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Models leak information about their training data reliably
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Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)

‘B _ N
E Randomized

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)
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A randomized algorithm is e-differentially private if the addition of
*--one unit of data does not alter its output distribution by more than &




Differential privacy eliminates memorization
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Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. USENIX Security 2019.



Goal: Better privacy-utility trade-offs
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How do we train models with DP?

Loss
function

Model gmein [F(O) = HKpp [f(93 33)”

parameters




DP-SGD: How do we train models with DP?

Independent
Stochastic gradient Gaussian noise

clipped to ligll, < 1
per-example

T

01-+1 =9t—77(9t +Zt)

prd

Learning
rate

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-FTRL: DP Training with Correlated Noise

(Anti-)correlated
Gaussian noise
(z,i.i.d. Gaussian)

t
Orr1 =0, — 77(915 T2 — Z 57215—7)
T=1

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on
Adaptive Streams. NeurIPS 2022.



H . - . Experiment: DP language modeling
Prior WOI_‘k : (Empirically) correlated noise e oo
outperforms independent noise
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(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Production Training

“the first production neural

network trained directly on

user data announced with a
formal DP guarantee.”

- Google Al Blog post, Feb 2022

Google Al Blog

The latest from Google Research

Federated Learning with Formal Differential Privacy

Guarantees
Monday, February 28, 2022

Posted by Brendan McMahan and Abhradeep Thakurta, Research Scientists, Google Research

In 2017, Google introduced federated learning (FL), an approach that enables mobile devices to
collaboratively train machine learning (ML) models while keeping the raw training data on each
user's device, decoupling the ability to do ML from the need to store the data in the cloud. Since its
introduction, Google has continued to actively engage in FL research and deployed FL to power
many features in Gboard, including next word prediction, emoji suggestion and out-of-vocabulary
word discovery. Federated learning is improving the “Hey Google” detection models in Assistant,
suggesting replies in Google Messages, predicting text selections, and more.

While FL allows ML without raw data collection, differential privacy (DP) provides a quantifiable
measure of data anonymization, and when applied to ML can address concerns about models
memorizing sensitive user data. This too has been a top research priority, and has yielded one of
the first production uses of DP for analytics with RAPPOR in 2014, our open-source DP library,
Pipeline DP, and TensorFlow Privacy.

B True gradients BN DP FTRL Estimates M DP SGD Estimates

Have a good © B

° nigh day weekend

\

'/\ ~_— The DP-FTRL
& model M stays
u \ /V\V\/\:‘ closer to
/\‘ unnoised training.
Randomly e Y]
initialized
o
model [7 \/.
Arrows represent model updates in parameter space.
Data Minimization and ization in F d Learning

Along with fundamentals like transparency and consent, the privacy principles of data minimization
and anonymization are important in ML applications that involve sensitive data.



https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html

How do we find the noise coefficients?



How do we find the noise coefficients?

Current Approach:
Find the noise coefficients g, to minimize the cumulative noise added
to the learning trajectory (such that a given DP constraint is satisfied)

Learning trajectories

HEl True gradients B Correlated noise (DP-FTRL) B 1D noise (DP-SGD)

4
f~ Surrogate: max

M\ '\\/ /\/>\ ,\ error




How do we find the noise coefficients?

t
Orr1 =0 — 77(975 T2 — Z BTZt—T)
T=1

_J

VO
=Wt

Find the noise coefficients g, to minimize the max error (i.e. cumulative
noise added to the learning trajectory):

2 g ’
Shecae £ = Estvon X vl

where the variance 62 is chosen so that 0,'s satisfy a given DP constraint



Part 1: Is correlated noise provably better for learning problems?

