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Models leak information about 
their training data

Carlini et al. (USENIX Security 2021)



Models leak information about their training data reliably

Carlini et al. (USENIX Security 2021)
Carlini et al. (ICLR 2023)





Differential privacy (DP)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one unit of data does not alter its output distribution by more than 𝜀



Differential privacy eliminates memorization

High privacy Low privacy Low privacyHigh privacy

Nearly 
non-private 
loss

Huge 
improvement 
in 
memorization

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural 
Networks. USENIX Security 2019.



Goal: Better privacy-utility trade-offs

High privacy Low privacy

Goal: Achieve 
smaller loss at 

each privacy level



How do we train models with DP?

Model 
parameters

Loss 
function

Data



DP-SGD: How do we train models with DP?

Learning 
rate

Stochastic gradient 
clipped to ǁgǁ2 ≤ 1 

per-example

Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-FTRL: DP Training with Correlated Noise

(Anti-)correlated 
Gaussian noise 

(zt i.i.d. Gaussian)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.



Prior work: (Empirically) correlated noise 
outperforms independent noise

Independent noise (+ amplif.)

Correlated noise (no amplif.)

Correlated noise (+ amplif.)

Correlated noise 
uniformly beats 

independent noise

Experiment: DP language modeling 
Dataset: StackOverflow

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

High privacy Low privacy



Production Training

“the first production neural 
network trained directly on 
user data announced with a 

formal DP guarantee.”

- Google AI Blog post, Feb 2022

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html


How do we find the noise coefficients? 



How do we find the noise coefficients? 
Current Approach: 
Find the noise coefficients 𝛽t to minimize the cumulative noise added 
to the learning trajectory (such that a given DP constraint is satisfied)

Surrogate: max 
error



where the variance 𝜎2 is chosen so that 𝜃t’s satisfy a given DP constraint

Find the noise coefficients 𝛽t to minimize the max error (i.e. cumulative 
noise added to the learning trajectory):

Surrogate 
Objective

How do we find the noise coefficients? 



Part 1: Is correlated noise provably better for learning problems?

The surrogate objective is not related to the learning objective

Koloskova, McKenna, Charles, Rush, McMahan. Gradient Descent with Linearly Correlated Noise: Theory and Applications to 
Differential Privacy. NeurIPS 2023

Coefficients = 𝛽

Coefficients = 𝛽’

Same max error but 
different 

learning performance



(Anti-) correlated noise provably 
beats independent noise

For linear regression, dimension d 
improves to problem-dependent 
effective dimension deff 

Independent noise

Correlated noise 

Lower bound 

Part 1: Correlated noise is provably better for learning problems

High 
effective 
dimension

Low 
effective 
dimension



Part 2:  Noise generation time complexity

Quadratic time complexity: 
Noise generation requires O(t) time in iteration t



Part 2:  Near-optimal noise generation time complexity

Our approach: Approximate the noise coefficients as

Per-iteration time: 
O(d x dimension)



Part 2:  Near-optimal noise generation time complexity

Our approach: Approximate the noise coefficients as

Error: If d = O(log2(n/c)), then the error is Ɛ(𝛽’) ≤ Ɛ(𝛽) + c
              
               (n = Number of steps)

Per-iteration time: 
O(d x dimension)



Part 2:  Near-optimal noise generation time complexity

Key insight: Approximation theory

There exists a 
rational function r(x) of degree-d
that satisfies the approximation:

Newman. Rational approximation to |x|. Michigan Math. J. (1964)



Practical Impact: 
Google’s production language model (Portuguese)

Previous 
production 

system

Our 
approach

Plot: McMahan, Xu, Zhang (2024)
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Background



Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one unit of data does not alter its output distribution by more than 𝜀



𝜌-Zero-Concentrated DP (𝜌-zCDP)

For all 0 < 𝛼 < ∞, we have

Rényi 𝛼-divergence

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016



DP-SGD / Independent noise

Primitive: private mean estimation of 
minibatch (clipped) gradients in each iteration



DP-SGD adds independent noise in each iteration

Abadi et. al., Deep Learning with Differential Privacy, CCS 2016.

