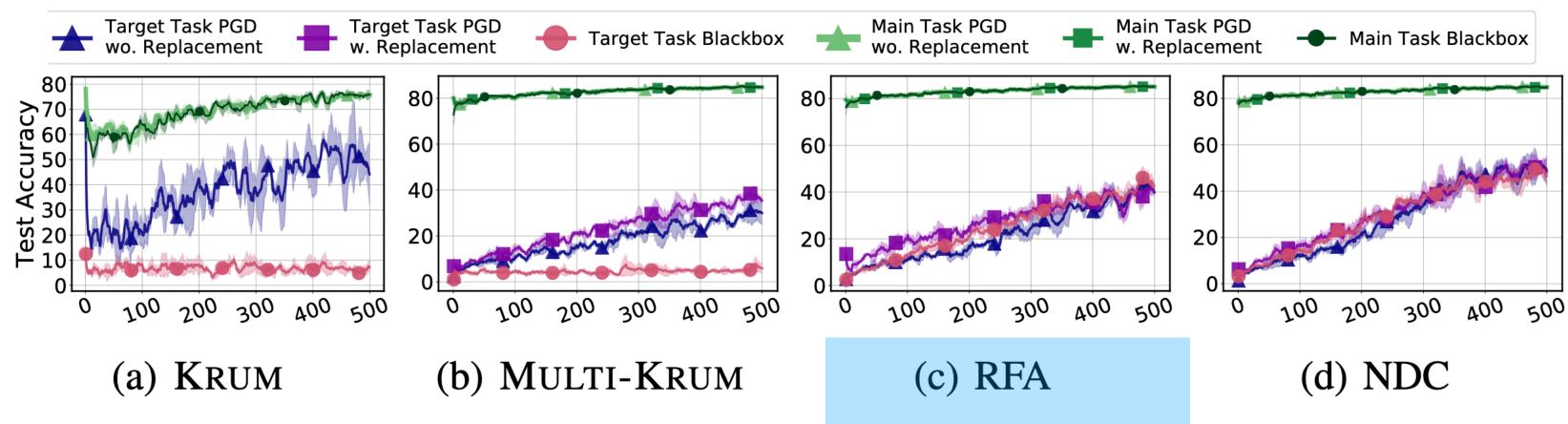
Sadegh Farhadkhani* EPFL

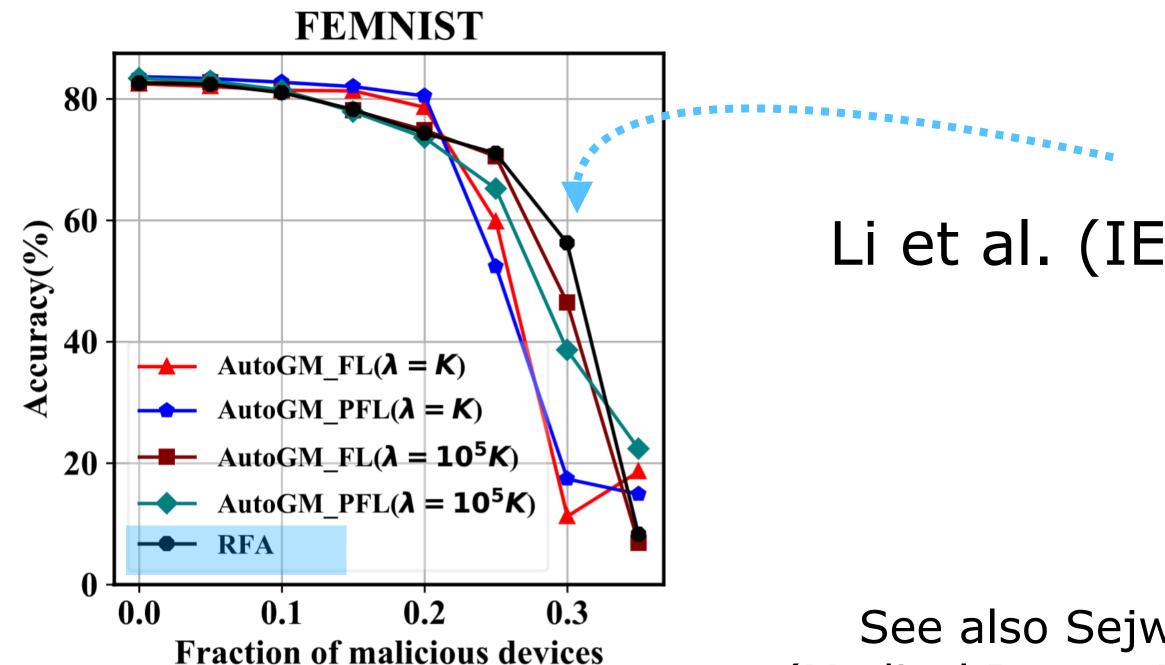
Lê-Nguyên Hoang* Calicarpa, Tournesol

[AISTATS 2023]