The surrogate objective is not related to the learning objective

=

= /

2 £(B) = &E(5)

e 307 Coefficients = 8’

)

% 201 Same max error but
© different

.? 107 41 learning performance
i

3 O" } _ 7: +
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iteration

Koloskova, McKenna, Charles, Rush, McMahan. Gradient Descent with Linearly Correlated Noise: Theory and Applications to
Differential Privacy. NeurIPS 2023



Part 1: Correlated noise is provably better for learning problems

(Anti-) correlated noise provably High
beats independent noise effactive

: : : . dimension
For linear regression, dimension d
improves to problem-dependent
effective dimension d_
Independent noise 0(d) Low :
USRI —  — effective
Correlated noise O(det) dimension




Part 2: Noise generation time complexity

t
Orr1 = 0; — U(gt + 2t — Z 57215—7)
T=1

a

Quadratic time complexity:
Noise generation requires O(t) time in iteration t




Part 2: Near-optimal noise generation time complexity

{
Ori1 = 0y — 77(9t + 2t — Z 572’75—7)
T=1

Our approach: Approximate the noise coefficients as

O(d x dimension)

d
- Al A1 — Per-iteration time:
By ~ Bt — QA
i=1



Part 2: Near-optimal noise generation time complexity

{
Ori1 = 0y — n(gt + 2t — Z 572’75—7)
T=1

Our approach: Approximate the noise coefficients as

O(d x dimension)

d
- Al A1 — Per-iteration time:
by~ By = Z Qg A
i=1

Error: If d = O(log?(n/c)), then the error is £(8") < &(B) + ¢

(n = Number of steps)



Part 2: Near-optimal noise generation time complexity

Key insight: Approximation theory Error in the rational approximation of degree d
i% R oot b e
_ il M Y e W .
There exists a J /}é’\ g |
rational function r(x) of degree-d g 107 g'\ i { -------- i
that satisfies the approximation: S LS 08 ’ | l :
] gy S :
= ey p W S 2
A - - - degree d = 2
— 10°{ @A} ' E
sup |r(z) — vz| < 3 - exp(—V4d). H " —-- degreed=4
z€[0,1] 1078 i ----- degree d = 8
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Newman. Rational approximation to |x|. Michigan Math. J. (1964)



Practical Impact:
Google’s production language model (Portuguese)
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DP Guarantee s Plot: McMahan, Xu, Zhang (2024)
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Differential privacy (DP)

Output Distribution

Dataset (e.g. over models)
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A randomized algorithm is e-differentially private if the addition of
*--one unit of data does not alter its output distribution by more than &




o-Zero-Concentrated DP (¢-zCDP)

For all 0 < ¢ < o0, we have

' I )
D, A EE Al BB < po

Rényi a-divergence

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016



DP-SGD / Independent noise

Primitive: private mean estimation of
minibatch (clipped) gradients in each iteration

VFy(w)

> VF(w)



DP-SGD adds independent noise in each iteration

Gradient Mech.

(clipped Output
per-example)

1 DD@ o\ e 0+ 2

_________ For 0-zCDP, take

: =y Var(z) = 1/(2)

Abadi et. al., Deep Learning with Differential Privacy, CCS 2016.



DP-FTRL: privatize prefix sums of gradients

t—1
et — 90 — = Z gr
=0

SGD update (without noise)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu.
Practical and Private (Deep) Learning without
Sampling or Shuffling. ICML 2021.
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DP-FTRL: privatize prefix sums of gradients

Correlated
For ¢-zCDP, tai<e Gaussian noise
Var(z,) = 5 (max |87 12) (z, i.i.d. Gaussian)
1 sensitivity

S ———

¢
Orr1 =0 — 77(91: T2 — Z Bri—r
=1

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on
Adaptive Streams. NeurIPS 2022.



Learning trajectories

HEl True gradients B Correlated noise (DP-FTRL) I 11D noise (DP-SGD)

Surrogate: max
error

Prefix sum error

—— Correlated (avg 2.34) —— |ID (avg 6.02)

40



Toeplitz mechanism: optimal max error
t

Orr1 =0 — 77(9t T2 — Z 572’15—7)

=1

Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23); Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by coefficients
B, = t~¥? and satisfies the bounds

E(B7) =

logn
+ constant

s




Toeplitz mechanism: optimal max error
t

Orr1 =0 — 77(9t T2 — Z 572%—7)

=1

Theorem
[Fichtenberger, Henzinger, Upadhyay (ICML ‘23); Dvijotham, McMahan, P., Steinke, Thakurta (FOCS ‘24)]

