Federated Learning with Partial Model Personalization

October 19th, 2022 @ FLOW Seminar

Krishna Pillutla

University of Washington → Google Research

Joint work with

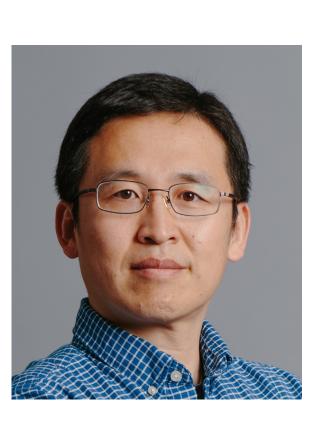
Kshitiz Malik

Abdelrahman Mohamed

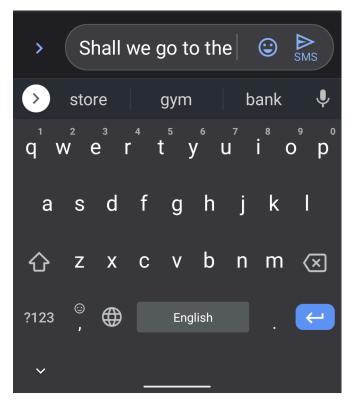
Mike Rabbat

Maziar Sanjabi

Lin Xiao



ICML 2022



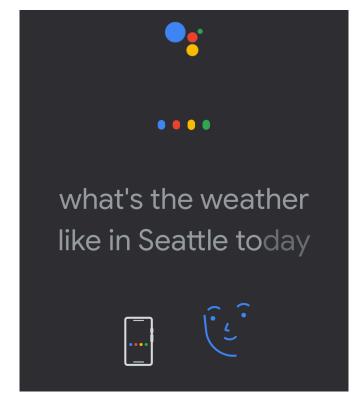
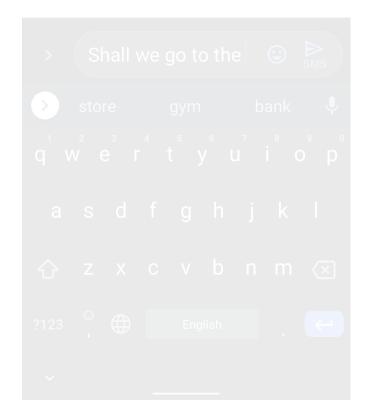


Image Credit: Robotics Business Review

Rieke et al. NPJ Digit. Med. (2020) Image Credit: Wellcome



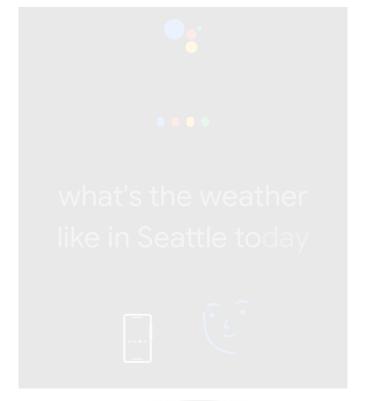
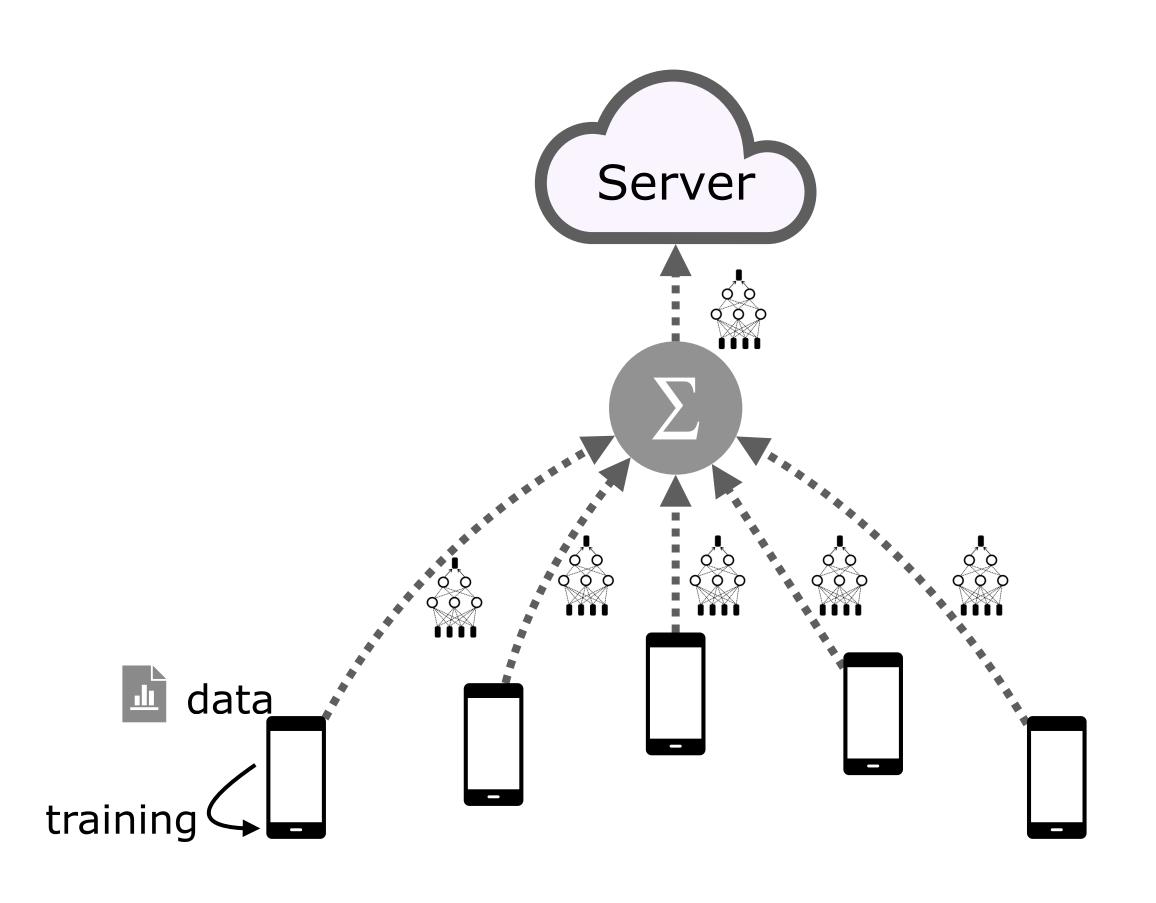


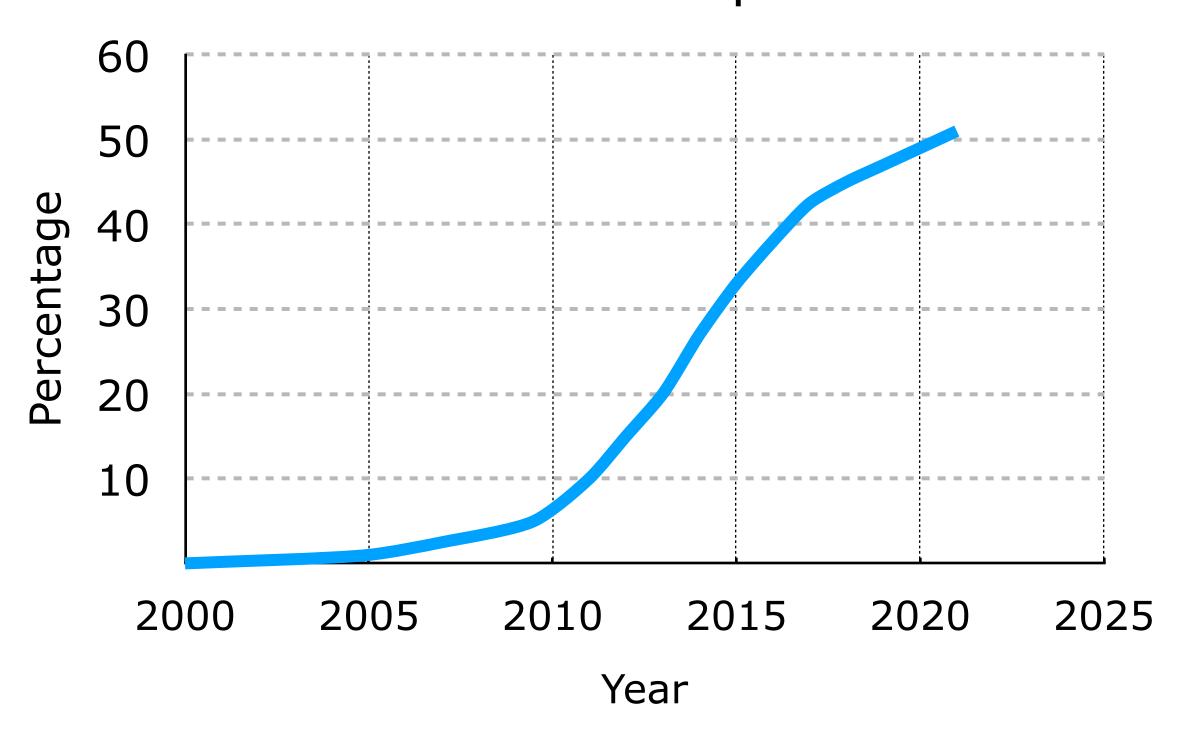
Image Credit: Robotics Business Review

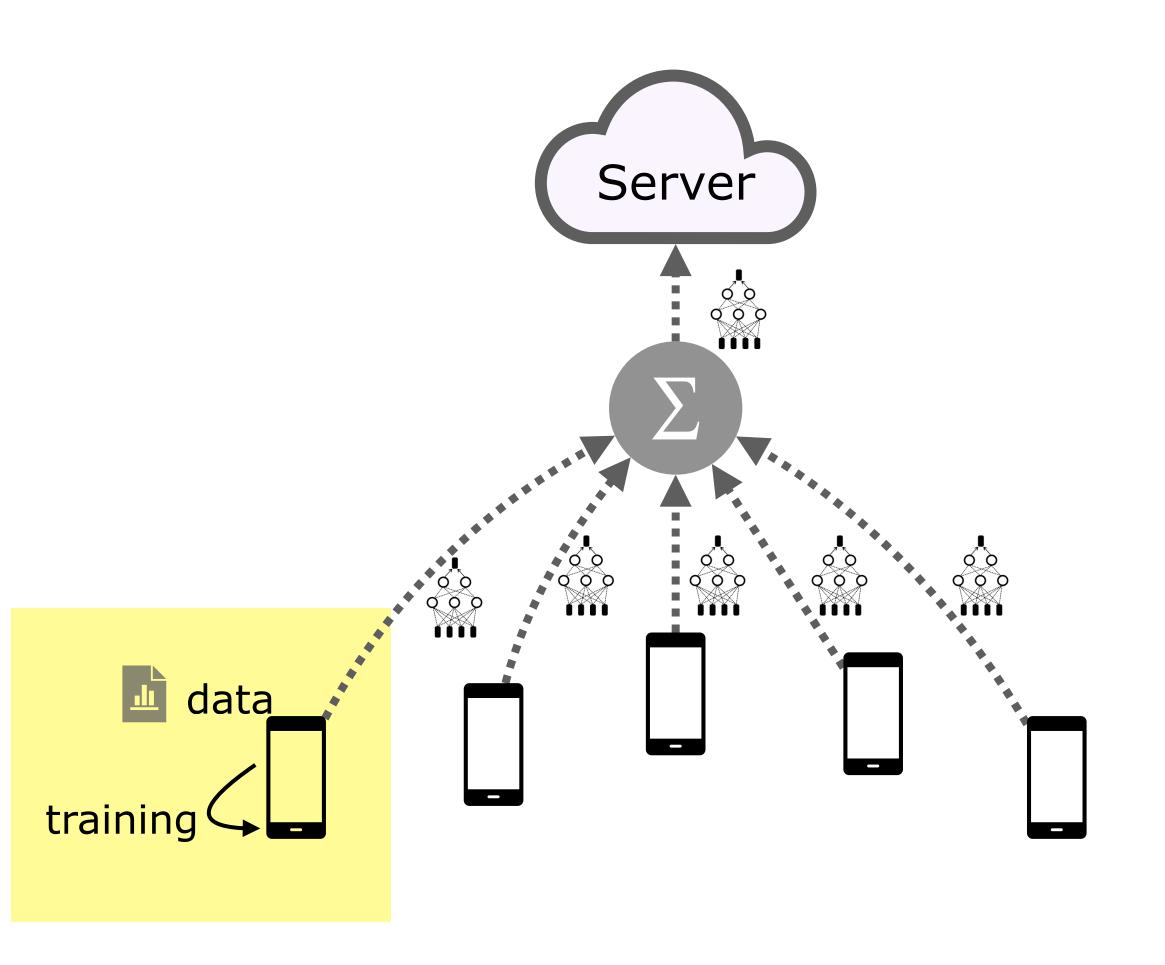
Data is decentralized and private

Rieke et al. NPJ Digit. Med. (2020)