RFA is a strong baseline

Wang et al. (NeurIPS 2020)





See also Sejwalkar et al. (IEEE Security & Privacy 2022), Jin & Li (Medical Image Analysis 2023), Li et al. (IEEE Trans. Big Data 2023), ...

Li et al. (IEEE Trans. Industrial Informatics 2023)

Algorithmic advances based on RFA

Park et al. (NeurIPS 2021): RFA + Entropy-based reweighting Karimireddy et al. (ICLR 2022): RFA + Bucketing Li et al. (IEEE Trans. Ind. Inform. 2023): RFA + adaptive weighting Allouah et al. (AISTATS 2023): RFA + nearest neighbhors

Fast and differentiable geometric median

import torch from geom_median.torch import compute_geometric_median # PyTorch API # from geom_median.numpy import compute_geometric_median # NumPy API

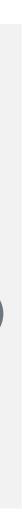
points = [torch.rand(d) for _ in range(n)] # list of n tensors of shape (d,) weights = torch_rand(n) # non-negative weights of shape (n,)out = compute_geometric_median(points, weights)

Install: pip install geom-median

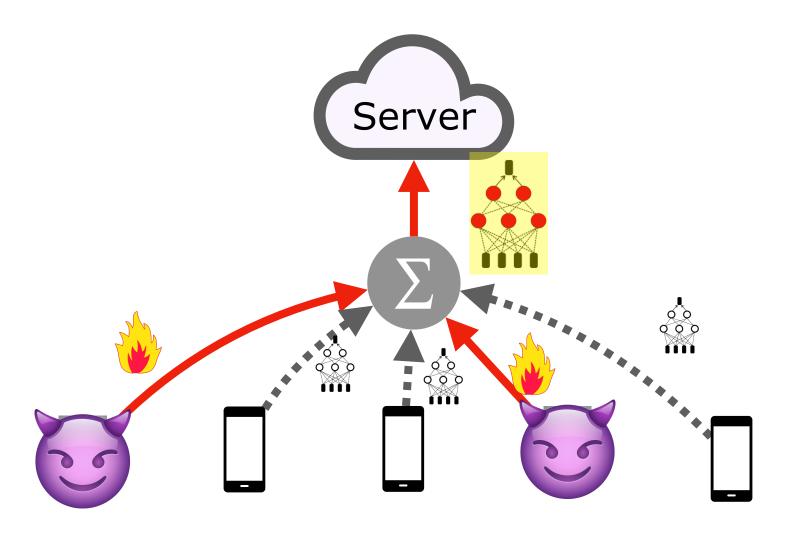
Documentation: github.com/krishnap25/geom-median

```
# The shape of each tensor is the same and can be arbitrary (not necessarily 1-dimensional)
# Access the median via `out.median`, which has the same shape as the points, i.e., (d,)
```