For any number n of steps, the optimal max error is obtained by coefficients
B, = t~¥? and satisfies the bounds

1
E(B*) = %61 | constant
T
~ Exponential
SGD improvement over
E(B°P) = e(vn) f

independent noise




Part 1: Learning guarantees

(Anti-)correlated noise provably beats independent noise

ICLR 2024



DP-FTRL vs. DP-SGD: Previous Theory

For convex & G-Lipschitz losses

1/4
Independent Noise Gd_
v/ T
Gd1/4
Correlated Noise
VPT

Q- prlvacy |€V€| (ZCDP) Kairouz, McMahan, Song, Thakkar, Thakurta, Xu.

d: dimension Practical and Private (Deep) Learning without
T: #iterations Sampling or Shuffling. ICML 2021.



Setting and Simplifications

Model
parameters

Loss
function

gmein F(6) =T

Streaming setting: Suppose we draw a fresh data
point x,~P in each iteration t (i.e. only 1 epoch)



Asymptotics: Iterates converge to a stationary distribution as t — oo

True Density Empirical Density

Image credit:
Abdul Fatir Ansari



https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/

Asymptotics: Iterates converge to a stationary distribution as t — oo

True Density Empirical Density

4
3
2
1
0

Image credit:
Abdul Fatir Ansari

Asymptotic R 0 2 4 -2 0 2 1

F(B) = lim E[F(6)—-F© )]

[— 00

Asymptotics at a fixed learning rate > 0


https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/

Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

0 : > ligll
1

Lets us study the noise dynamics of the algorithms
(do not satisfy DP guarantees)



Mean estimation in 1 dimension

min [F(6) = Ev-p (6 2)’]

Data distribution
s.t. || £ 1

Solve with stochastic optimization problem
with DP-SGD/DP-FTRL



Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a ¢o-zCDP sequence is

sgdy — ~—1
Independent noise (DP-SGD) F (B =pn

Correlated noise (DP-FTRL)  infF () = F (™) = P_1’7210g2%
p

n: constant learning rate in (0, 1)
o: privacy level



Ratio of DP-FTRL to DP-SGD

10°

Suboptimality ratio for mean estimation
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DP-FTRL is always
better than DP-SGD

I

Learning Rate n

DP-FTRL is
significantly better at
n—>0ornp—1




Closed form correlations for mean estimation

Proposition: The correlations g, = t =% (1 — n)!
attain the optimal error

inf Fo(§) = Fos(p) = p™'nlog? |



Closed form correlations for mean estimation

Proposition: The correlations g, = t =% (1 — n)!
attain the optimal error

inf Foo(f) = Fou(8*) = p~'n* log?
p
v-DP-FTRL
For general problems, use g, =t~ (1 —
v)t
and tune the parameter v




Linear regression

min [F(6) = E(y - (6,2))’]

H is also the
where T ~ N(O, H) Hessian of the

objective




Linear regression

main F(0) =E(y— (6, :1:))2]

where  z ~ N(0, H)

Well-specified \ yla: ~ N(CBTH*, 0'2)

linear model ‘




Informal Theorem: The asymptotic error is

Independent noise (Noisy-SGD) = d plng
Correlated noise (v-Noisy-FTRL) < degr p P 10g2 ( 1)

K
Lower bound for any algorithm > degt p

dimension d

effective dimension d_



Effective dimension dett = Tr(H)/||Hl||2 < d

Low effective dimension High effective dimension
Alzl,,\zz...:)\dzl/d A=A =--=);=1

Closely connected to numerical/stable rank



SAMPLING FROM LARGE MATRICES: AN APPROACH
THROUGH GEOMETRIC FUNCTIONAL ANALYSIS

MARK RUDELSON AND ROMAN VERSHYNIN

Remark 1.3 (Numerical rank). The numerical rank r = r(A) = ||A||§,/ ||A||§ in
Theorem 1.1 is a relaxation of the exact notion of rank. Indeed, one always has
r(A) < rank(A). But as opposed to the exact rank, the numerical rank is stable
under small perturbations of the matrix A. In particular, the numerical rank of A
tends to be low when A is close to a low rank matrix, or when A is sufficiently sparse.

desr = srank(H1/?)