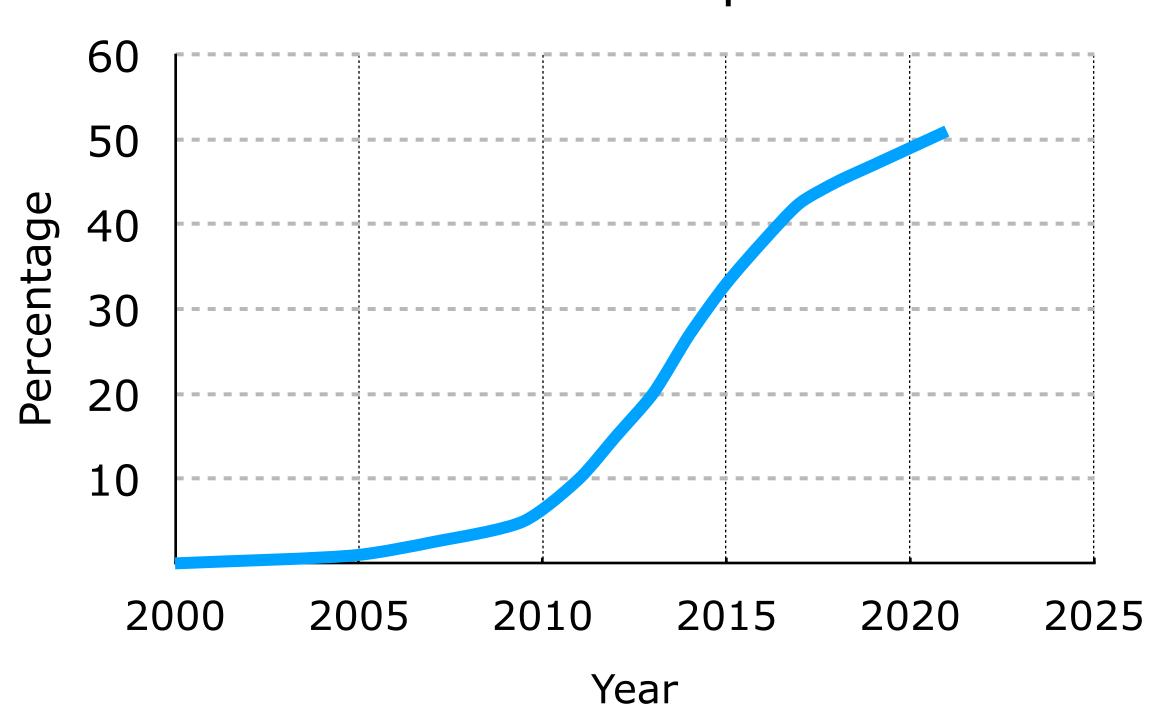


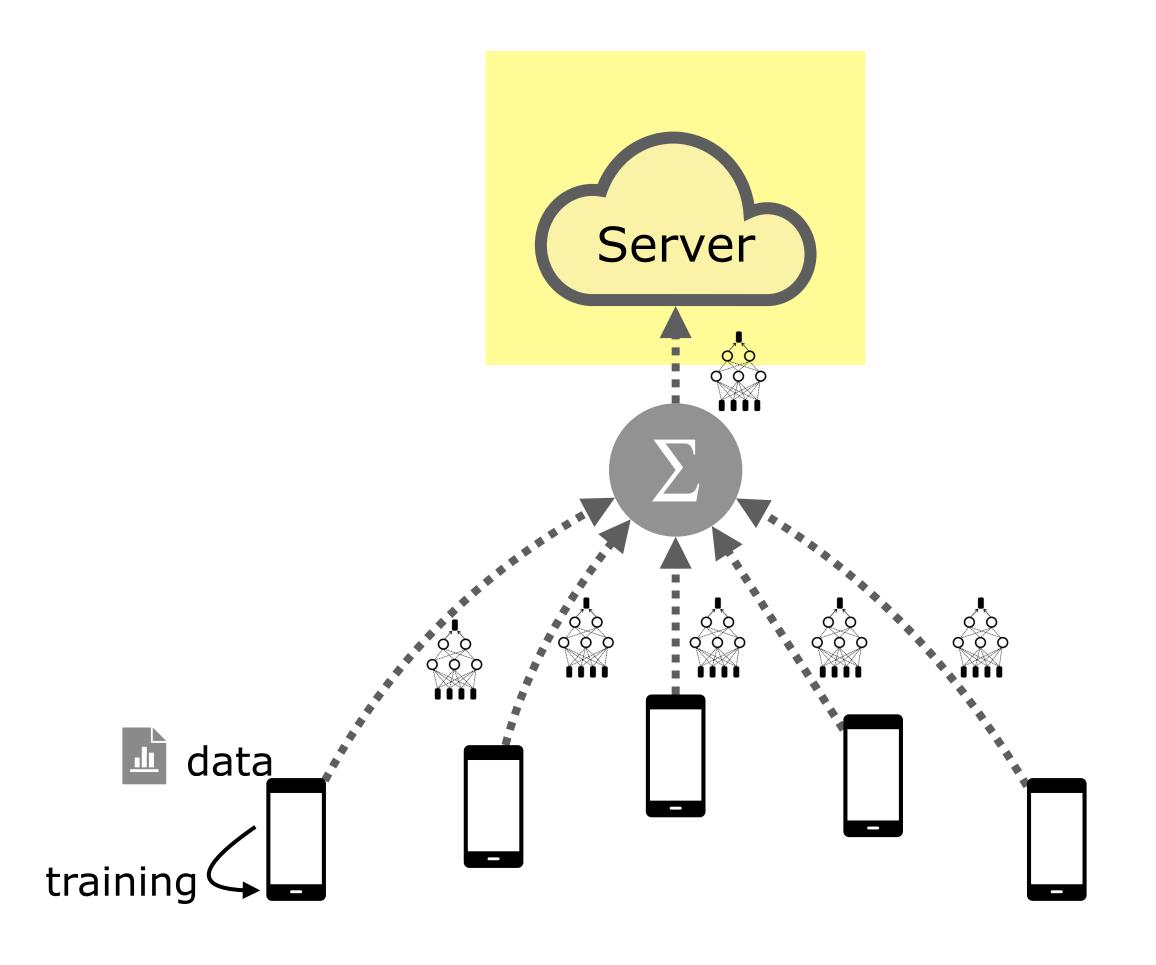
Percentage of world population with a smartphone



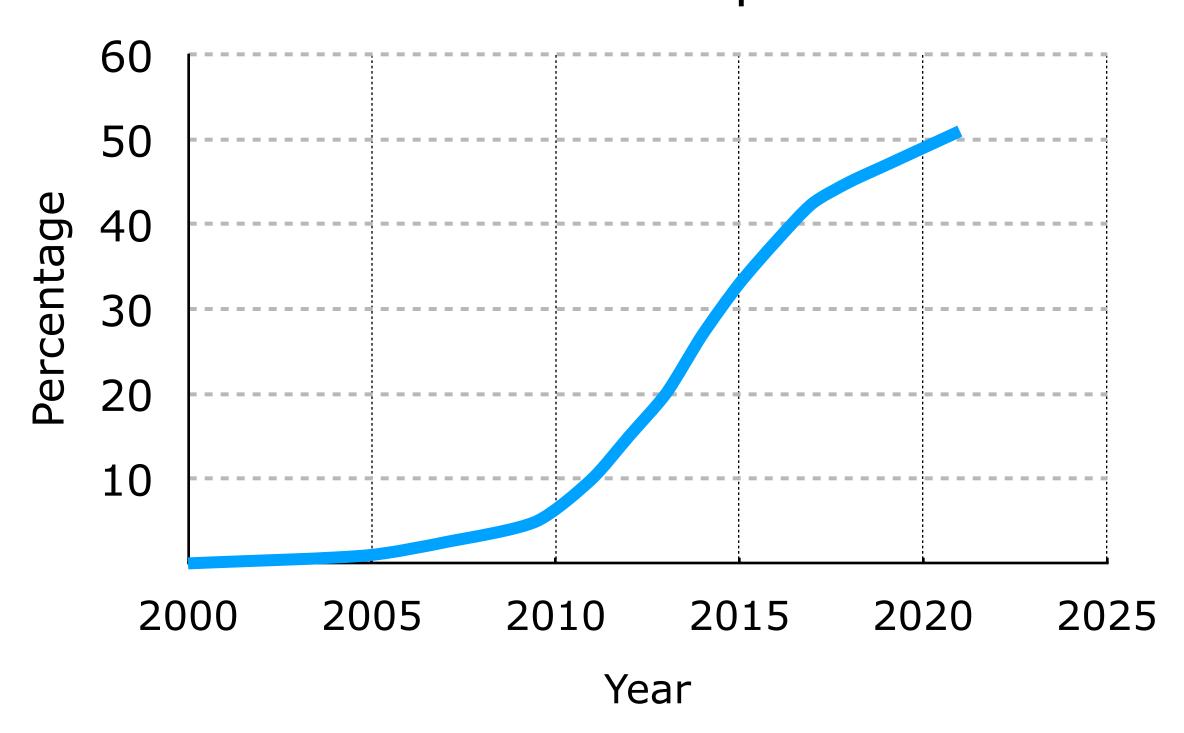


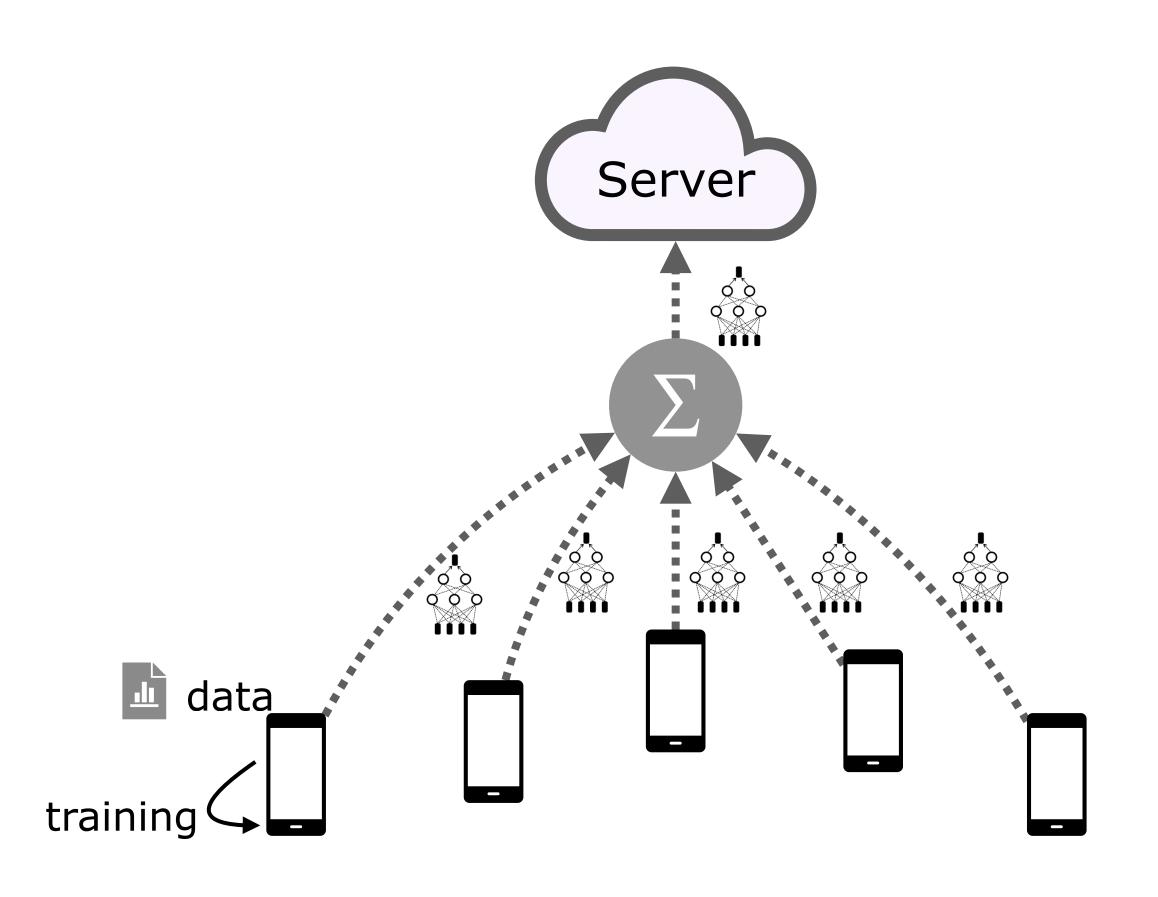
Percentage of world population with a smartphone



