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Data is decentralized and private



Federated Learning
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Federated Learning
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Federated Learning
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Challenge

models are deployed on clients with heterogeneous data
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Democracy Dies in Darkness

THE ACCENT GAP

We tested Amazon’s Alexa and Google's Home to see how people with accents
are getting left behind in the smart-speaker revolution.
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Challenge

models are deployed on clients with heterogeneous data

Personalization: Adapt (a part of) the model to each client
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Challenge

models are deployed on clients with heterogeneous data

Partial Personalization: Adapt a part of the model to each client
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How to personalize?

Modeling:
Personalize the
output layer

Federated Learning with Personalization Layers

Pred.

f

Manoj Ghuhan Arivazhagan Vinay Aggarwal

Adobe Research Indian Institute of Technology, Roorkee, India f

Shared
Aaditya Kumar Singh Sunav Choudhary -

Indian Institute of Technology, Kharagpur, India Adobe Research ?

Input

2019

Optimization: Train personal and
shared parameters simultaneously
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How to personalize?

Modeling:
Think Locally, Act Globally: Personalize the
Federated Learning with Local and Global Representations input layer
Paul Pu Liang", Terrance Liu", Liu Ziyin®, Nicholas B. Allen’, Randy P. Auerbach®, Pred.
David Brent®, Ruslan Salakhutdinov’, Louis-Philippe Morency' t
'School of Computer Science, Carnegie Mellon University
‘Department of Physics, University of Tokyo 4
‘Department of Psychology, University of Oregon
*Department of Psychiatry, Columbia University
>Department of Psychiatry, University of Pittsburgh t
{pliang, terrancl,morency}@cs.cmu.edu Input

July 15, 2020

Optimization: Train personal and
shared parameters simultaneously
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How to personalize?

Modeling:
Personalize the

output layer
Exploiting Shared Representations for Personalized Federated Learning

Pred.

1;

Liam Collins'| Hamed Hassani> Aryan Mokhtari' Sanjay Shakkottai

1;

Shared
ICML 2021 -

1u

Input

Optimization: Train personal and
shared parameters alternatingly
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How to personalize?

Federated Reconstruction:
Partially Local Federated Learning

Karan Singhal Hakim Sidahmed Zachary Garrett
Google Research Google Research Google Research
karansinghal@google.com hsidahmed@google.com zachgarrettQgoogle.com

Shanshan Wu Keith Rush Sushant Prakash
Google Research Google Research Google Research
shanshanw@google.com krush@google.com sush@google.com

NeurIPS 2021

Optimization: Train personal and
shared parameters alternatingly
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S0, how do we personalize a federated model?

Design decisions:
e Modeling

e Optimization
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Our contributions

1. Theory: Analysis of both
these optimization algorithms

Code:

2. Extensive experiments:
text, vision, and speech settings

SCA

N ME
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Outline

1. Setup and review
2. Convergence Analysis

3. Experiments
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Outline

1. Setup and review
2. Convergence Analysis

3. Experiments
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(Non-personalized) federated learning

~ B0 -0E

Data heterogene/ty
Distribution
P1 %) Pn
Learning min 1 N F(w) P .
Objective weR?  n z=21 l where Fi(w) = Z~p; [f(w, Z)]

loss on client i

[McMahan et al. AISTATS (2017), Kairouz et al. (2021)]
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Personalized federated learning

Model on client i = (u, v;)

. | <
Objective: min — z F.(u,v;)
=1

U, Vi,e=+,v, 1N 7

u: shared v.: personal
parameters parameters

22



Personalization architectures

Personalized Personalized Combined Personalized
output layer input layer predictions adapters
Pred.

Pred.

f

f Pred.