[Rudelson & Vershynin (J. ACM 2007)]



The stable rank appears in:

e Numerical linear algebra (e.g. randomized matrix
multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]

e Matrix concentration [Hsu-Kakade-zZhang (2012), Minsker (2017)]



Informal Theorem: The asymptotic error is

Independent noise (Noisy-SGD) = d plng
Correlated noise (v-Noisy-FTRL) < degr p P 10g2 < 1)

K
Lower bound for any algorithm > degt p

dimension d

effective dimension d_



Linear regression: theory predicts simulations

Dimension Dependence
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Informal Theorem: The asymptotic error for 0 < n < 1is
Independent noise (Noisy-SGD) = d plng

Correlated noise (v-Noisy-FTRL)

AN
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ey
~°I
[
S
[\
[ —
(@}
o
DN
N\

Lower bound for any algorithm > degr p i n?



Learning Rate Dependence

Noisy-SGD scales as 5

10_1':
v-Noisy-FTRL
scales as 5?
10_2':
10‘3':

0.02 0.04 0.08 0.16
Learning Rate 7

Noisy-FTRL » Noisy-SGD at small 5



Anticorrelated Noise Injection for Improved Generalization

1

Antonio Orvieto’! Hans Kersting > Frank Proske® Francis Bach? Aurelien Lucchi*

Anti-PGD [Orvieto et al. (ICML '22)] corresponds to g,=1

01 = 0 — (9 + 2—2-1)

Subtract out the
previous noise




Anticorrelated Noise Injection for Improved Generalization

1

Antonio Orvieto’! Hans Kersting > Frank Proske® Francis Bach? Aurelien Lucchi*

Anti-PGD [Orvieto et al. (ICML '22)] corresponds to g,=1

01 = 0 — (9 + 2—2-1)

Asymptotic error = oo (as sensitivity scales of O(t) for t iterations)



Anti-PGD can be adapted for DP by damping: take g,=v (0 <v < 1)

Orr1 = 0 — (gt T Zt—VZt—l)

Asymptotic error = \/ddeff p_1 7]3/2 Gel\cl)njetrécGnSeandof
oisy- an
lower bound




Finite-time rates with DP: Linear Regression

Independent noise (DP-SGD) L 4+ %
p

. 1 1

Correlated noise (v-DP-FTRL) 4

pT? T

Privacy error

T: number of iterations
o: privacy level
n: learning rate is optimized



Proof sketch for Mean Estimation

Usual stochastic gradient proof patterns do not work:

No Markovian/martingale structure in the noise

Our approach: Analysis the Fourier domain



Letting 6,=0,- 0,, the DP-FTRL update can be written as

Linear

(LTI) system

t
Time-Invariant Otr1 = (1 — 77)51: —n Z ﬂth_T
7=0

Convolution of the
noise




Fourier analysis can give the stationary variance of 9, in terms of
the discrete-time Fourier transform B(w) = Y 2%, Bie™*
of the convolution weights s

Frequency

2Hz +2.5Hz

Time-domain
description

1.8 Cyde‘S/S?cqnd x-coordinate for center of mass

w Frequency-domain
GT e e description

Image: 3bluelbrown.com/lessons/fourier-transforms




Letting 6,=0,- 0,, the DP-FTRL update can be written as

Linear

(LTI) system

t
Time-Invariant Otr1 = (1 — n)gt —n Z ﬂth_T
7=0

Convolution of the
noise

The stationary variance of §, can be given as

lim E[§?] = 772(/7r Bl dw) El2]

t—o0 2 T |1_n_eiw|2




limIEl[Jtz]:nz(‘/'7r Be)l @J E[2?]

t—00 27 “H—W_é”2

sensitivity

1 STk :
% mtax“[B 1]=¢”2 B[?z ;ﬁl ! . ]
1

:i/'ﬂ- dw —ﬂ.n,l —/[)7;172
2p J—= 27| B(w)?