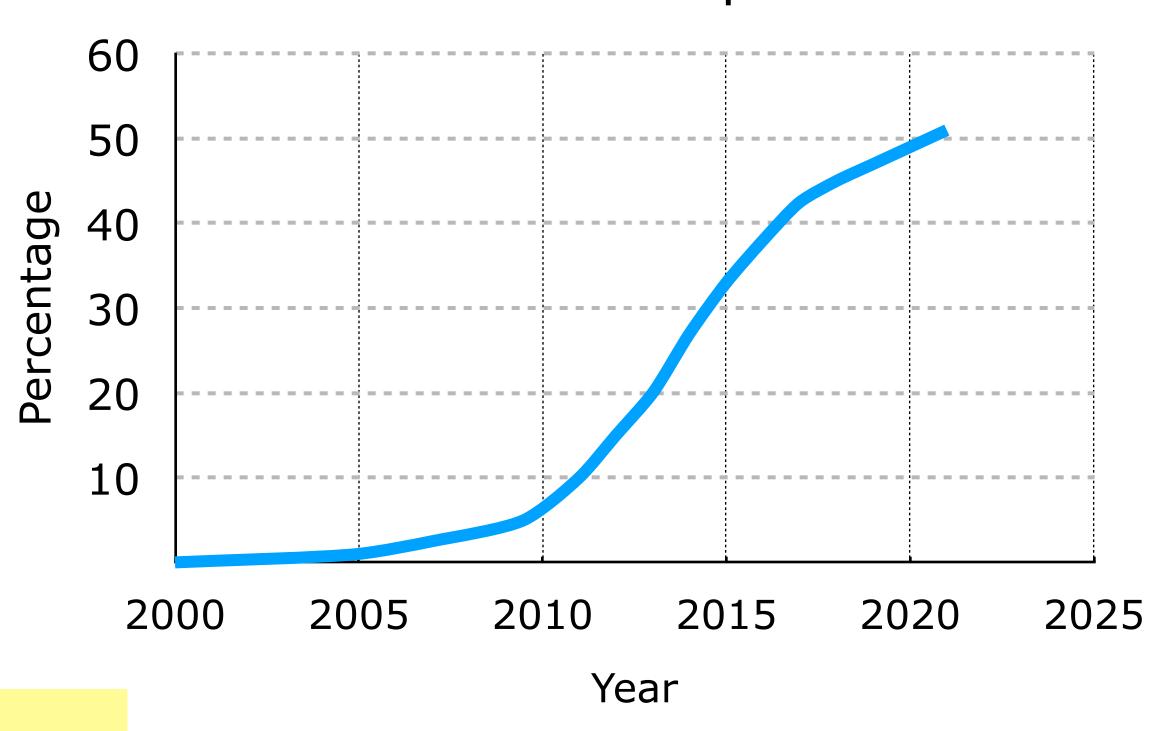


Percentage of world population with a smartphone





Percentage of world population with a smartphone



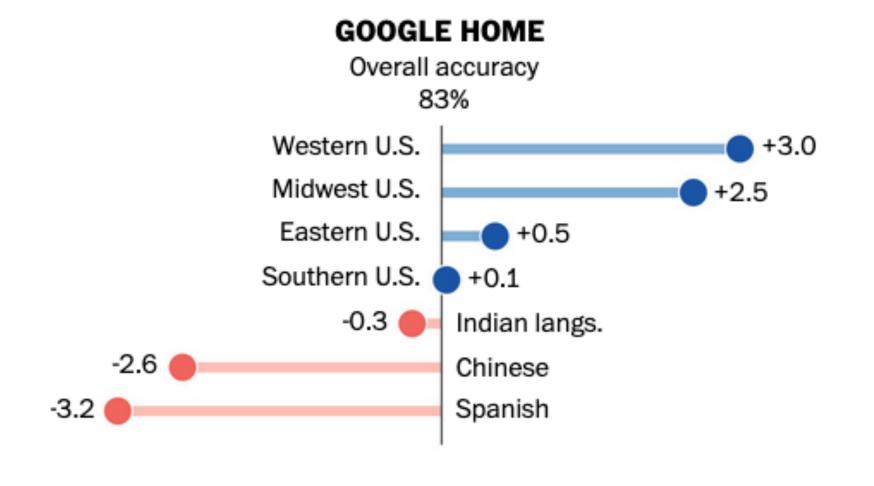
Communication cost > computation cost!

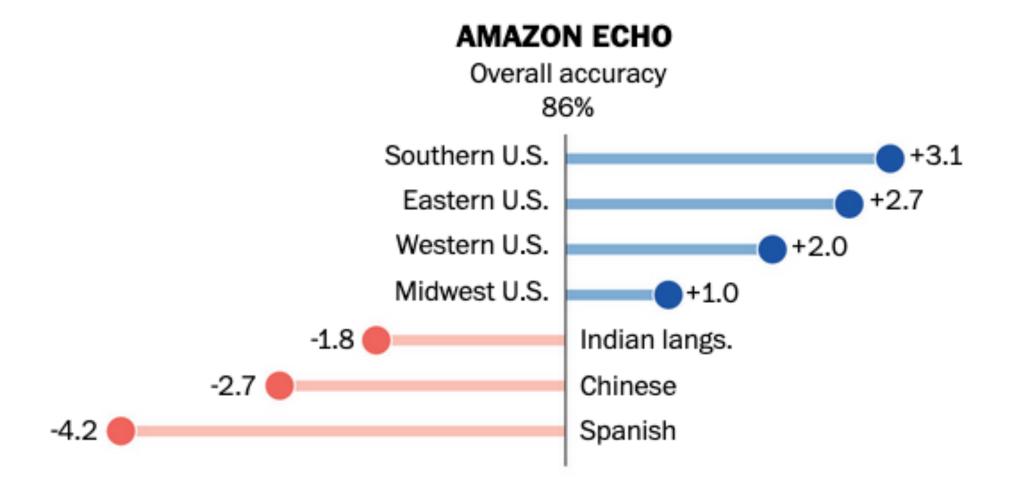
Challenge

models are deployed on clients with heterogeneous data

THE ACCENT GAP

We tested Amazon's Alexa and Google's Home to see how people with accents are getting left behind in the smart-speaker revolution.





Challenge

models are deployed on clients with heterogeneous data

Personalization: Adapt (a part of) the model to each client

Challenge

models are deployed on clients with heterogeneous data

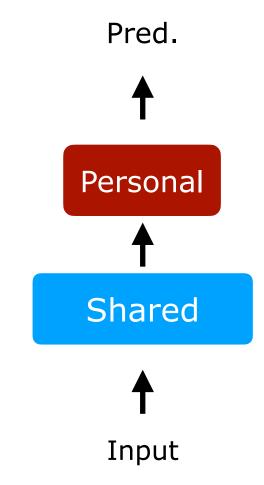
Partial Personalization: Adapt a part of the model to each client

Federated Learning with Personalization Layers

Manoj Ghuhan Arivazhagan Adobe Research

Vinay Aggarwal
Indian Institute of Technology, Roorkee, India

Aaditya Kumar Singh Indian Institute of Technology, Kharagpur, India Sunav Choudhary Adobe Research Modeling:
Personalize the
output layer



2019

Optimization: Train personal and shared parameters **simultaneously**

Think Locally, Act Globally: Federated Learning with Local and Global Representations

Paul Pu Liang^{1*}, Terrance Liu^{1*}, Liu Ziyin², Nicholas B. Allen³, Randy P. Auerbach⁴, David Brent⁵, Ruslan Salakhutdinov¹, Louis-Philippe Morency¹

¹School of Computer Science, Carnegie Mellon University

²Department of Physics, University of Tokyo

³Department of Psychology, University of Oregon

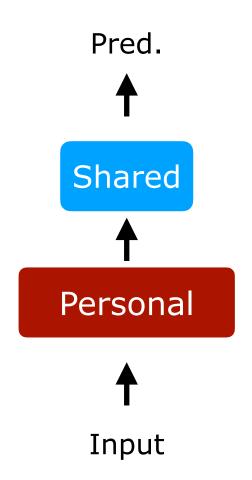
⁴Department of Psychiatry, Columbia University

⁵Department of Psychiatry, University of Pittsburgh

{pliang,terrancl,morency}@cs.cmu.edu

July 15, 2020

Modeling: Personalize the input layer



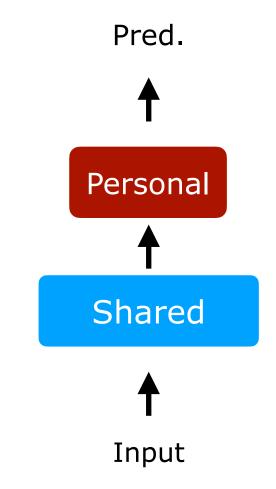
Optimization: Train personal and shared parameters **simultaneously**

Exploiting Shared Representations for Personalized Federated Learning

Liam Collins 1 Hamed Hassani 2 Aryan Mokhtari 1 Sanjay Shakkottai 1

ICML 2021

Modeling: Personalize the output layer



Optimization: Train personal and shared parameters **alternatingly**

Federated Reconstruction: Partially Local Federated Learning

Karan Singhal

Google Research karansinghal@google.com Hakim Sidahmed

Google Research hsidahmed@google.com Zachary Garrett

Google Research zachgarrett@google.com

Shanshan Wu

Google Research shanshanw@google.com Keith Rush

Google Research krush@google.com Sushant Prakash

Google Research sush@google.com

NeurIPS 2021

Optimization: Train personal and shared parameters **alternatingly**

So, how do we personalize a federated model?

Design decisions:

- Modeling
- Optimization

Our contributions

1. Theory: Analysis of both these optimization algorithms

Code:

2. Extensive experiments:

text, vision, and speech settings

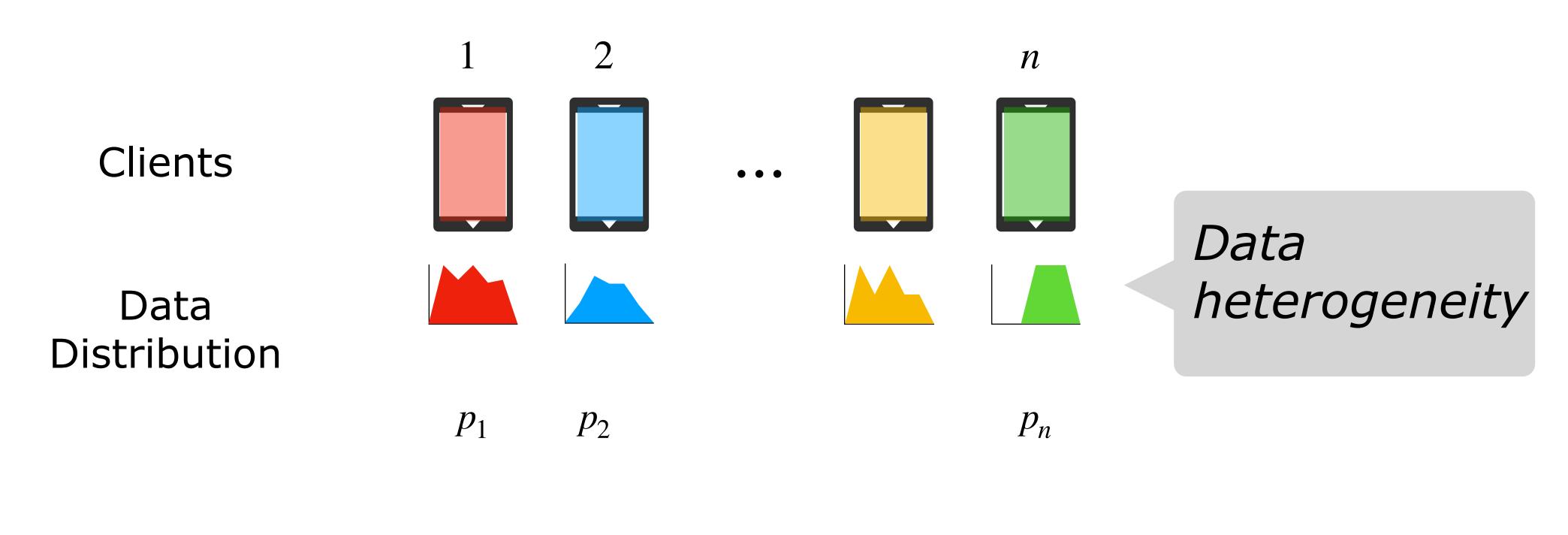
Outline

- 1. Setup and review
- 2. Convergence Analysis
- 3. Experiments

Outline

- 1. Setup and review
- 2. Convergence Analysis
- 3. Experiments

(Non-personalized) federated learning



Learning Objective

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n F_i(w)$$

where

$$F_i(w) = \mathbb{E}_{z \sim p_i} [f(w; z)]$$

loss on client i

Personalized federated learning

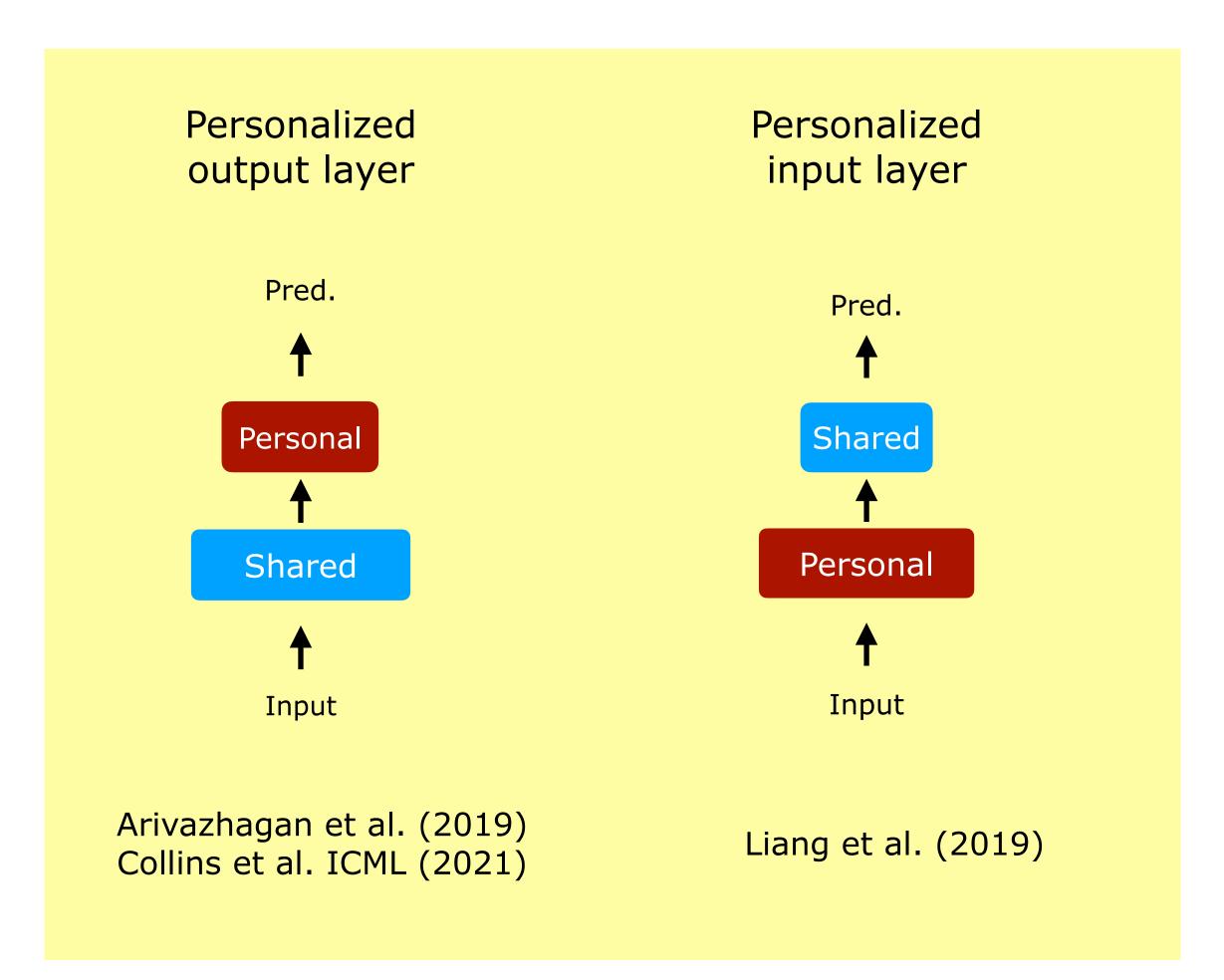
Model on client $i = (u, v_i)$

Objective:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n F_i(u, v_i)$$

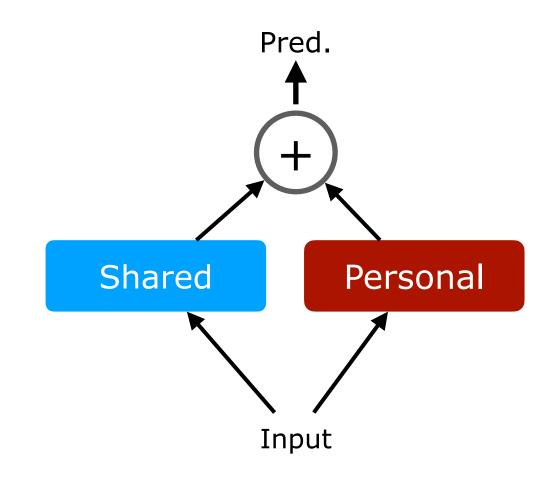
u: shared parameters

 v_i : personal parameters

Personalization architectures



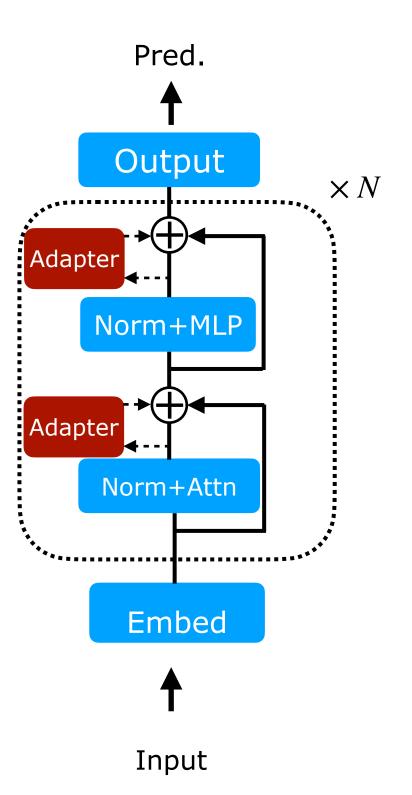
Combined predictions



$$F_i(u, v_i) = \mathbb{E}_{(X,Y) \sim p_i} \left(\phi_g(X; u) + \phi_l(X; v_i) - Y \right)^2$$

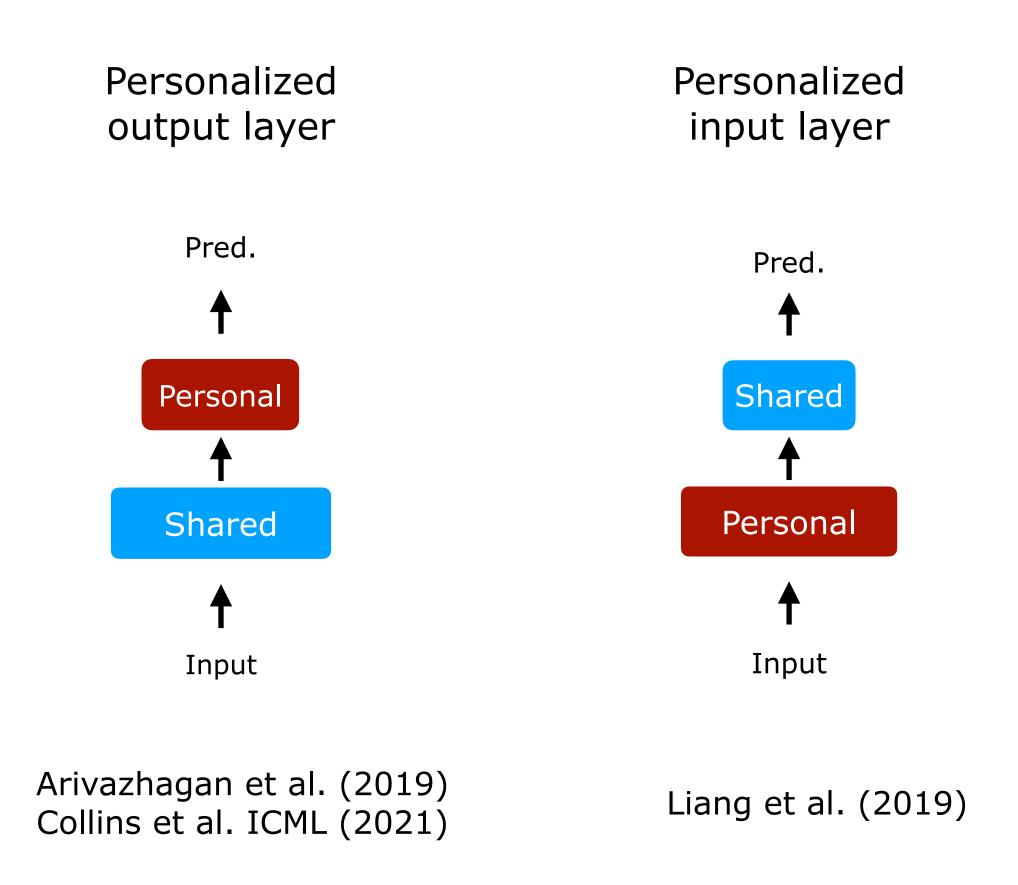
Agarwal et al. (2020)

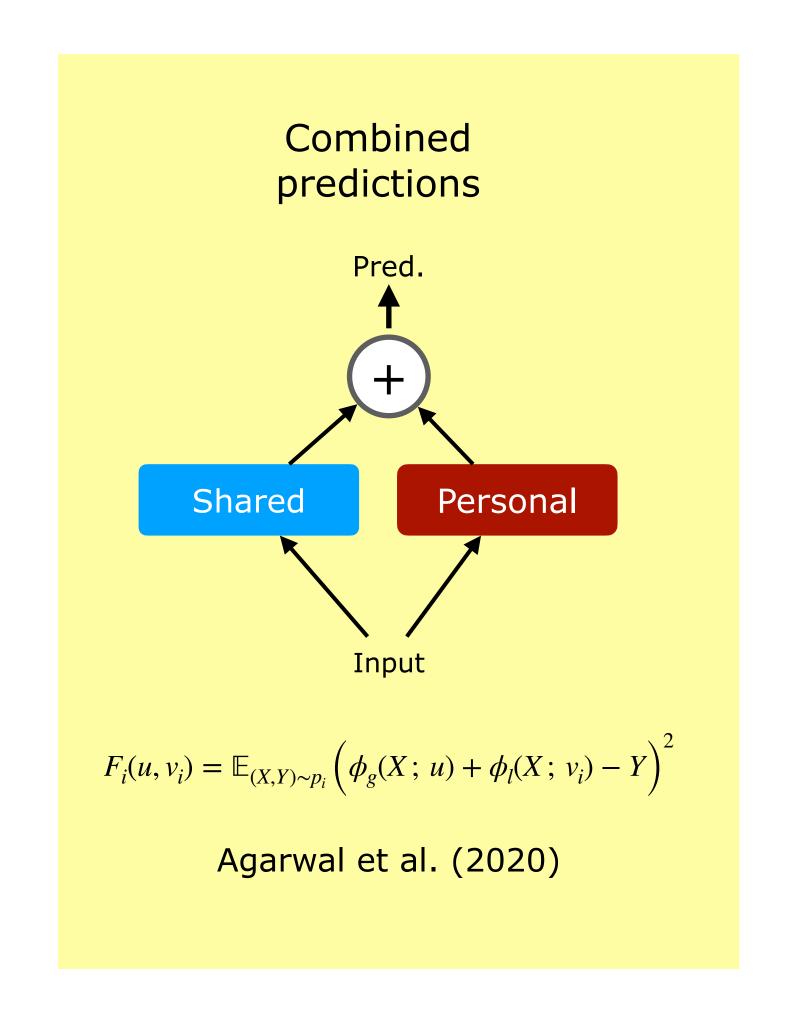
Personalized adapters

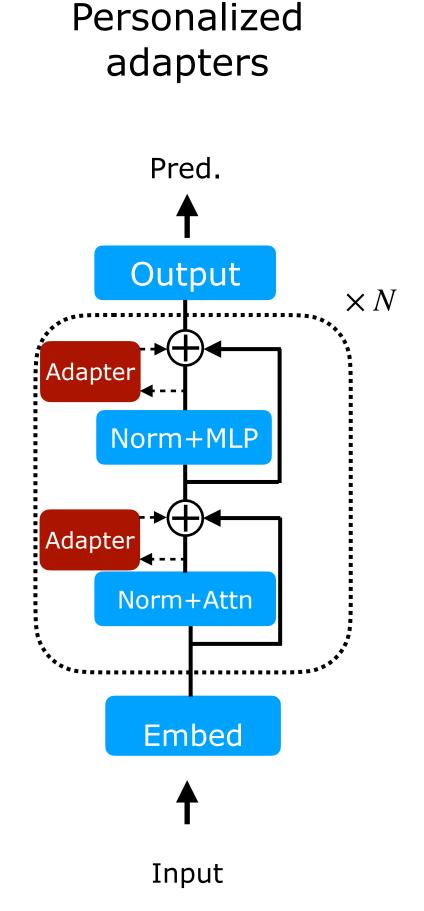


Multi-task learning: Caruana. Mach. Learn (1997), Baxter. JAIR (2000), Evgeniou & Pontil. KDD (2004), Collobert & Weston. ICML (2005), Argyriou et al. Mach. Learn (2008), ...

Personalization architectures

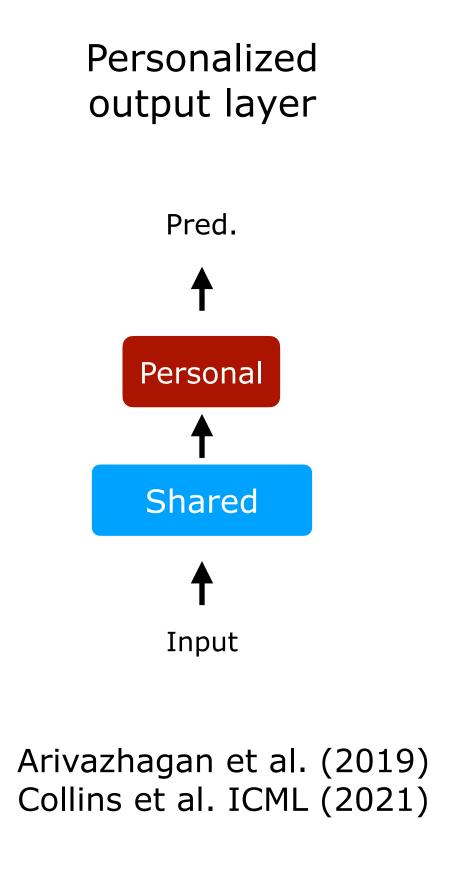


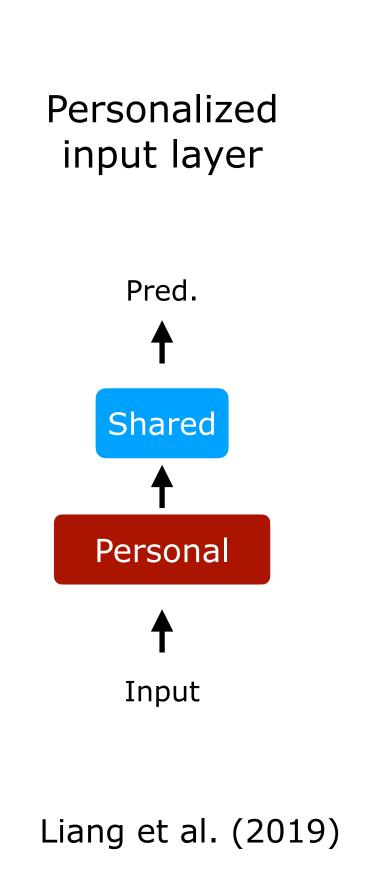


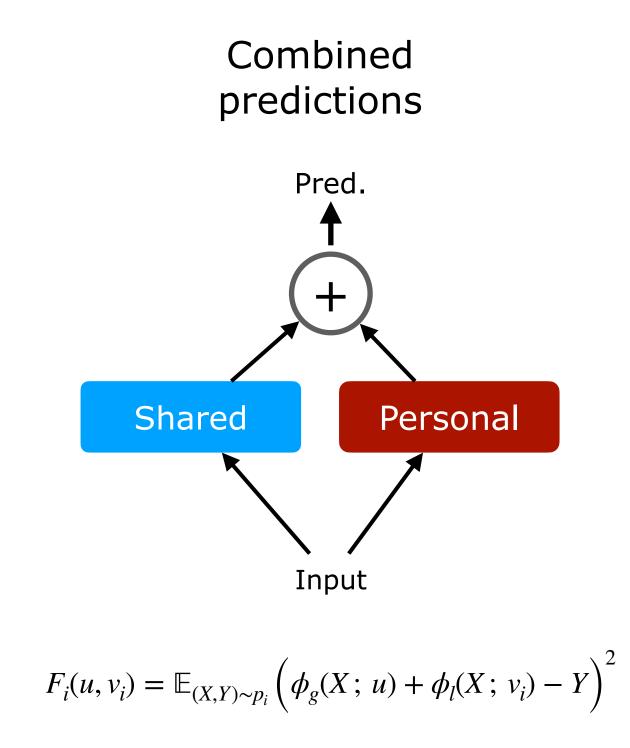


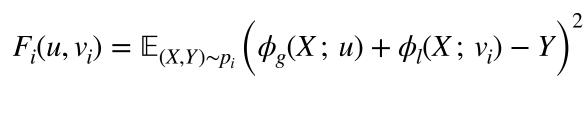
Multi-task learning: Caruana. Mach. Learn (1997), Baxter. JAIR (2000), Evgeniou & Pontil. KDD (2004), Collobert & Weston. ICML (2005), Argyriou et al. Mach. Learn (2008), ...

