Measuring the Gap Between Mauve Neural Text and Human Text

Krishna Pillutla

Swabha Swayamdipta

Rowan Zellers

NeurIPS 2021 (Outstanding Paper Award)

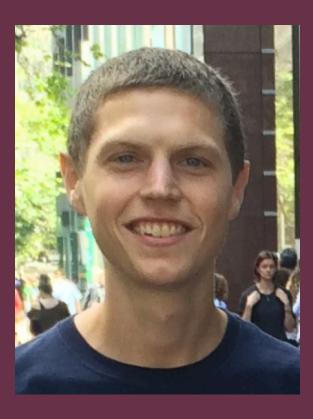
Stanford NLP Seminar, 3/3/22

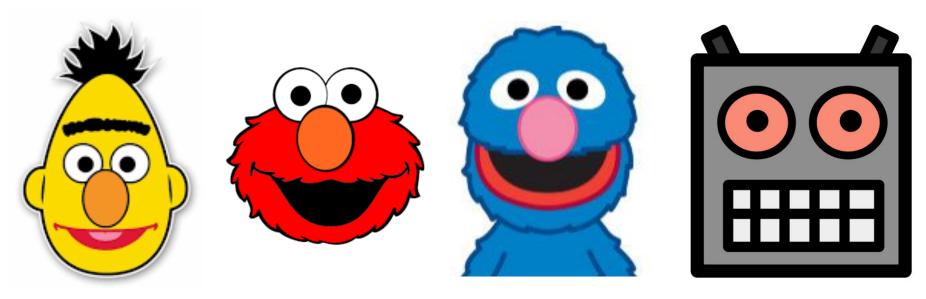
John Thickstun

Sean Welleck

Yejin Choi