For 9-zCDP, take E[22]=




2 T B 2
lim E[§?] = m / | B(w)|  dw) E[2]
t—00 2w\ J_. 1—n— ezw|2

Requires |B(w)]|
small

1
For ¢-zCDP, take E[z3]=%m?XIHB—11:¢|I§ B[? . ]
1

:i/ﬂ- dw —ﬂ.n,l —/[)7;172
2p J—= 27| B(w)?

Requires |B(w)]|
large




2 T B 2
lim E[§?] = T / Bl —dw | E[#f]
t—o00 27’(’ — |1 —n— ezw|2

Requires |B(w)]|
small

For 9-zCDP, take E[22]= %

1 /’r dw
2,0 —T 27T|B(LU)|2

Requires |B(w)]|
large

Optimizing for |B(w)| gives the theorem

172
m?xl'[B 1]:,t||2 b [

—b 1
B2 —h
_ﬂ.nfl _ﬁ.an



For linear regression:
011 = (I —n(@ ®x1))0; + &y —n Y Brwy . (25)
7=0

Multiplicative
noise



01I€+1 = (I —n(z: ® wt))eé +né&xy —n Z Brwi—r . (25)

=0

Decomposition:

t+1 =l = 77H) O+ &y — 77257’11& k)

§?1 = (I —nH)O" +n(H — z, @ 2,)0" Y for r >0, 9, =35m0 + 5.

t+1 =T —nz: ® wt)5( ")+ n(H —x; @ x1)0; )

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.



0111 = (I —n(@ ®x1))0; +n&ar —n Y Brwy . (25)
7=0

Decomposition:

o) = (I —nH)8” + gz, — nZIBth ks

15:)1—(1 77H)0( )+77(H—$t®wt)0( 4 for r > 0, t ZT—O t ¢

t+1 =T —nz: ® wt)(s( ")+ n(H —x; @ x1)0; )

Aguech, Moulines, Priouret. On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim., 2000
Bach and Moulines. Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n). NeurIPS 2013.

Key idea: E [5(()m) ® 6(()m)] — 0 as m — oo.

Thus, o< o
r=0




Experiments

v-DP-FTRL

For general problems, use g=t 2 (1 — v)!

and tune the parameter v




Language modeling with Stack Overflow | User-level DP
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Image classification with CIFAR-10 | Example-level DP

SoTA (requires O(T?) for the SDP)
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Part 2: Efficient noise generation

With near-optimal privacy-utility trade-offs

FOCS 2024



t

Orr1 = 0 — 77(915 2 — Z 57215—7)
T=1

K ﬁt= t_3/2

Quadratic time complexity:
Noise generation requires O(t) time in iteration t




Learning trajectories

HEl True gradients I Correlated noise (DP-FTRL) B 11D noise (DP-SGD)

J Surrogate: max

error
|
é\ g’vjf*’ N

Max Error Noise generation time
(in iteration t)

Independent noise @( \/ﬁ) O (dlm)
Optimal correlated noise 107ng +c O (t . dlm)



A first attempt: the banded mechanism

Setg,=0fort>b
b
Then, we only have to sum b terms in Zﬁth_T

=1

Linear complexity:
Noise generation requires O(b) time in
each iteration

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Learning trajectories

HEl True gradients I Correlated noise (DP-FTRL) B 11D noise (DP-SGD)
P g\
Y ']
o~ ~___~" Surrogate: max
fo error
|
*\/ \'v’
Max Error Noise generation time

(in iteration t)

Independent noise O ( \/ﬁ) O (dlm)

Optimal correlated noise logn +c O (t . dlm)

7

b-Banded O((\/n—/b_1)10{(%[0< ........................ O(b . dlm)

Kalinin and Lampert. Banded Square Root Matrix Factorization for Differentially Private Model Training. NeurIPS 2024