Personalization architectures

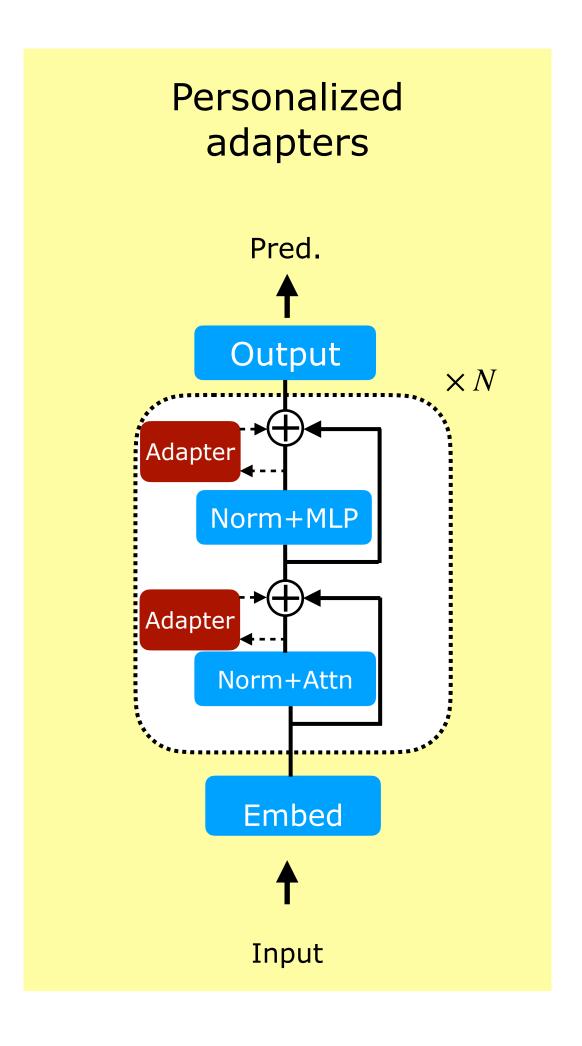








Agarwal et al. (2020)



Multi-task learning: Caruana. Mach. Learn (1997), Baxter. JAIR (2000), Evgeniou & Pontil. KDD (2004), Collobert & Weston. ICML (2005), Argyriou et al. Mach. Learn (2008), ...

Other forms of personalization

pFedMe:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n \left(f_i(v_i) + \frac{\lambda}{2} ||v_i - u||^2 \right)$$

[Dinh et. al (NeurIPS 2020)]

Ditto, MAML, APFL, [Hanzely et al. (2021)]

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} F_i(w)$$

FedAvg [MacMahan et al. AISTATS (2017)]

Parallel Gradient Distribution [Mangasarian. SICON (1995)] Iterative Parameter Mixing [McDonald et al. ACL (2009)] BMUF [Chen & Huo. ICASSP (2016)] Local SGD [Stich. ICLR (2019)]

Personalized (FedAlt/FedSim)

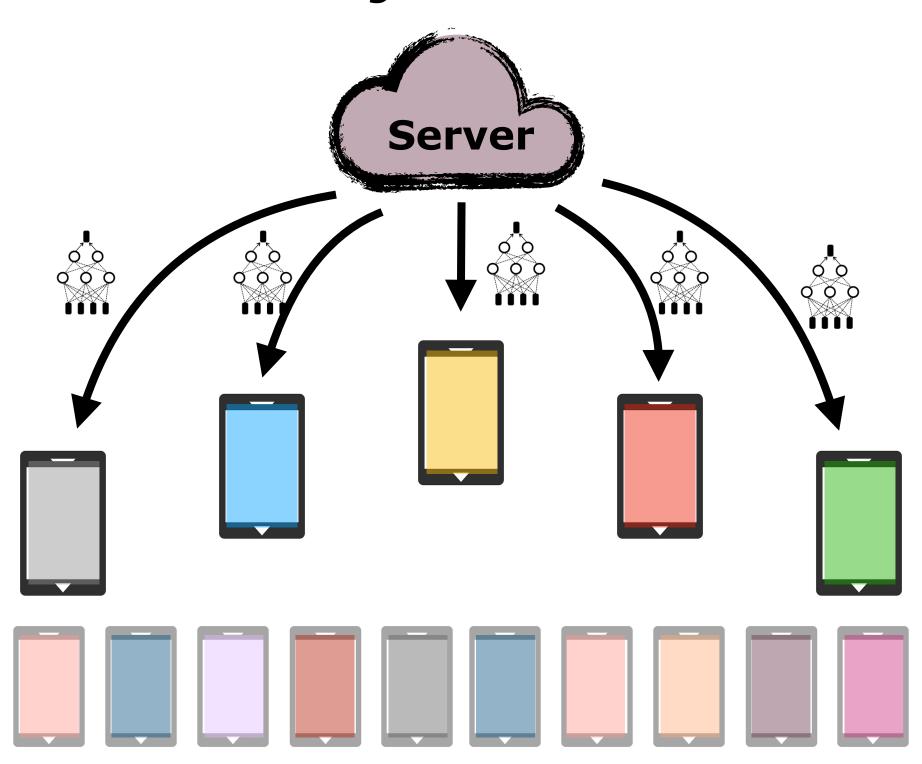
$$\min_{u,v_1,\dots,v_n} \frac{1}{n} \sum_{i=1}^n F_i(u,v_i)$$

Personalized (FedAlt/FedSim)

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} F_i(w)$$

$$\min_{u,v_1,\dots,v_n} \frac{1}{n} \sum_{i=1}^n F_i(u,v_i)$$

Step 1 of 3: Server samples m clients and broadcasts global model

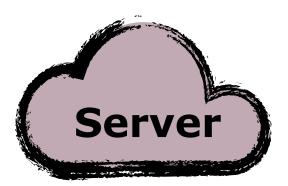


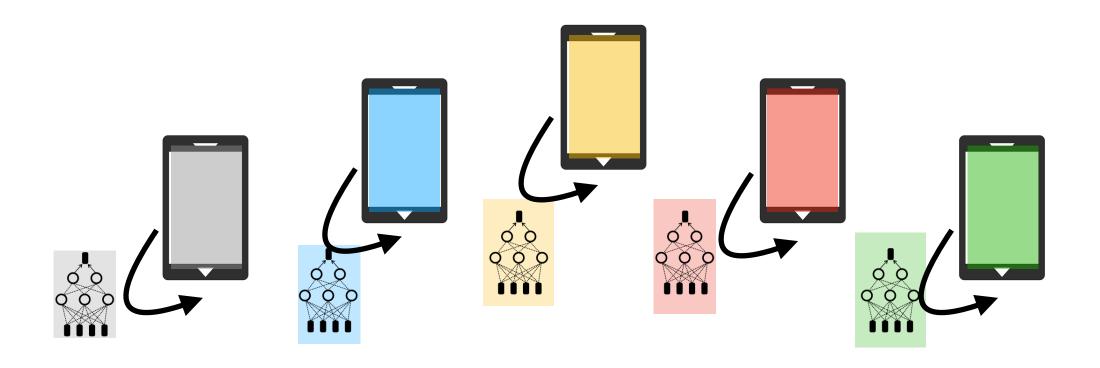
$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} F_i(w)$$

Personalized (FedAlt/FedSim)

$$\min_{u,v_1,\dots,v_n} \frac{1}{n} \sum_{i=1}^n F_i(u,v_i)$$

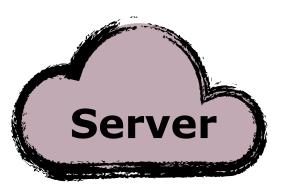
Step 2 of 3: Clients perform τ local SGD steps on their local data

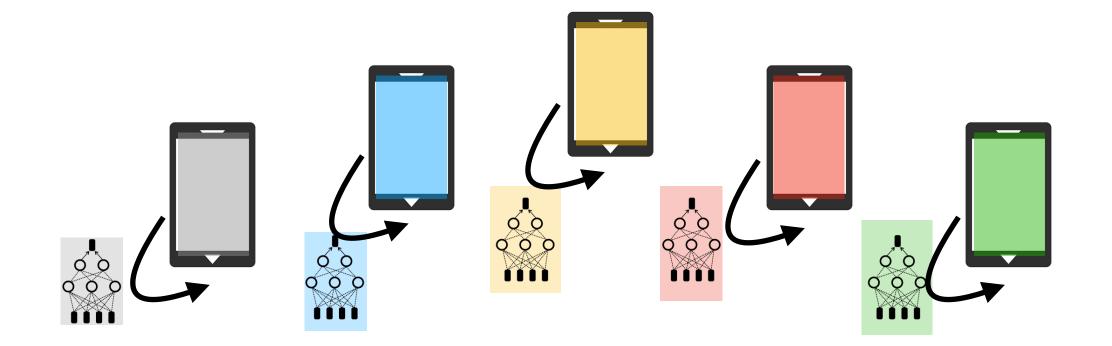




$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} F_i(w)$$

Step 2 of 3: Clients perform τ local SGD steps on their local data





Personalized (FedAlt/FedSim)

$$\min_{u,v_1,\dots,v_n} \frac{1}{n} \sum_{i=1}^n F_i(u,v_i)$$

FedAlt (alternating update)

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$\underline{u_i^+} = u - \gamma \nabla_u F_i(u, \underline{v_i^+})$$

FedSim (simultaneous update)

$$\mathbf{v}_i^+ = \mathbf{v}_i - \gamma \nabla_{\mathbf{v}} F_i(\mathbf{u}, \mathbf{v}_i)$$

$$\underline{u_i^+} = u - \gamma \nabla_u F_i(u, v_i)$$

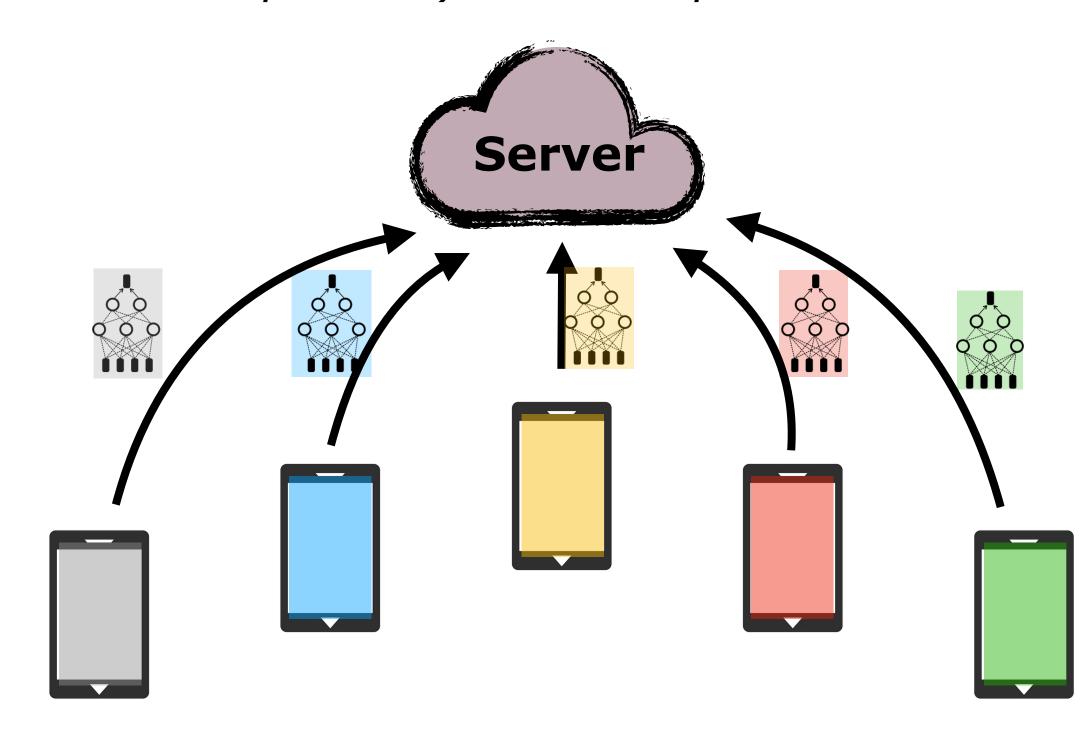
$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_i(w)$$

Personalized (FedAlt/FedSim)

$$\min_{u,v_1,\dots,v_n} \frac{1}{n} \sum_{i=1}^n F_i(u,v_i)$$

Step 3 of 3: Aggregate (shared components) of client updates

$$w^+ = \frac{1}{m} \sum_i w_i^+$$



$$u^+ = \frac{1}{m} \sum_i u_i^+$$

 v_i stays on client i

Outline

1. Setup and review

2. Convergence Analysis

3. Experiments

Assumptions

Model on client $i = (u, v_i)$

Objective:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n F_i(u, v_i)$$

u: shared parameters

 v_i : personal parameters

1. Smoothness

$$\nabla_u F_i$$
 is $\begin{cases} L_u$ -Lipschitz w.r.t. $u \\ L_{uv}$ -Lipschitz w.r.t. v_i

$$abla_{v}F_{i}$$
 is $abla_{v}^{L_{v}}-\text{Lipschitz w.r.t. }v_{i}$
 $abla_{uv}-\text{Lipschitz w.r.t. }u$

$$\chi^2 := \frac{L_{uv}^2}{L_u L_v}$$
 quantifies cross-dependence

Assumptions

Model on client $i = (u, v_i)$

Objective:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n F_i(u, v_i)$$

u: shared parameters

 v_i : personal parameters

2. Bounded variance

• stochastic gradients of $\nabla_u F_i$ and $\nabla_v F_i$ have bounded variance σ_u^2 and σ_v^2 respectively

bounded gradient diversity:

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla_{u} F_{i}(u, v) - \nabla_{u} F(u, v_{1:n})\|^{2} \le \delta^{2}$$

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

FedAlt
$$\frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \| \nabla_u F(u_t, v_{1:n,t}) \|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \| \nabla_v F_i(u_t, v_{i,t}) \|^2 \right) \le \sqrt{\frac{\sigma_1^2}{T}} + \left(\frac{\tilde{\sigma}_1^2}{T} \right)^{2/3} + O\left(\frac{1}{T} \right)$$

FedSim $\frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \| \nabla_u F(u_t, v_{1:n,t}) \|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \| \nabla_v F_i(u_t, v_{i,t}) \|^2 \right) \le \sqrt{\frac{\sigma_2^2}{T}} + \left(\frac{\tilde{\sigma}_2^2}{T} \right)^{2/3} + O\left(\frac{1}{T} \right)^{2/3}$

 $\sigma_1^2, \sigma_2^2, \tilde{\sigma}_1^2, \tilde{\sigma}_2^2$ are linear combinations of $\sigma_u^2, \sigma_v^2, \delta^2$

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

$$\begin{aligned} & \text{FedAlt} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \, \left\| \, \nabla_u F(u_t, v_{1:n,t}) \, \right\|^{\, 2} + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \, \left\| \, \nabla_v F_i(u_t, v_{i,t}) \, \right\|^{\, 2} \right) \leq \, \sqrt{\frac{\sigma_1^2}{T}} \, + \, \left(\frac{\tilde{\sigma}_1^2}{T} \right)^{2/3} + O\left(\frac{1}{T} \right) \end{aligned}$$

 $\sigma_1^2, \sigma_2^2, \tilde{\sigma}_1^2, \tilde{\sigma}_2^2$ are linear combinations of $\sigma_u^2, \sigma_v^2, \delta^2$

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

$$\begin{aligned} & \text{FedAlt} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_{u}} \mathbb{E} \, \left\| \, \nabla_{u} F(u_{t}, v_{1:n,t}) \, \right\|^{2} + \frac{1}{nL_{v}} \sum_{i=1}^{n} \mathbb{E} \, \left\| \, \nabla_{v} F_{i}(u_{t}, v_{i,t}) \, \right\|^{2} \right) \leq \sqrt{\frac{\sigma_{1}^{2}}{T}} \, + \, \left(\frac{\tilde{\sigma}_{1}^{2}}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

$$\begin{aligned} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_{u}} \mathbb{E} \, \left\| \, \nabla_{u} F(u_{t}, v_{1:n,t}) \, \right\|^{2} + \frac{1}{nL_{v}} \sum_{i=1}^{n} \mathbb{E} \, \left\| \, \nabla_{v} F_{i}(u_{t}, v_{i,t}) \, \right\|^{2} \right) \leq \sqrt{\frac{\sigma_{2}^{2}}{T}} \, + \, \left(\frac{\tilde{\sigma}_{2}^{2}}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

 $\sigma_1^2, \sigma_2^2, \tilde{\sigma}_1^2, \tilde{\sigma}_2^2$ are linear combinations of $\sigma_u^2, \sigma_v^2, \delta^2$

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

$$\begin{aligned} & \text{FedAlt} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \, \left\| \, \nabla_u F(u_t, v_{1:n,t}) \, \right\|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \, \left\| \, \nabla_v F_i(u_t, v_{i,t}) \, \right\|^2 \right) \leq \sqrt{\frac{\sigma_1^2}{T}} \, + \, \left(\frac{\tilde{\sigma}_1^2}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

$$\begin{aligned} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \, \left\| \, \nabla_u F(u_t, v_{1:n,t}) \, \right\|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \, \left\| \, \nabla_v F_i(u_t, v_{i,t}) \, \right\|^2 \right) \leq \sqrt{\frac{\sigma_2^2}{T}} \, + \, \left(\frac{\tilde{\sigma}_2^2}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

 $\sigma_1^2, \sigma_2^2, \tilde{\sigma}_1^2, \tilde{\sigma}_2^2$ are linear combinations of $\sigma_u^2, \sigma_v^2, \delta^2$

Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

$$\begin{aligned} & \text{FedAlt} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \, \left\| \, \nabla_u F(u_t, v_{1:n,t}) \, \right\|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \, \left\| \, \nabla_v F_i(u_t, v_{i,t}) \, \right\|^2 \right) \leq \sqrt{\frac{\sigma_1^2}{T}} \, + \, \left(\frac{\tilde{\sigma}_1^2}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

$$\begin{aligned} & \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{1}{L_u} \mathbb{E} \, \left\| \, \nabla_u F(u_t, v_{1:n,t}) \, \right\|^2 + \frac{1}{nL_v} \sum_{i=1}^n \mathbb{E} \, \left\| \, \nabla_v F_i(u_t, v_{i,t}) \, \right\|^2 \right) \leq \sqrt{\frac{\sigma_2^2}{T}} \, + \, \left(\frac{\tilde{\sigma}_2^2}{T} \right)^{2/3} + O\left(\frac{1}{T}\right) \end{aligned}$$

 $\sigma_1^2, \sigma_2^2, \tilde{\sigma}_1^2, \tilde{\sigma}_2^2$ are linear combinations of $\sigma_u^2, \sigma_v^2, \delta^2$

FedAlt is better than FedSim when

$$\frac{\sigma_v^2}{L_v} \left(1 - \frac{2m}{n} \right) < \frac{\sigma_u^2}{mL_u} + \frac{\delta^2}{mL_u} \left(1 - \frac{m}{n} \right)$$

True if $\delta^2 \gg \max\{\sigma_u^2,\sigma_v^2\}$ inter-client variance

m: number of clients per round n: total number of clients $\sigma_u^2, \sigma_v^2, \delta^2$: noise variances $\chi^2 = L_{uv}^2/L_uL_v$: cross-dependency

Better by a factor of $(1 + \chi^2)^{1/2}$

Technical difficulties

Assume $\sigma_u^2 = 0 = \sigma_v^2$ and single local gradient step per client

For **FedAlt**, apply smoothness for u-step (assuming v-step is complete) to get

$$F(u_{t+1}, v_{t+1}) - F(u_t, v_{t+1}) \leq \langle \nabla_u F(u_t, v_{t+1}), u_{t+1} - u_t \rangle + \frac{L_u}{2} ||u_{t+1} - u_t||^2$$

both depend on sampling of clients

first-order term is biased!

For **FedSim**, no such difficulties

$$F(u_{t+1}, v_{t+1}) - F(u_t, v_t) \leq \langle \nabla_u F(u_t, v_t), u_{t+1} - u_t \rangle + \frac{L_u}{2} ||u_{t+1} - u_t||^2$$

u-update starts from (u_t, v_t)

only dependence on sampling of clients

first-order term is unbiased!

For **FedAlt**, apply smoothness for u-step (assuming v-step is complete) to get

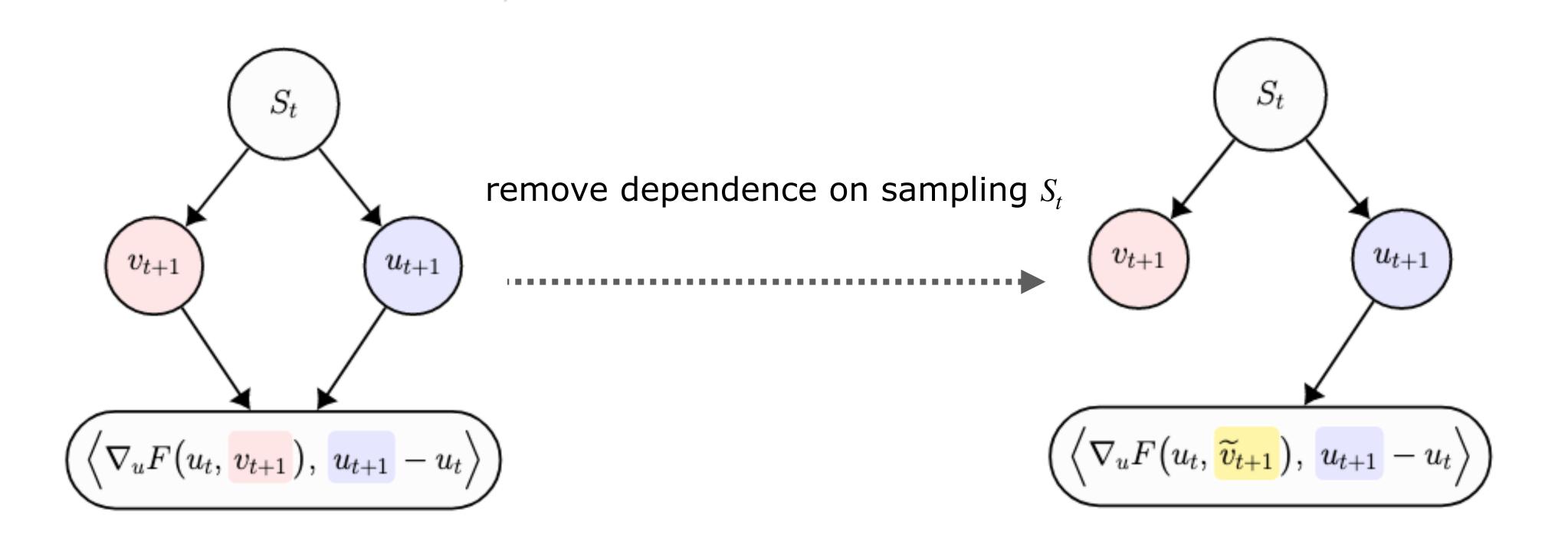
$$F(u_{t+1}, v_{t+1}) - F(u_t, v_{t+1}) \leq \langle \nabla_u F(u_t, v_{t+1}), u_{t+1} - u_t \rangle + \frac{L_u}{2} ||u_{t+1} - u_t||^2$$

both depend on sampling of clients

first-order term is biased!

Virtual full participation

Let \tilde{v}_t denote the (virtual) personal parameters if all clients had run the v-step, not just the selected clients



For **FedAlt**, apply smoothness for u-step (assuming v-step is complete) to get

$$F(u_{t+1}, v_{t+1}) - F(u_t, v_{t+1}) \leq \langle \nabla_u F(u_t, \tilde{v}_{t+1}), u_{t+1} - u_t \rangle + \frac{L_u}{2} ||u_{t+1} - u_t||^2 + \mathsf{Error}_t$$

independent of sampling of clients dependent

depends on sampling of clients

first-order term is unbiased again!

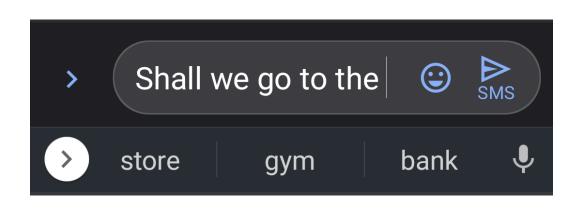
To complete the proof, suffices to bound

$$\mathbb{E}[\mathsf{Error}_t] \leq O(L_u \gamma_u^2 + \chi^2 L_v \gamma_v^2)$$

and can be made smaller by controlling the learning rates γ_u, γ_v

Outline

- 1. Setup and review
- 2. Convergence Analysis
- 3. Experiments



Next word prediction

Mobile keyboard

StackOverflow (~1K clients)

vocabulary size: 10K

Speech recognition

Mobile assistant

- LibriSpeech dataset (~1K clients)
- 6-layer transformer (15M param)
- CTC Loss (dynamic programming)