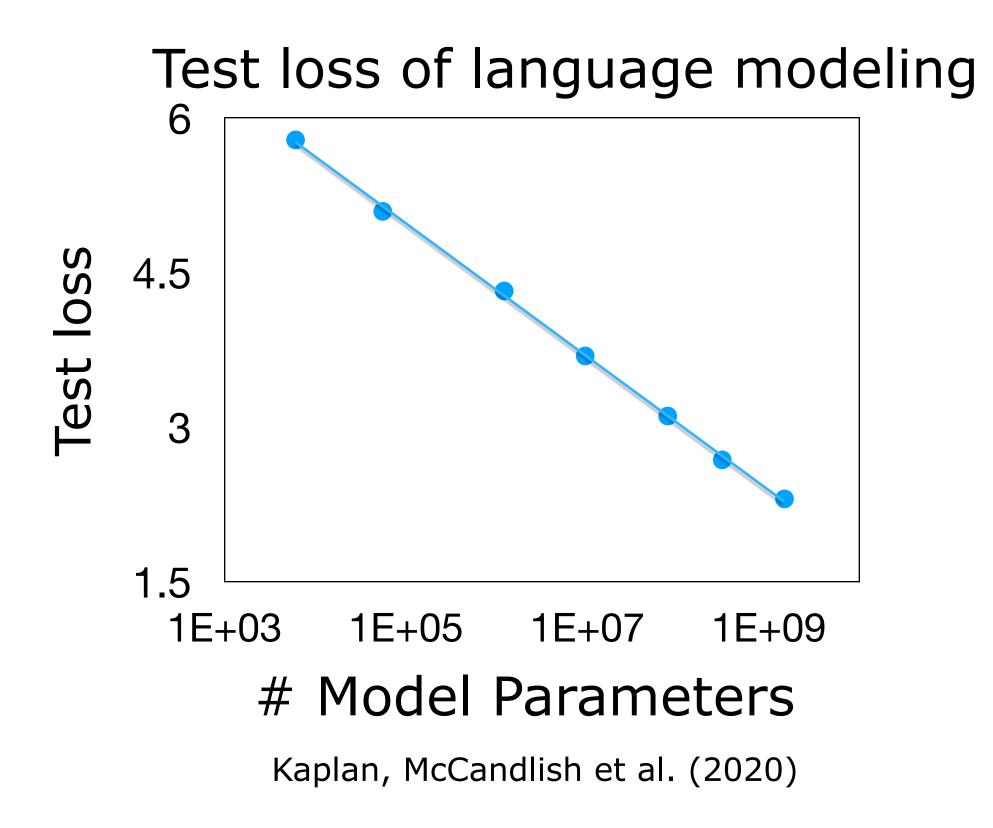
Zaid Harchaoui

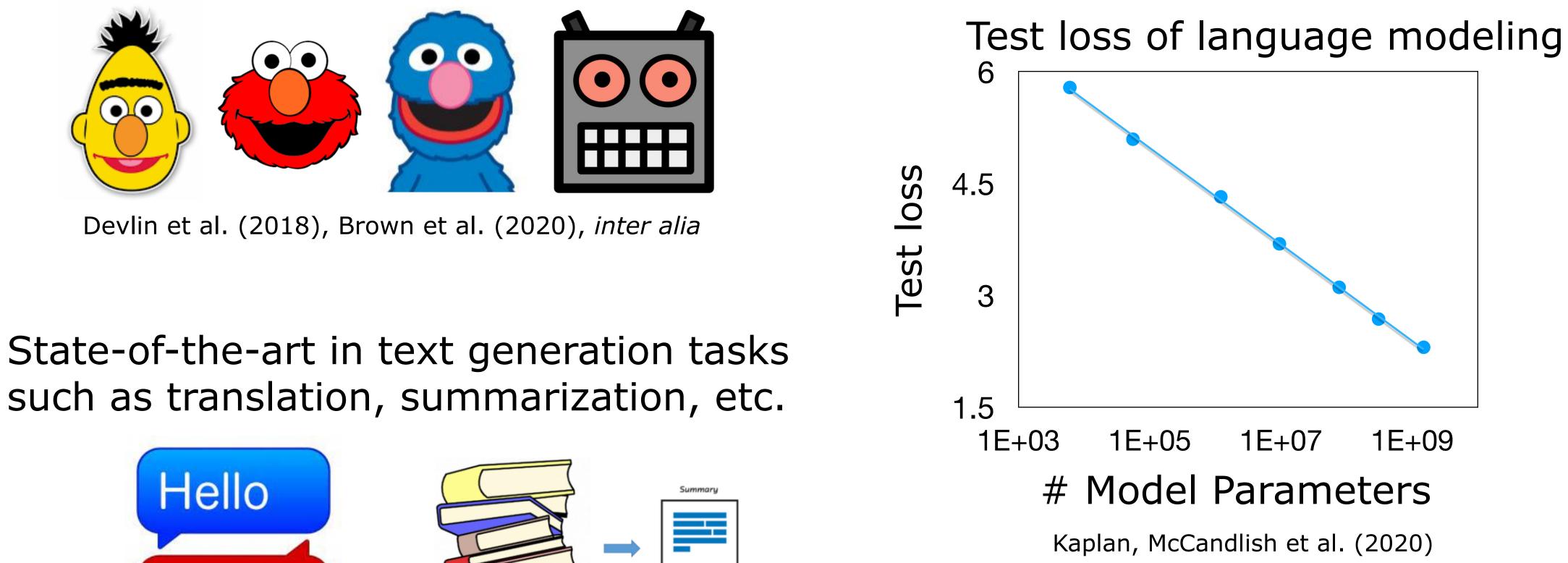




Devlin et al. (2018), Brown et al. (2020), inter alia

Enormous language models (ELMs) \implies massive progress in NLP





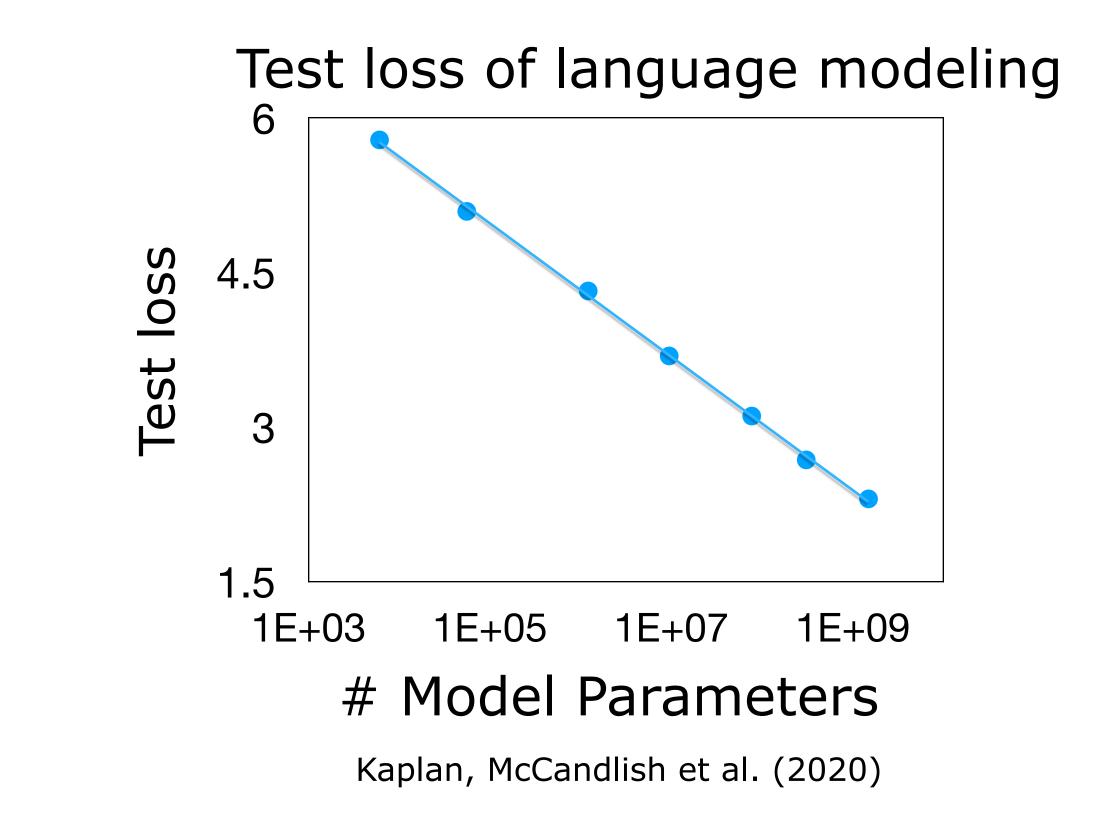
Enormous language models (**ELM**s) \implies massive progress in NLP