Our approach: Intuition

Consider an exponentially decaying sequence g, = « AL
t
Then, we can compute the correlated noise w; = E Brzi—r
=1

using the recurrence W11 = Q2 + A Wy_q

Linear complexity:
Noise generation requires O(dim) time in
each iteration




Our approach: Intuition

Consider an exponentially decaying sequence g, = a 71,
t
Then, we can compute the correlated noise w; = E Brzi—r
=1

using the recurrence W11 = Q2 + A Wy_q

Linear complexity:
Noise generation requires O(dim) time in
each iteration




Our approach: Intuition

: ; . — t-1 t-1
Consider sums of exponentials: Bi=a, 4, + a, i,
t
Then, we can compute the correlated noise w; = » 8-z,
T=1

using the recurrences

sﬁl =z + Nz 1+ = s§” + A2



Our approach: Intuition

: ; . — t-1 t-1
Consider sums of exponentials: Bo=a, i " + a, i,
t
Then, we can compute the correlated noise w; = » 8-z,
T=1

using the recurrences

sﬁl =z + Nz 1+ = s§” + A2

sﬁ)l =2+ Aoy 1+ = s§2) + Ao 2y



Our approach: Intuition

: ; . — t-1 t-1
Consider sums of exponentials: Bo=a, i " + a, i,
t
Then, we can compute the correlated noise w; = » 8-z,
T=1

using the recurrences

sﬁl =z + Nz 1+ = s§” + A2
sﬁ)l =2+ Aoy 1+ = s§2) + Ao 2y

_ (1) (2)
Wyl = Q1 S T Q2 841



Our approach: Intuition

: ; . — t-1 t-1
Consider sums of exponentials: Bo=a, i " + a, i,
t
Then, we can compute the correlated noise w; = » 8-z,
T=1

using the recurrences

sﬁl =z + Nz 1+ = s§” + A2
sﬁ)l =2+ Aoy 1+ = s§2) + Ao 2y
Wi = Qy 3231 + as 3(2) Linear time +

b+l \ space




Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Approximate the optimal noise coefficients with d exponentials as

O(d x dimension)

d
By ~ 5/ _ Z s N1 _— Time & space complexity:
i=1



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error
Independent noise O \/ﬁ)
Optimal correlated noise logn +c
v
b-Banded O ((\/n/b ~ 1) log b)
BLT of degree d 22222?

Noise generation time
(in iteration t)

O(dim)
O(t - dim)
O(b - dim)

O(d - dim)



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error Noise generation time
(in iteration t)
Independent noise O ( \/ﬁ) O (dlm)
Optimal correlated noise log n + ¢ @) (t dlm)
T
b-Banded O ((\/ n/b—1)log b) @, (b dim
BLT of degree d 222222 O ( d . dim
- —]

Approximation Theory!!




From sequences to functions

()_1—@12—5237—
//’ \\\
[ X
Coefficients Generating

1, =B, =By Function r,(x)




From sequences to functions

( )—1—@12—5237
- - .

//’ TN

L X
Coefficients Generating
1, =B, =By Function r,(x)

R 7

~ ~ ~ o _ - -

~———_—

Taylor expansion around x = 0



From sequences to functions

()—1—@12—5237—
- .
//’ TN
[ X
Coefficients Generating
1, =B, =By Function ro(x)
R 7
~ ~ ~ o _ - -

R

Taylor expansion around x = 0

Coefficients g, = @(t =¥2) & generating function ro(x) = (1 —x)¥?



From sequences to functions

/
[

7

( )_1—5133—5233 —

-~

-

Coefficients

1/ _[3)1/ _[52/"'

L

BLT
d
= Z Ozi)\f_l
=1

k

~

Taylor expansion around x = 0

~
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Generating
Function r,(x)
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[T

[
- Manuel Kauers |

- Peter Paule ‘

BLT generating functions

The Concrete

Tetrahedron
Theorem (Informal): Symbolic Sums, Recurrence Equations,

Generating Functions, Asymptotic Estimates

The following properties are equivalent:
d

1. p’s are a (complex) BLT sequence: @ — E ai)\ﬁ_l
i=1

1. Its generating function r(x) is a rational function of degree d

d
1. p's satisfy a linear recurrence 3, = ¢ ;-
=1




From functions to efficient noise generation

Generating Function
ro(x) = (1 —x)1?