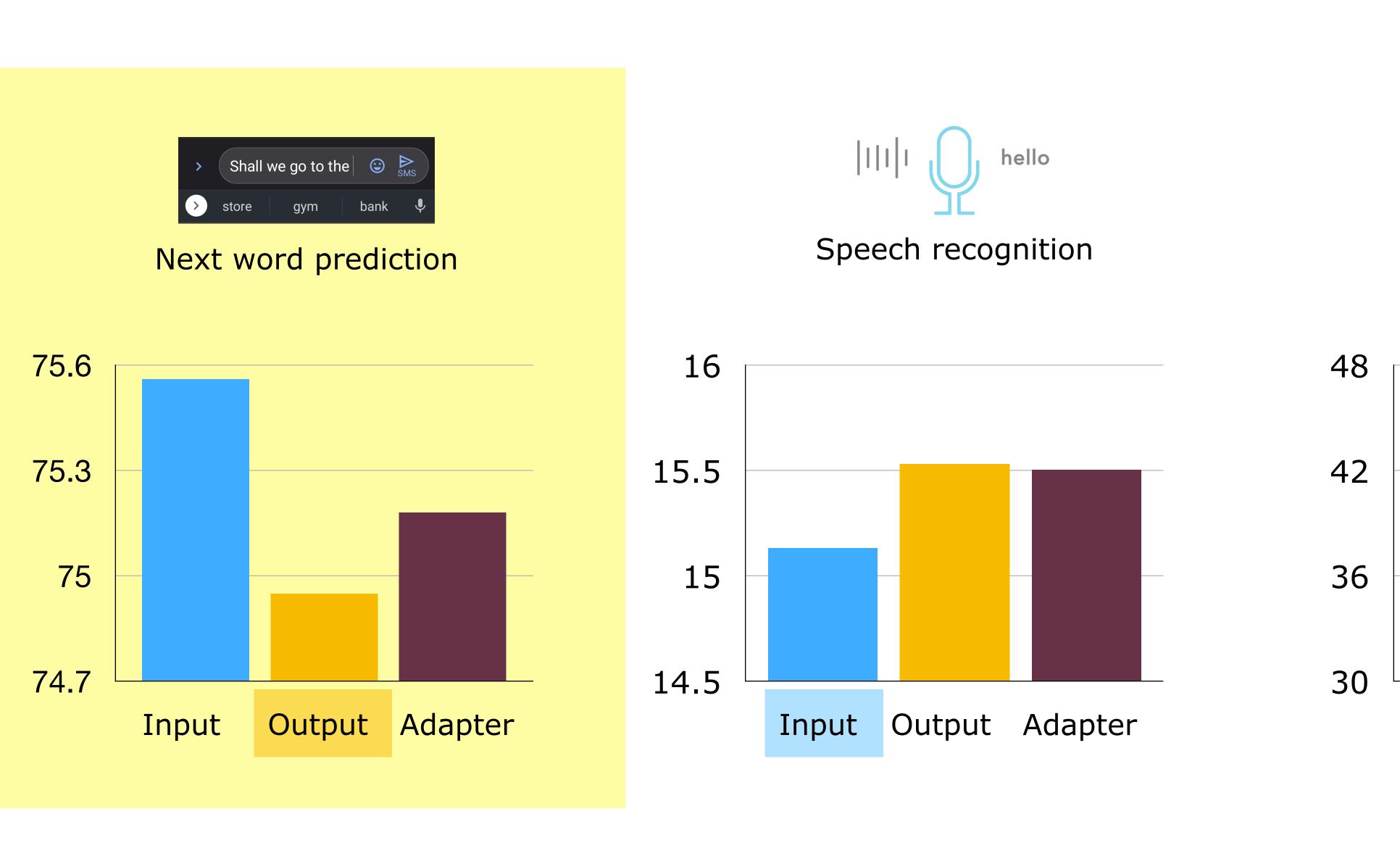
Landmark detection

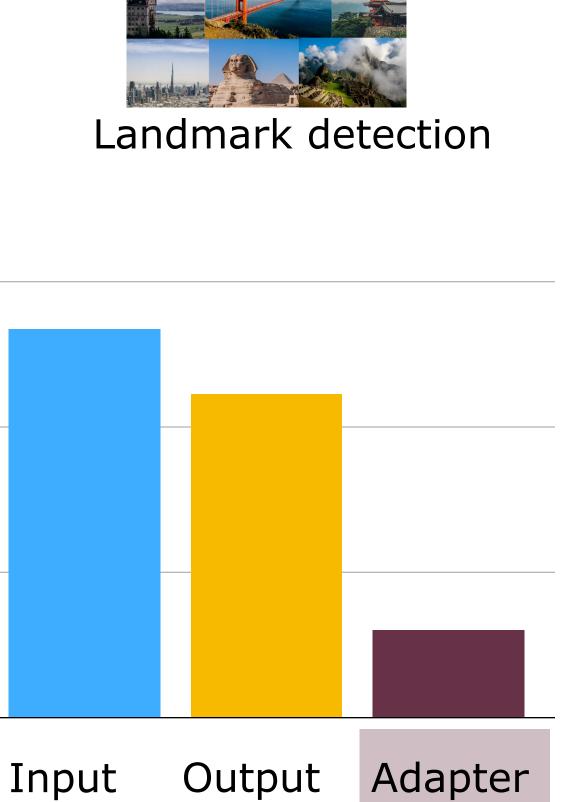
Mobile camera app

- GLDv2 dataset (~1K clients)
- ResNet-18 (12M param)
- ~2K classes: only 30/client

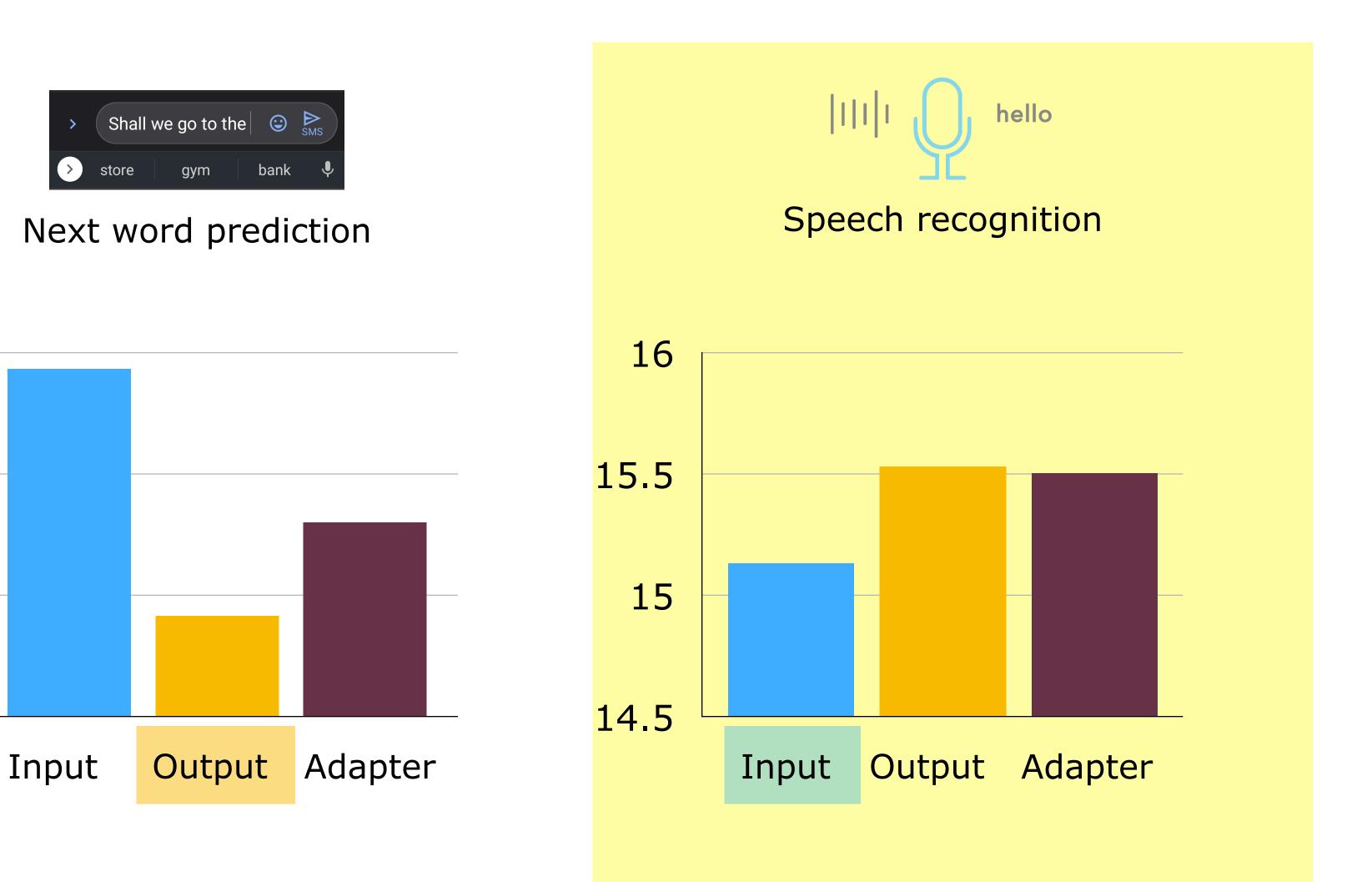
Question 1: Modeling

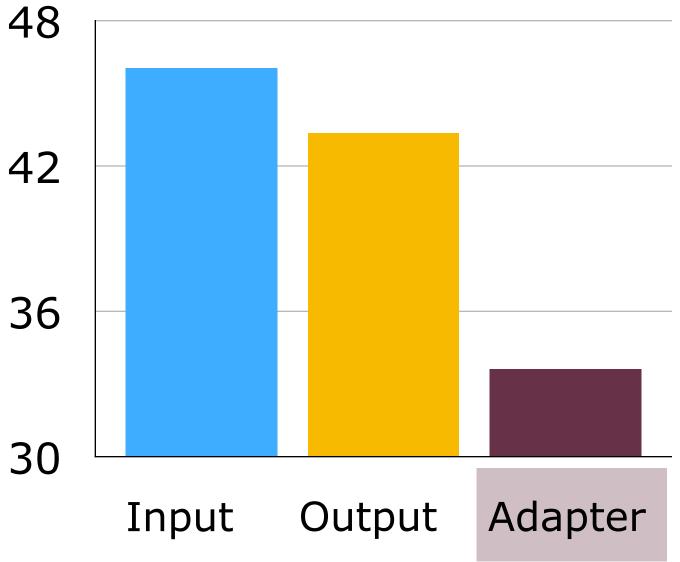
Which form of personalization do I use?