Personal

f

Shared Personal

Personal

f f Input

Input Input

2
F(u,v)) = Exy)op <q’)g(X; u)+ X v;) — Y)

Arivazhagan et al. (2019)

Collins et al. ICML (2021) =g € &l (A0S Agarwal et al. (2020)

Multi-task learning: Caruana. Mach. Learn (1997), Baxter. JAIR (2000),
Evgeniou & Pontil. KDD (2004), Collobert & Weston. ICML (2005),
Argyriou et al. Mach. Learn (2008), ...
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Other forms of personalization

1 n
pFedMe: min — Z (fi(vi) ——iHvi — qu)

U, vi,=o+,v, N i1 2

[Dinh et. al (NeurIPS 2020)]

Ditto, MAML, APFL, .... [Hanzely et al. (2021)]
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Non-personalized (FedAvg)

1 n
min — F.(w
i nz} (w)

FedAvg [MacMahan et al. AISTATS (2017)]

Parallel Gradient Distribution [Mangasarian. SICON (1995)]
[terative Parameter Mixing [McDonald et al. ACL (2009)]
BMUF [Chen & Huo. ICASSP (2016)]

Local SGD [Stich. ICLR (2019)]

Personalized (FedAlt/FedSim)

1 n
min ~ — 2 Fi(u,v;)
n
i=1

I/t,vl,"-,vn
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Non-personalized (FedAvg) Personalized (FedAlt/FedSim)

1 « , 1
min - Z F.(w) min " Z Fi(u,v)
" i=1 i=1

U, ViV,

Step 1 of 3: Server samples m clients
and broadcasts global model




Non-personalized (FedAvg) Personalized (FedAlt/FedSim)

1 n 1 n
min  — 3 Fi(w min - — ) Fu,v)
" =1 i=1

U, ViV,

Step 2 of 3: Clients perform = local
SGD steps on their local data
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Non-personalized (FedAvg)

1 n
min — F.(w
i nz} (w)

Step 2 of 3: Clients perform = local
SGD steps on their local data

- T
| ==,
I 4 “ \\
{ Server }
A )
f\x, J
NN 7
N\ = = — . 4y
Na s et =2

o
-

Personalized (FedAlt/FedSim)

I/t,Vl,..., n

1 n
min — > Fi(u,v,
1% n z=zl l( l)

FedAlt (alternating update)

l

" =u—yV,Fu,v")

FedSim (simultaneous update)
Vl-+ — Vl' — }/VVFZ(M’ Vl)

" =u—yV,Fu,v,)
30



Non-personalized (FedAvg) Personalized (FedAlt/FedSim)

I ¢ I &
min  — 3 Fi(w min - — ) Fu,v)
" =1 i=1

u,vl,...,vn

Step 3 of 3: Aggregate (shared
components) of client updates

: l
) { Server ) m
\\‘\ ik o e ';/’I l
+ _ Wi+
m

v, stays on client {
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Outline

1. Setup and review
2. Convergence Analysis

3. Experiments
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Assumptions

Model on clienti = (u, v,)

. I <
Objective: min — Z F.(u,v;)
v, N 1

u, Vl,..., ”

u: shared
parameters

;. personal
parameters

X

2

1. Smoothness

.| L,-Lipschitz w.r.t. u
V F,is | _
L, -Lipschitz w.r.t. v,

| L -Lipschitz w.r.t. v,
V,F, is _ .
L, -Lipschitz w.r.t. u

L2

uy

= quantifies cross-dependence

LL

33



Assumptions

2. Bounded variance

Model on clienti = (u, v,)

Objective:

e stochastic gradients of V_F, and V F,

R p have bounded variance 7 and o7
. Z} (1, %;) respectively
. shar . . .
u: sharec . bounded gradient diversity:
parameters
1 n
— Z |V F(u,v) =V, F(u, vl:n)H2 < 67
.. personal A

parameters

34



Theorem [P., Malik, Mohamed, Rabbat, Sanjabi, Xiao]

Under the smoothness and bounded variance assumptions, we have the bounds

FedAlt

1 T—-1

(

1

n

= H V.F(u,vy., ) H 2+ : Z = H V., Eu;,v; ) H 2) <

nl
V=1

—E || ViF vy | Py Z = ||V F ) | 2) <

nl
V=1

67,05, 67,65 are linear combinations of ¢7, 67, 5°
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FedAlt

1 T—-1

(

1

n

nL,

V=1

= H V. F(u,vy., ) H 2+ : Z = H V., Eu,v; ) H 2) <

nlL

V=1
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n
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True if &2

inter-client variance

=>>

FedAlt is better than FedSim when

s 2m o> 5” m
— | 1 < +— 1 ——
L, n mlL, mL, n

max{o?, 62} m: number of clients per round
|/ .
n: total number of clients

. o 62, 62,6%: Noise variances
intra-client variance

y*=L2/L L : cross-dependency

Better by a factor of (1 + !