How good
is it?

Rational approximation
r(x) = (1 — x)?




Theorem [Dvijotham, McMahan, P., Steinke, Thakurta 2024]

The max error of a sequence (g,) with generating function r(x) is

£(8) < logn

+ O(n - err(r))

T

where err(r) quantifies the approximation quality

err(r) = max r(z) — v1—z|

zeC:|x|=1-n"1




There exists a degree-d rational function that satisfies the tight
approximation bound:

Error in the rational approximation of degree d

sup |r(z) — vz| < 3 - exp(—Vd). . N N g,
mE[O,l] 1 T qgeb ! . [."\‘./ e~ Al :‘
Newman. Rational approximation to |x|. Michigan Math. J. (1964) / L 1074 9] 4 4 I H :
Vs E i ?:’E " E $[=m- degree d = 2
’ IR TR

P E === degree d =14

, < T T degree d = 8

' 0.0 0.2 0.4 0.6 0.8 1.0

where err(r) quantifies the approximation quality

err(r) = max r(z) — v1—z|

zeC: |x|=1—n




Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Max Error
Independent noise ©(v/n)
logn
Optimal correlated noise - +c
b-Banded O ((v n/b—1)log b)
BLT of degree d logn

+O(n - exp(—Vd))

™

Noise generation time
(in iteration t)

O(dim)
O(t - dim)
O(b - dim)
O(d - dim)

Suffices to take d=0(log?n)!



Our approach: Buffered Linear Toeplitz (BLT) Mechanism

Independent

Optimal correlated

Ours

Error

O(vn)

logn

logn
CLL

Noise generation time
(n: # iterations)

O(dim)
O(n - dim)

O(log?(n) - dim)



Key difference: approximation quality

Banded: Set g, =0fort > b = polynomial approximation

d
_ -1
BLT: B = ;O‘Mi = rational approximation

BNCYCLOPEDA OF NATHEMATICS AND ITS AFVUCATIONS 39

»

APPROXIMANTS

2nd EDITION

GEORGE A. BAKER, JH.
PETER GRAVES-MORRIS




Approximation quality: banded mechanism

Generating function as © — 1 0 Coefficients

100_
10 3
— ]l — & 1071
b = 10 bands 0

i

== b =100 bands ey
----- b = 1000 bands 103
—1072 4

02
—107" -
—10°

00 09 099 0999 09999 0.99999 100 o e
z n

Note: here, we use a polynomial approximation to 1 / (1 — x)¥/? rather than (1 — x)/?



Approximation quality: BLT mechanism

Generating function as x — 1 o Coefficients
10° B
——--.. A /1 — .r ‘
—107% 1
— == degree d =2
107!
=== degree d =3
""" degree d =4 —1072
degree d =5
—2 ]
10 o
00 09 099 0999 0.9999 0.99999 R
x n

Note: BLT approximation of 1 / (1 — x)¥/2 <  BLT approximation of (1 — x)/2

[McMahan and P. (2025)]



Empirical Results

Excess Error

0.30 1

0.25 1

0.20 1

0.15 1

0.10 1

0.05 1

0.00

Excess Max Error

Lower bound

-.- Toeplitz
= BLT

10!

10? 10° 10*
Number of steps n




Practical Impact:
Google’s production language model (Portuguese)

0.140
> 0.135 -
©
5
9
<
© 0.130 -

TreeAgg BLT6k
—4— BLT
0-125 I I I 1 1
2 4 6 8 10

DP Guarantee s Plot: McMahan, Xu, Zhang (2024)



Conclusion and Open Problems



Goal: Better privacy-utility trade-offs

N N N
(O] ~ Ul

Test accuracy (%)

N
N

:/ R
./ Correlated noise

o uniformly beats
// independent noise
@

| i A E——Tlld
// ----------- L A LTt Independent noise (+ ampiif.)
i —=— Correlated noise (no ampii.)
— Correlated noise (+ amplif.)
1.0 2.0 4.0 8.0 16.0

Privacy budget € at 6 =107°

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Part 1: Correlated noise algorithms are provably better