GitHub Link



Federated learning is *not robust* to poisoned updates

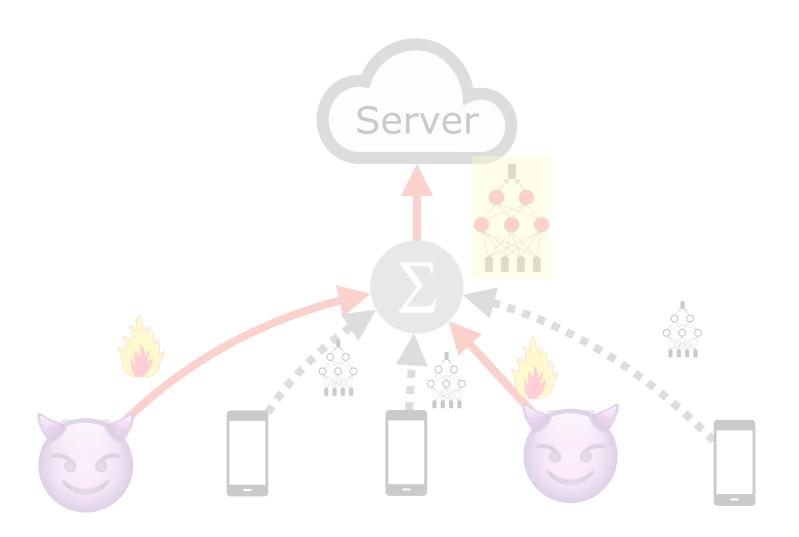


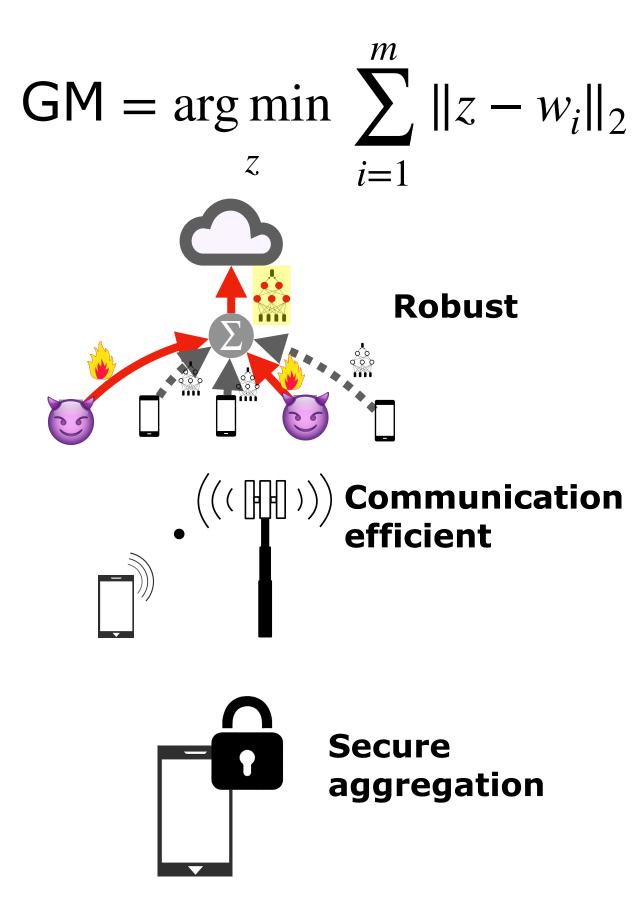
Paper:

Summary

Summary

Federated learning is *not robust* to poisoned updates

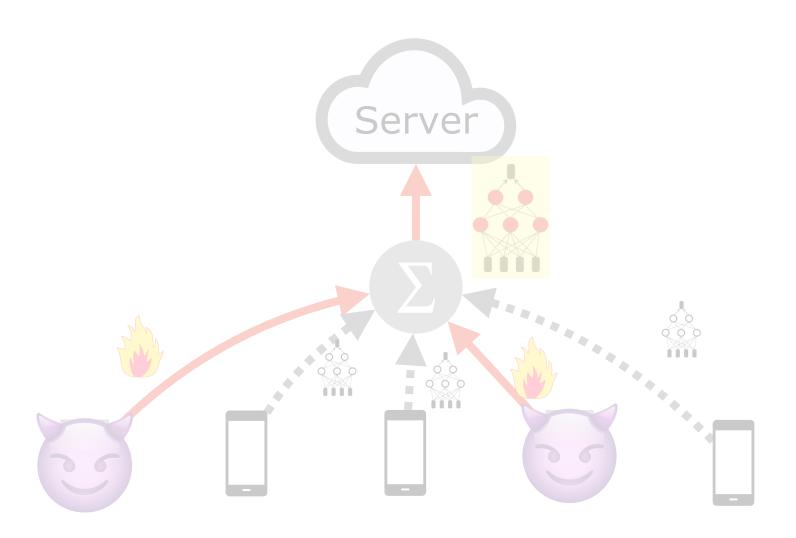


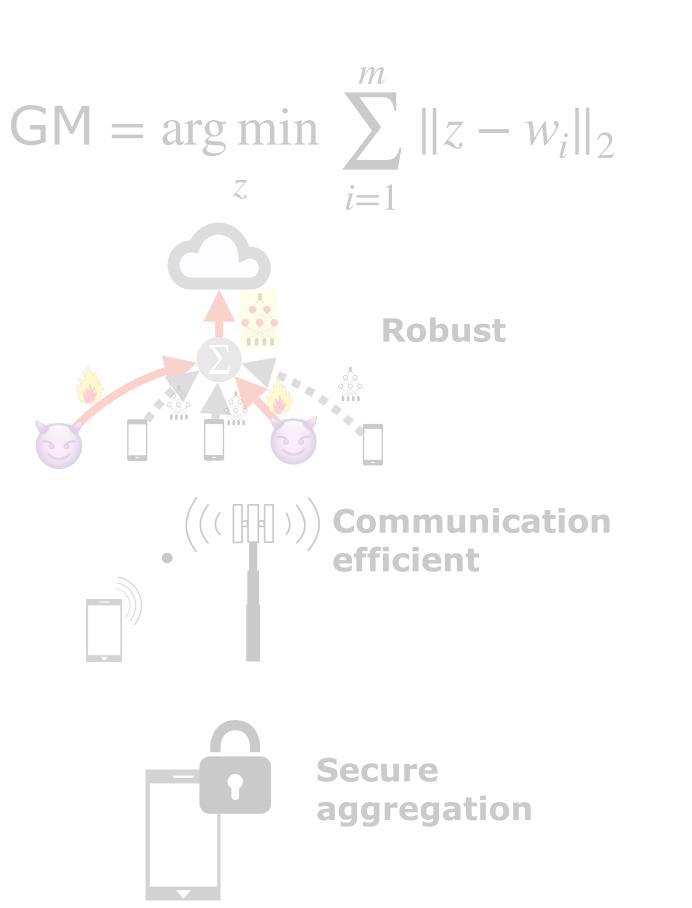


Paper:

Summary

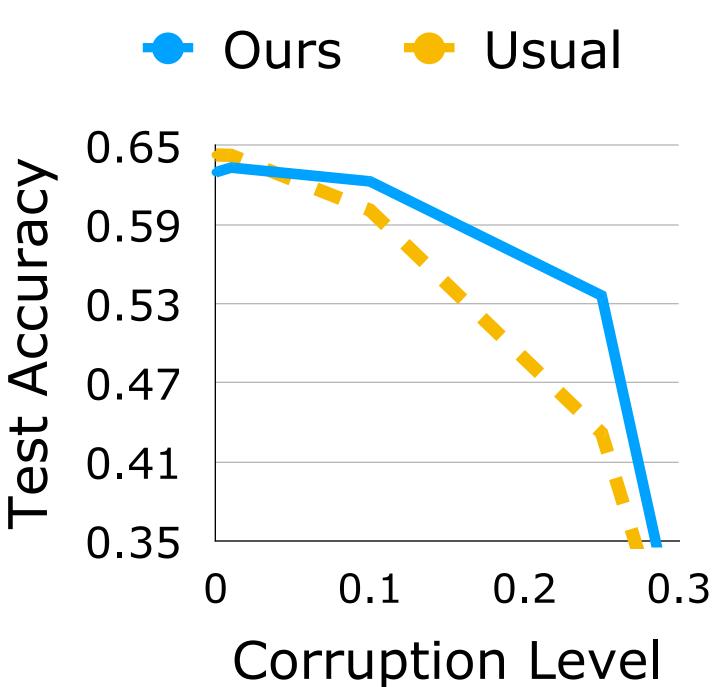
Federated learning is *not robust* to poisoned updates





Paper:

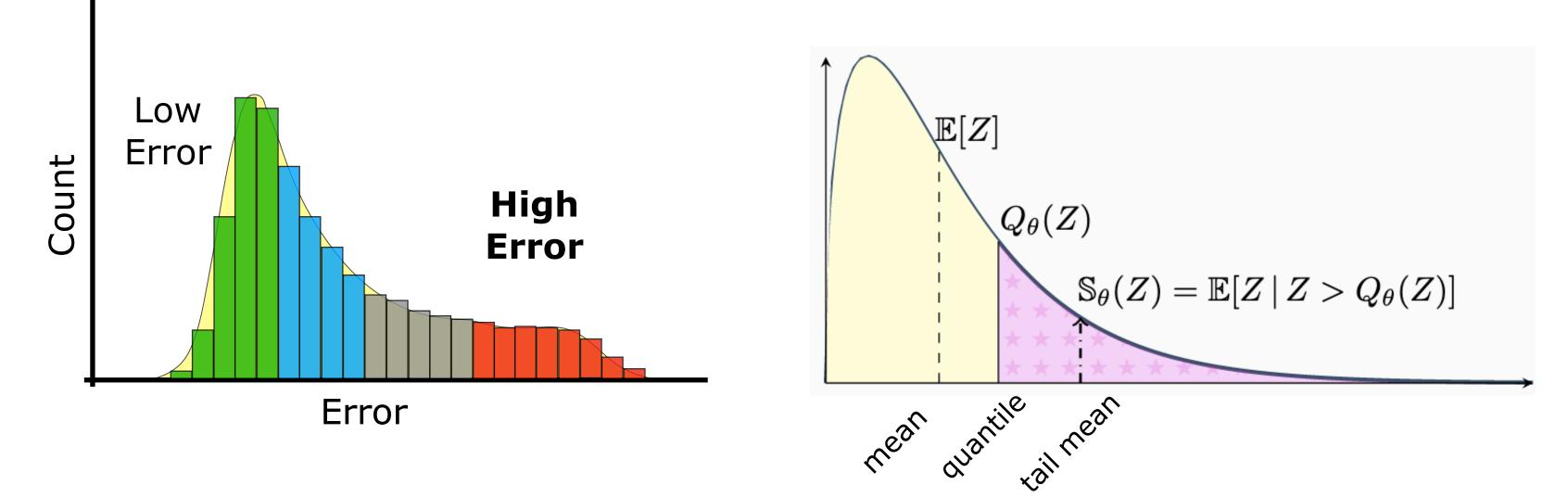
Our approach gives greater robustness

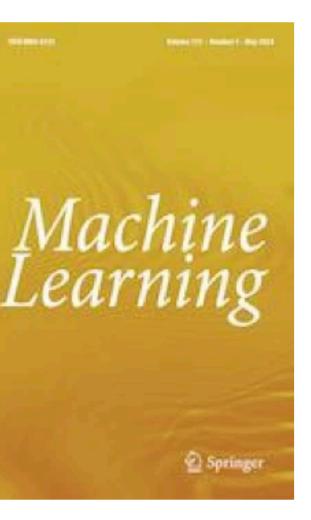


Heterogeneity, fairness, equity with differential privacy in federated learning

Distribution shift \implies large tail errors

Minimize the tail error directly



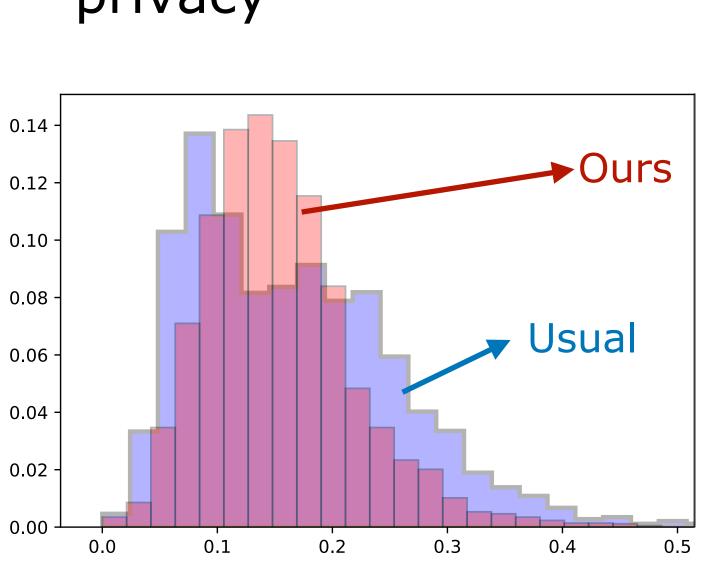


Paper:

Volume 113, Issue 5

May 2024

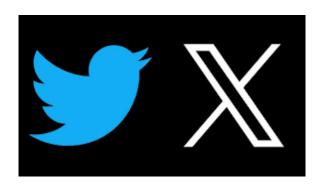
We reduce tail error + support differential privacy



Misclassification Error

Software

Code



@KrishnaPillutla

https://github.com/krishnap25/tRFA