40



Technical difficulties

Assume ¢° = 0 = 6> and single local gradient step per client

For FedAlt, apply smoothness for u-step (assuming v-step is complete) to get

Fu 1, vie) = Flu,vi) <0 (V Fupvey) s g —u) + —

t y ) w1 — u,

both depend on sampling of clients

first-order term is biased!

2
|

41



For FedSim, no such difficulties

2
F(u, 1, viq) — F(u,v) < <VMF(ut’ Vo) 5 Uiy V_' ut> T _uHutH — u|
v

0..
** ®
. s
. s
L 3 ..
. 4
. s
. s
. s

o* ¢

.

L 4
.,

u-update starts from (u, v, only dependence on sampling of clients

first-order term is unbiased!
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For FedAlt, apply smoothness for u-step (assuming v-step is complete) to get

Fu 1, vie) = Flu,vi) <0 (V Fupvey) s g —u) + —

t y ) w1 — u,

both depend on sampling of clients

first-order term is biased!

2
|
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Virtual full participation

Let ¥, denote the (virtual) personal parameters if all clients had run the v-step,

not just the selected clients

/ \ remove dependence on sampling S,

ol SOl
@VUF(u,, Vs ), Ups1 — UD Qqu(Ut, Vt+1 ), Ut41 — UD

44



For FedAlt, apply smoothness for u-step (assuming v-step is complete) to get

Lu

~ 2

Fp,vip) = Flup v <0 (VU FU Vigy) 5 sy — 1) + 7””&1 — u||” + Error,
X | 4

independent of sampling of clients depends on sampling of clients

first-order term is unbiased again!

45



To complete the proof, suffices to bound

“[Error,] < OWy*+y°Ly?)

and can be made smaller by controlling the learning rates v, v,

46



Outline

1. Setup and review
2. Convergence Analysis

3. Experiments
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> Shallwegotothe ©® £

SMS

° store gym bank &

Next word prediction

Mobile keyboard

e StackOverflow (~1K clients)

e 4-layer transformer (6M param)

e vocabulary size: 10K

‘Ill‘l hello

Speech recognition

Mobile assistant

e LibriSpeech dataset (~1K clients)
e 6-layer transformer (15M param)

e CTC Loss (dynamic programming)

Landmark detection

Mobile camera app

e GLDvVv2 dataset (~1K clients)

e ResNet-18 (12M param)

o ~2K classes: only 30/client

48



Question 1: Modeling

Which form of personalization do I use?



> Shall we gotothe, ® 58 ‘|||‘| hello

° store gym bank &

B o
L == TS

Next word prediction Speech recognition Landmark detection

75.6 16 48
75.3 15.5 42
75 15 36
74.7 14.5 30 -
Input Output Adapter Input Output Adapter Input Output Adapter

y-axis shows error: lower is better
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Takeaway: Best personalization architecture

depends on the task’s statistical heterogeneity



Partial personalization vs. full personalization

StackOverflow

1.5 -
>
O 1.0 - Output
E | Adapter Ac!apter -aver
> (dim=16)  (dim=64)
O 4
< 05' ’
<]

0.0 - L

. 10° 10°

# Personalized Params.

1% params

A Accuracy

=
Ul
|

-
-
|

Ul

# Personalized Params;

GLDv?2
Adapter
» @
Input
1 Layer
Output
Layer
L ! ! L L L | ! ! L L L | ! ! "'.;"I
104 10° 10° 1107

10% params

¢

Partial
Full
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Question 2: Optimization

Which optimization algorithm do I use?



> Shallwegotothe ©® &

SMS

° store gym bank &

Next word prediction

W FedAlt FedSim

Input Output Adapter

75.6

75.3

/3

4.7

y-axis shows error: lower is better

48

46

44

42

Landmark detection

Input

Output

33.75

33.5

33.25

Adapter
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Takeaway: FedAlt ~ FedSim
But FedAlt is slightly better



Summary

1. Theory: Analysis of both
these optimization algorithms

Code:

2. Extensive experiments:
text, vision, and speech settings

Pillutla, et al. "Federated Learning with Partial Model
Personalization." ICML 2022.

SCA

N ME
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