y-axis shows error: lower is better





y-axis shows error: lower is better

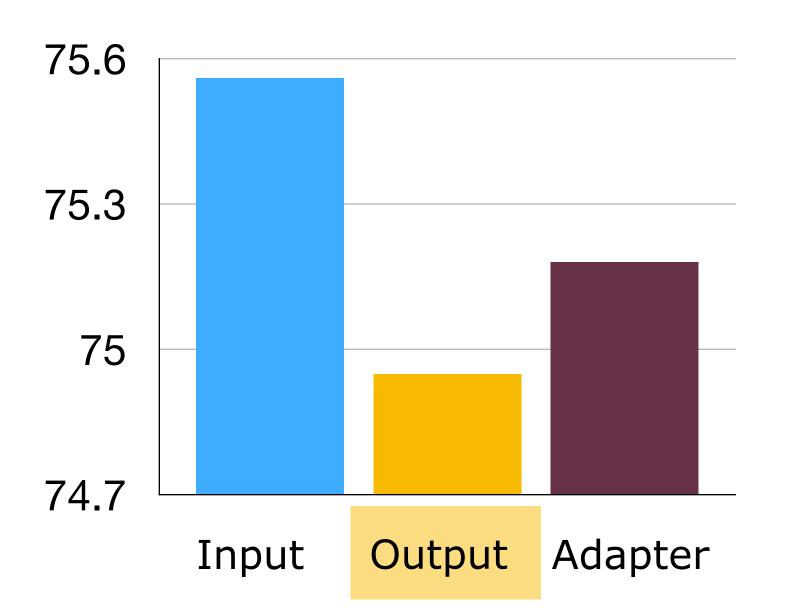
75.6

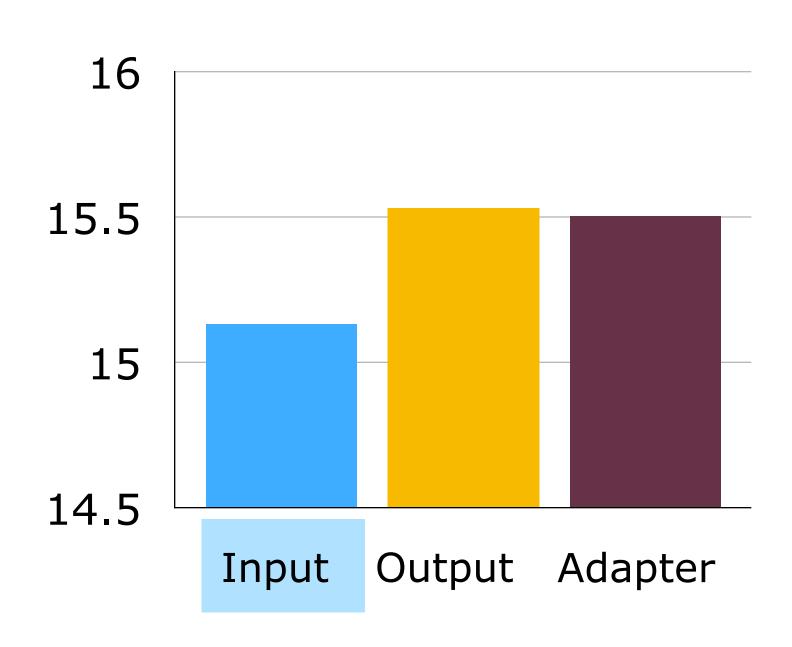
75.3

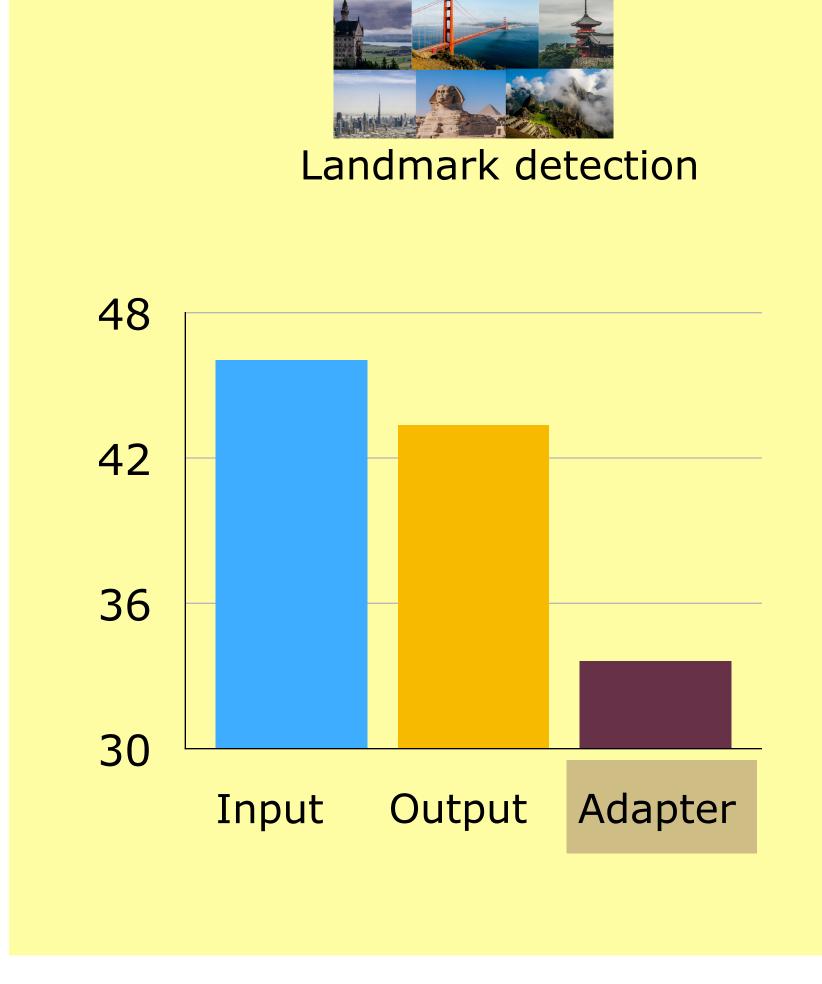
75

74.7

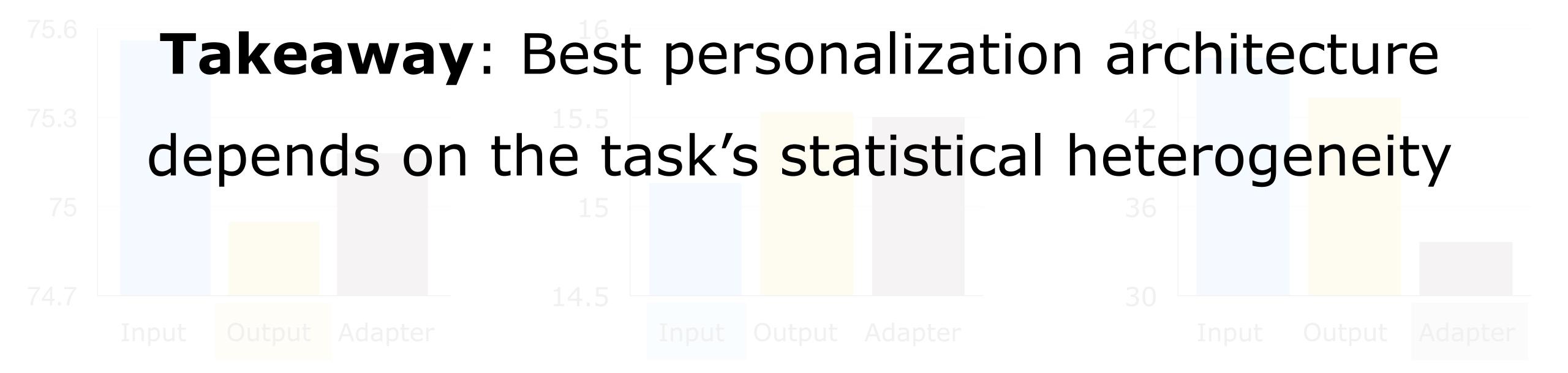






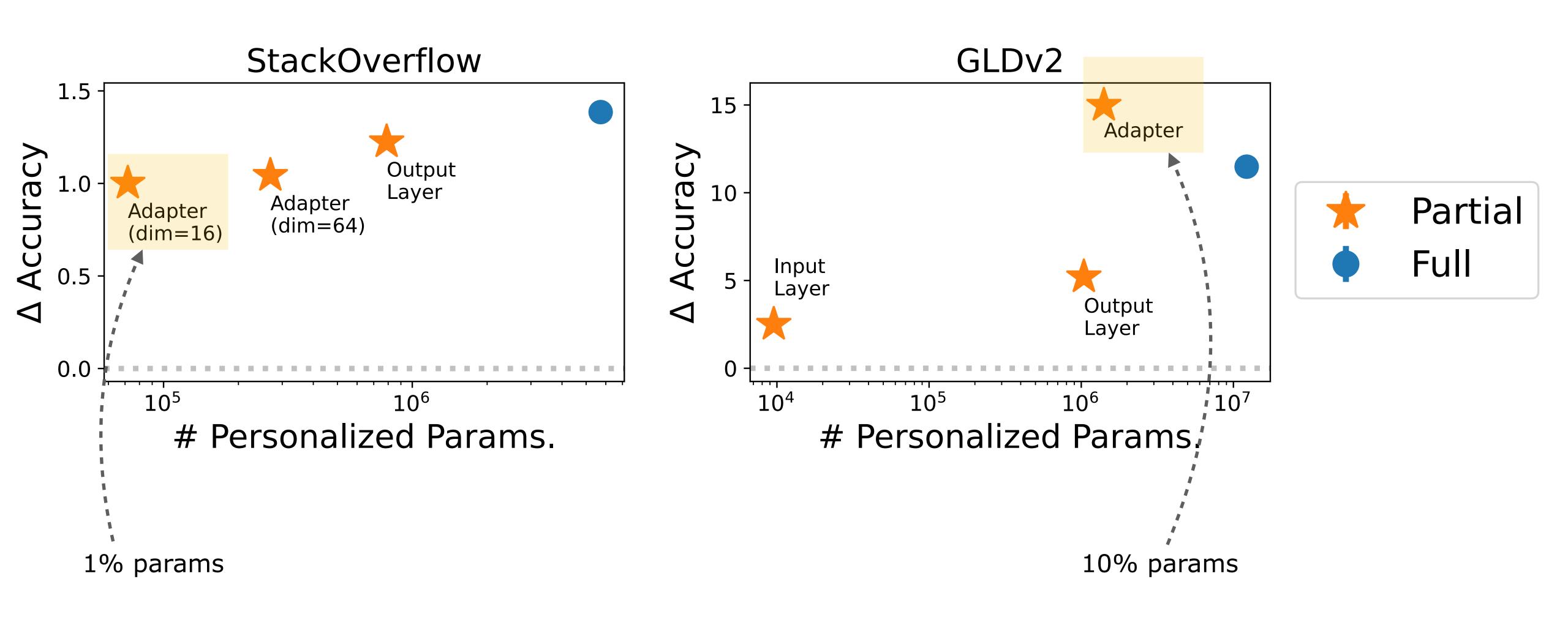


y-axis shows error: lower is better



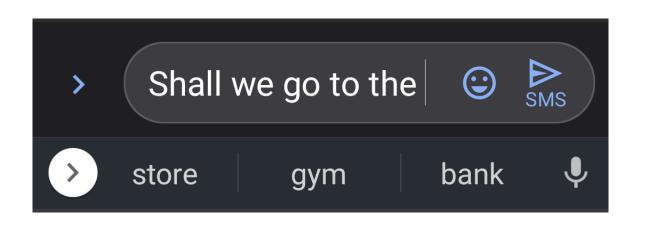
y-axis shows error: lower is better

Partial personalization vs. full personalization

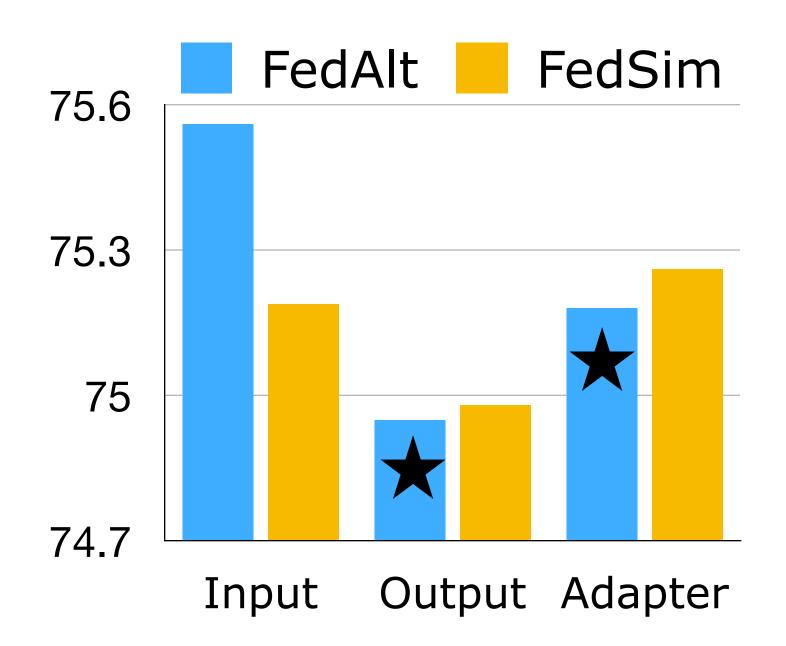


Question 2: Optimization

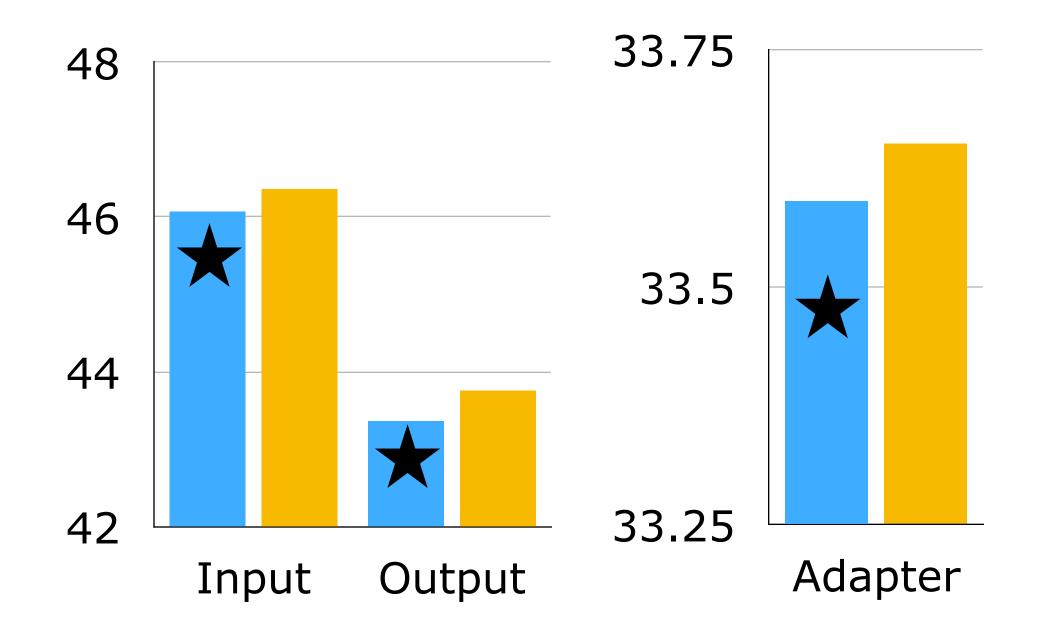
Which optimization algorithm do I use?



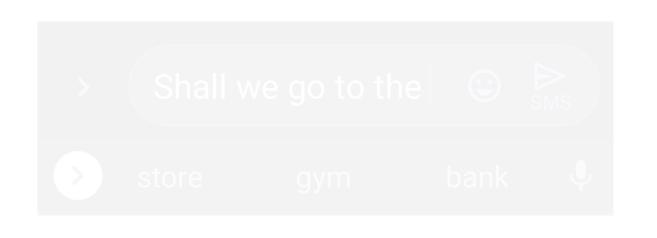
Next word prediction



Landmark detection

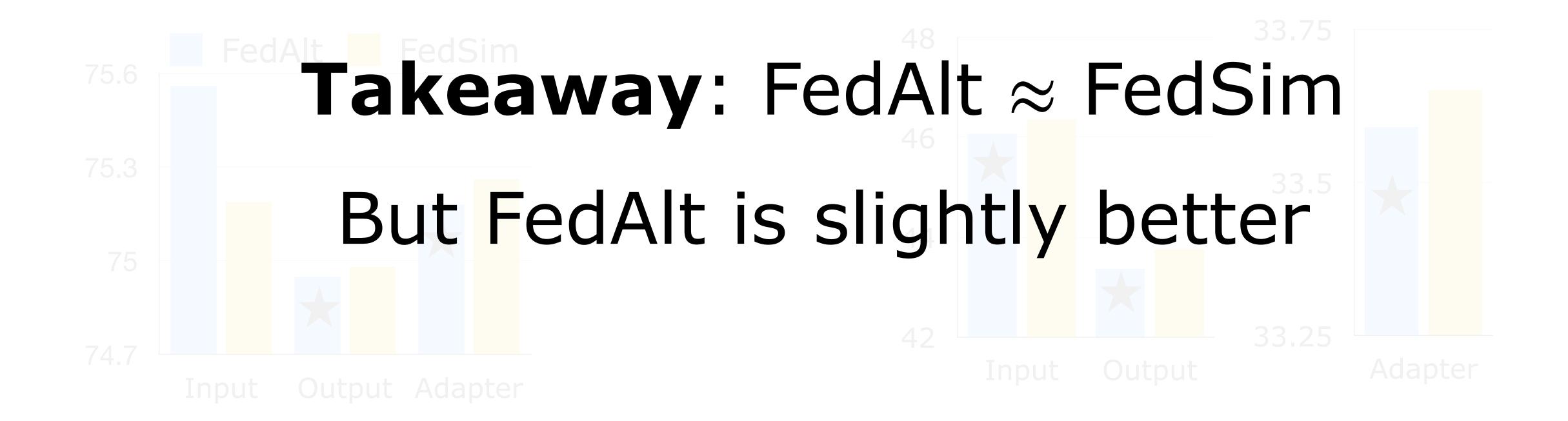


y-axis shows error: lower is better



Next word prediction

Landmark detection



y-axis shows error: lower is better

Summary

1. Theory: Analysis of both these optimization algorithms

Code:

2. Extensive experiments:

text, vision, and speech settings

Pillutla, et al. "Federated Learning with Partial Model Personalization." ICML 2022.