Data

Gaussian 
Mech1 g1 + z1  ⊕

Mech.
Output

Gaussian 
Mech2 ⊕

Gaussian 
Mech3 ⊕

Gaussian 
Mech4 ⊕

g2 + z2  

g3 + z3  

g4 + z4  

Gradient 
(clipped 
per-example)

For 𝜌-zCDP, take
Var(zt) = 1/(2𝜌)



DP-FTRL: privatize prefix sums of gradients

SGD update (without noise)

g1 + w1  ⊕

Gradient 
(clipped 
per-example)

g1 + g2+ 
w2

⊕

g1 + g2+  g3 + w3⊕

g1 + g2+  g3 + g4+ w4⊕

Stateful
DP

Mechanism

Mech.
Output

wt are not independent across steps

Data

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



Correlated 
Gaussian noise 

(zt i.i.d. Gaussian)
For 𝜌-zCDP, take

Var(zt) = 

sensitivity

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.

DP-FTRL: privatize prefix sums of gradients



Surrogate: max 
error



Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23);  Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by coefficients 
𝛽t

* = t—3/2 and satisfies the bounds

Toeplitz mechanism: optimal max error



Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23);  Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by coefficients 
𝛽t

* = t—3/2 and satisfies the bounds

Toeplitz mechanism: optimal max error

Exponential 
improvement over 
independent noise



Part 1: Learning guarantees

(Anti-)correlated noise provably beats independent noise

ICLR 2024



DP-FTRL vs. DP-SGD: Previous Theory

Independent Noise

Correlated Noise

𝜌: privacy level (zCDP)
d: dimension
T: #iterations

For convex & G-Lipschitz losses

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



Streaming setting: Suppose we draw a fresh data 
point xt~P in each iteration t (i.e. only 1 epoch)

Model 
parameters

Loss 
function

Data

Setting and Simplifications



Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

Asymptotic 
error

Asymptotics at a fixed learning rate 𝜂 > 0

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

Lets us study the noise dynamics of the algorithms
(do not satisfy DP guarantees)

ǁgǁ 
1

1

ǁc
lip

(g
)ǁ

 



Mean estimation in 1 dimension

Data distribution 
s.t. |x| ≤ 1

Solve with stochastic optimization problem 
with DP-SGD/DP-FTRL



Independent noise (DP-SGD)

Correlated noise  (DP-FTRL)

𝜂: constant learning rate in (0, 1)
𝜌: privacy level

Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a 𝜌-zCDP sequence is 



DP-FTRL is always 
better than DP-SGD

DP-FTRL is 
significantly better at 

𝜂 → 0 or 𝜂 → 1



Closed form correlations for mean estimation

Proposition: The correlations 𝛽t = t —3/2 (1 — 𝜂)t

attain the optimal error



Closed form correlations for mean estimation

For general problems, use 𝛽t = t —3/2 (1 — 
𝜈)t

and tune the parameter 𝜈

Proposition: The correlations 𝛽t = t —3/2 (1 — 𝜂)t

attain the optimal error

𝜈-DP-FTRL



Linear regression

H is also the 
Hessian of the 

objective



Linear regression

Well-specified 
linear model



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error is 

Improve dimension d to 
problem-dependent 

effective dimension deff 



Effective dimension

Low effective dimension High effective dimension

Closely connected to numerical/stable rank



[Rudelson & Vershynin (J. ACM 2007)]



The stable rank appears in:

● Numerical linear algebra (e.g. randomized matrix 

multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]

● Matrix concentration [Hsu-Kakade-Zhang (2012), Minsker (2017)] 

● …



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error is 

Improve dimension d to 
problem-dependent 

effective dimension deff 



Linear regression: theory predicts simulations



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error for 0 < 𝜂 < 1 is 

Improved dependence on 
the learning rate 𝜂



Noisy-SGD scales as 𝜂

𝜈-Noisy-FTRL 
scales as 𝜂2

Noisy-FTRL ≫ Noisy-SGD at small 𝜂



Anti-PGD [Orvieto et al. (ICML ‘22)] corresponds to 𝛽1=1

Subtract out the 
previous noise



Anti-PGD [Orvieto et al. (ICML ‘22)] corresponds to 𝛽1=1

Asymptotic error = ∞ (as sensitivity scales of O(t) for t iterations)



Anti-PGD can be adapted for DP by damping: take 𝛽1= 𝜈 (0 < 𝜈 < 1)

Asymptotic error = Geometric mean of 
Noisy-SGD and 

lower bound



Finite-time rates with DP: Linear Regression

Independent noise (DP-SGD)

Correlated noise  (𝜈-DP-FTRL)