(Anti-) correlated noise provably High
beats independent noise effective
. . dimension
dimension d
effective dimension d_
. Low
Independent noise 0(d) :
effective
Correlated noise O(detr) dimension

Lower bound Q(desr)




Part 2: Near-optimal noise generation time complexity

{
Ori1 = 0y — n(gt + 2t — Z 572’75—7)
T=1

Our approach: Approximate the noise coefficients as

O(d x dimension)

d
— / Time & space:
Bt%@g:zai)\g : y
i=1

Error: If d = O(log?(n/c)), then the error is £(8") < &(B) + ¢

(n = Number of steps)



Coming soon: Survey/tutorial on
correlated noise mechanisms! PRI T
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Open Problem: Continuous time limits

Opp1 =0, —n{g: +

<t

t
o Z 57'Zt—7'
T=1

Proceedings of Machine Learning Research vol 195:1-44, 2023 36th Annual Conference on Learning Theory

Universality of Langevin Diffusion for Private Optimization, with
Applications to Sampling from Rashomon Sets

Arun Ganesh ARUNGANESH @ GOOGLE.COM

Google Research

Abhradeep Thakurta ATHAKURTA @ GOOGLE.COM
Google DeepMind

Jalaj Upadhyay JALAJ.UPADHYAY @ RUTGERS.EDU

Rutgers University

- |

Precise analysis
(better rates)

Algorithm design




Open Problem: Multi-epoch Learning Guarantees

Assumptions in this talk:

Streaming setting: Suppose we draw a fresh data
point x,~P in each iteration t (i.e. only 1 epoch)

Precise analysis

Better algorithms




Open Problem: Adaptive Gradient Algorithms

SGD update (without noise) Adam update (without noise)
t—1 v = (1 — B1)vim1 + Bige
0 — 0y = — E gr st = (1 — Ba)si1 + Pagy
0 Opy1 = 0 i
i pr— —_
t+1 t — 1 506
A
|
I
I
I

]
Non-linear functions of the injected noise “/



Advertisement: MS/PhD Openings in my group at IIT Madras

e Areas of interest in ML/AI:
o Privacy-preserving Al
o Making (generative) Al more robust
o Applications in healthcare + public good

e Flavour:
o Theoretical foundations +
o State of the art empirical performance +
o Real-world applications



Thank youl



Future Work

Theory
e Averaged iterate analysis + precise finite time bounds
e Analysis for non-Toeplitz systems

Ruppert. Efficient Estimations from a Slowly Convergent Robbins-Monro Process. 1998
Polyak and Juditsky. Acceleration of Stochastic Approximation by Averaging. SIAM ] Control Optim. (1992)

Jain, Kakade, Kidambi, Netrapalli, Sidford. Parallelizing Stochastic Gradient Descent for Least Squares
Regression: Mini-batching, Averaging, and Model Misspecification. JMLR (2018).



DP-FTRL: privatize prefix sums of gradients

SGD update (without noise)

(

\90

t—1
6:—60=—) g
7=0

9 ) |1 \| [ %)
90+91 _ 1 1 ) 9:1
o) 1) ey

(
~ Call this matrix as A



Gradient Descent with Linearly Correlated Noise:
Theory and Applications to Differential Privacy

NeurIPS 2023

Anastasia Koloskova* Ryan McKenna Zachary Charles Keith Rush
EPFL, Switzerland Google Research Google Research Google Research
Brendan McMahan

Google Research

Theorem 4.7 (convex). Under Assumptions 4.1, 4.2, and 4.3, if v < Y/aL and T = é(l/'yL), then (7)
produces iterates with average error (T + 1)™* Ztho E [f(x¢) — f*] upper bounded by

2
~ | |lxo — x* o2
O(n o—x|* |

2 2
~T Thr > + 2 1<t<r by — b +“bL;JT

t=0 mod T

T
% Zt:l Hbt - b[ﬁjf

Improved analysis of DP-FTRL
No provable gap between DP-SGD & DP-FTRL (same as previous)



Empirical results for private language modeling
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Privacy Budget, ¢