Privacy error

T: number of iterations
𝜌: privacy level

𝜂: learning rate is optimized



Proof sketch for Mean Estimation

Usual stochastic gradient proof patterns do not work: 

No Markovian/martingale structure in the noise

Our approach: Analysis the Fourier domain 



Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



Fourier analysis can give the stationary variance of 𝛅t in terms of 
the discrete-time Fourier transform 
of the convolution weights 𝛽

Frequency

Time-domain 
description

Frequency-domain 
description

Image: 3blue1brown.com/lessons/fourier-transforms 



The stationary variance of 𝛅t can be given as

Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



For 𝜌-zCDP, take

sensitivity



For 𝜌-zCDP, take

sensitivity
Requires |B(𝜔)| 

small

Requires |B(𝜔)| 
large



For 𝜌-zCDP, take

Requires |B(𝜔)| 
small

Requires |B(𝜔)| 
large

Optimizing for |B(𝜔)| gives the theorem

sensitivity



For linear regression:

Multiplicative 
noise



Decomposition:

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.



Key idea:

Thus,

Decomposition:

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.



Closed form correlations for mean estimation

Proposition: The correlations
attain the optimal error

For general problems, use 𝛽t= t —3/2 (1 — 𝜈)t

and tune the parameter 𝜈

𝜈-DP-FTRL

Experiments



Language modeling with Stack Overflow | User-level DP

High privacy Low privacy



Image classification with CIFAR-10 | Example-level DP

High privacy Low privacy



Part 2: Efficient noise generation

With near-optimal privacy-utility trade-offs

FOCS 2024



Quadratic time complexity: 
Noise generation requires O(t) time in iteration t

𝛽t = t —3/2 



Surrogate: max 
error

Max Error Noise generation time 
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



A first attempt: the banded mechanism

Set 𝛽t = 0 for t > b 

Then, we only have to sum b terms in

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

Linear complexity: 
Noise generation requires O(b) time in 

each iteration



Max Error Noise generation time 
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

Surrogate: max 
error

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



Our approach: Intuition

Consider an exponentially decaying sequence 𝛽t = 𝛼 𝜆t–1 .

Then, we can compute the correlated noise 

using the recurrence  

Linear complexity: 
Noise generation requires O(dim) time in 

each iteration



Our approach: Intuition

Consider an exponentially decaying sequence 𝛽t = 𝛼 𝜆t–1 .

Then, we can compute the correlated noise 

using the recurrence  

Linear complexity: 
Noise generation requires O(dim) time in 

each iteration



Our approach: Intuition

Consider sums of exponentials:           𝛽t = 𝛼1 𝜆1
t–1 + 𝛼2 𝜆2

t–1

Then, we can compute the correlated noise 

using the recurrences  



Our approach: Intuition

Consider sums of exponentials:           𝛽t = 𝛼1 𝜆1
t–1 + 𝛼2 𝜆2

t–1

Then, we can compute the correlated noise 

using the recurrences  



Our approach: Intuition

Consider sums of exponentials:           𝛽t = 𝛼1 𝜆1
t–1 + 𝛼2 𝜆2

t–1

Then, we can compute the correlated noise 

using the recurrences  



Our approach: Intuition

Consider sums of exponentials:           𝛽t = 𝛼1 𝜆1
t–1 + 𝛼2 𝜆2

t–1

Then, we can compute the correlated noise 

using the recurrences  

Linear time + 
space



Approximate the optimal noise coefficients with d exponentials as

Time & space complexity: 
O(d x dimension)

Our approach: Buffered Linear Toeplitz (BLT) Mechanism



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time 
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                ??????



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time 
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                ??????

Approximation Theory!!



From sequences to functions

Coefficients 
1, –𝛽1, –𝛽2,...

Generating 
Function r0(x)



From sequences to functions

Coefficients 
1, –𝛽1, –𝛽2,...

Generating 
Function r0(x)

Taylor expansion around x = 0



From sequences to functions

Coefficients 𝛽t = 𝚯(t —3/2 )    ⇔   generating function r0(x) = (1 — x) 1/2

Coefficients 
1, –𝛽1, –𝛽2,...

Generating 
Function r0(x)

Taylor expansion around x = 0



From sequences to functions

Coefficients 
1, –𝛽1, –𝛽2,...

Generating 
Function r0(x)

Taylor expansion around x = 0

BLT
????



BLT generating functions

Theorem (Informal):

The following properties are equivalent:

1. 𝛽’s are a (complex) BLT sequence:

1. Its generating function r(x) is a rational function of degree d

1. 𝛽’s satisfy a linear recurrence



From functions to efficient noise generation

How good 
is it?Generating Function 

r0(x) = (1 — x) 1/2
Rational approximation 

r(x) ≈ (1 — x) 1/2



Theorem [Dvijotham, McMahan, P., Steinke, Thakurta 2024]

The max error of a sequence (𝛽t) with generating function r(x) is
 

where err(r) quantifies the approximation quality



Theorem [Dvijotham, McMahan, P., Steinke, Thakurta 2024]

The max error of a sequence (𝛽t) with generating function r(x) is
 

where err(r) quantifies the approximation quality

There exists a degree-d rational function that satisfies the tight 
approximation bound:

Newman. Rational approximation to |x|. Michigan Math. J. (1964)



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time 
(in iteration t)

Independent noise 

Optimal correlated noise

b-Banded 

BLT of degree d                

Suffices to take d=O(log2n)!



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Error Noise generation time 
(n: # iterations)

Independent

Optimal correlated

Ours                



Key difference: approximation quality

Banded: Set 𝛽t = 0 for t > b    ⇒  polynomial approximation 

BLT:                                      ⇒  rational approximation 



Coefficients

Approximation quality: banded mechanism

Note: here, we use a polynomial approximation to 1 / (1 — x)1/2  rather than (1 — x)1/2 



Coefficients

Approximation quality: BLT mechanism

Note: BLT approximation of 1 / (1 — x)1/2        ⇔     BLT approximation of (1 — x)1/2       

[McMahan and P. (2025)]



Empirical Results

Excess Max Error

Lower bound



Practical Impact: 
Google’s production language model (Portuguese)

Previous 
production 

system

BLT

Plot: McMahan, Xu, Zhang (2024)
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Conclusion and Open Problems



Independent noise (+ amplif.)

Correlated noise (no amplif.)

Correlated noise (+ amplif.)

Correlated noise 
uniformly beats 

independent noise

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

Goal: Better privacy-utility trade-offs



(Anti-) correlated noise provably 
beats independent noise

For linear regression, dimension d 
improves to problem-dependent 
effective dimension deff 

Independent noise

Correlated noise 

Lower bound 

Part 1: Correlated noise algorithms are provably better

High 
effective 
dimension

Low 
effective 
dimension



Part 2:  Near-optimal noise generation time complexity

Our approach: Approximate the noise coefficients as

Time & space: 
O(d x dimension)

Error: If d = O(log2(n/c)), then the error is Ɛ(𝛽’) ≤ Ɛ(𝛽) + c
              
               (n = Number of steps)



Coming soon: Survey/tutorial on 
correlated noise mechanisms!



Open Problem: Continuous time limits

Precise analysis 
(better rates)

Algorithm design



Open Problem: Multi-epoch Learning Guarantees

Precise analysis

Better algorithms

Assumptions in this talk:
Streaming setting: Suppose we draw a fresh data 

point xt~P in each iteration t (i.e. only 1 epoch)



Open Problem: Adaptive Gradient Algorithms

Non-linear functions of the injected noise

SGD update (without noise) Adam update (without noise)



● Areas of interest in ML/AI:
○ Privacy-preserving AI
○ Making (generative) AI more robust
○ Applications in healthcare + public good

● Flavour:
○ Theoretical foundations + 
○ State of the art empirical performance + 
○ Real-world applications

Advertisement: MS/PhD Openings in my group at IIT Madras



Thank you!



Future Work
Theory
● Averaged iterate analysis + precise finite time bounds
● Analysis for non-Toeplitz systems

Ruppert. Efficient Estimations from a Slowly Convergent Robbins-Monro Process. 1998

Polyak and Juditsky. Acceleration of Stochastic Approximation by Averaging. SIAM J Control Optim. (1992)

Jain, Kakade, Kidambi, Netrapalli, Sidford. Parallelizing Stochastic Gradient Descent for Least Squares 
Regression: Mini-batching, Averaging, and Model Misspecification. JMLR (2018).



DP-FTRL: privatize prefix sums of gradients

SGD update (without noise)

Call this matrix as A



Improved analysis of DP-FTRL
No provable gap between DP-SGD & DP-FTRL (same as previous)

NeurIPS 2023



Empirical results for private language modeling