Enormous models \implies massive progress in all of AI

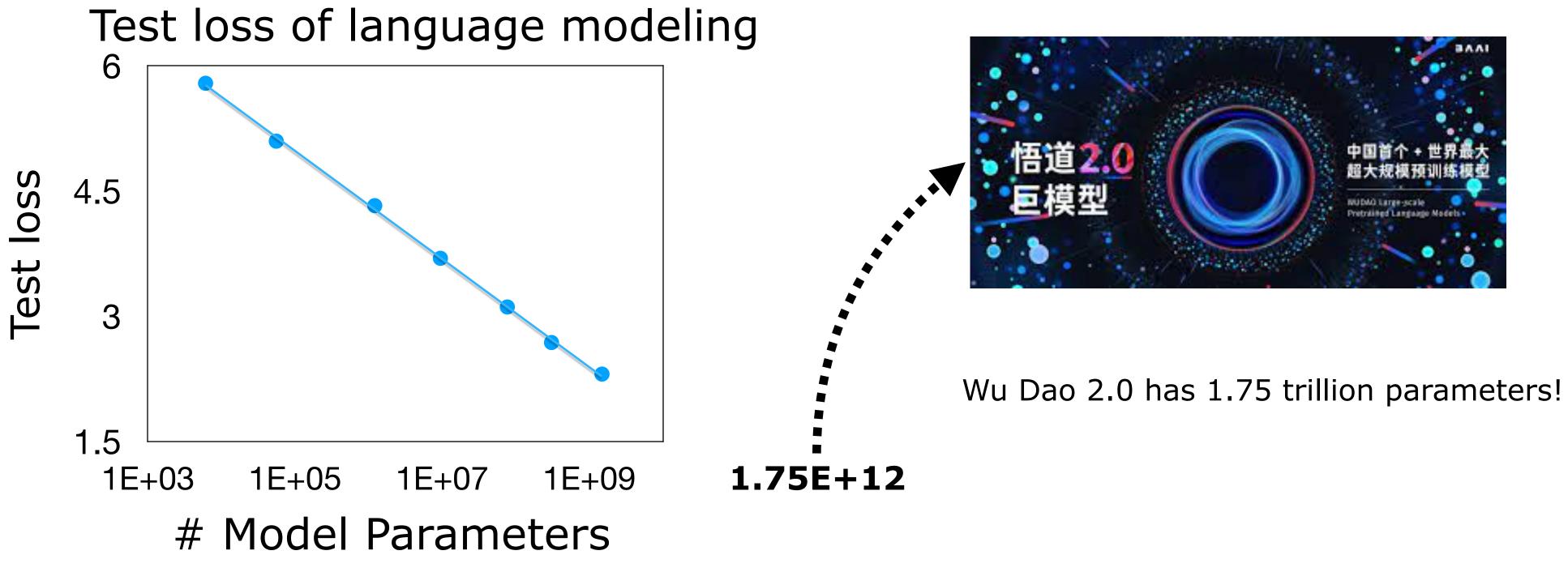
Dosovitskiy et al. (2020), Hsu et al. (2021), inter alia

Bommasani et al. (2021)

Not just language



Enormous models \implies massive progress in all of AI



Kaplan, McCandlish et al. (2020)

Not just language

Multi-modal

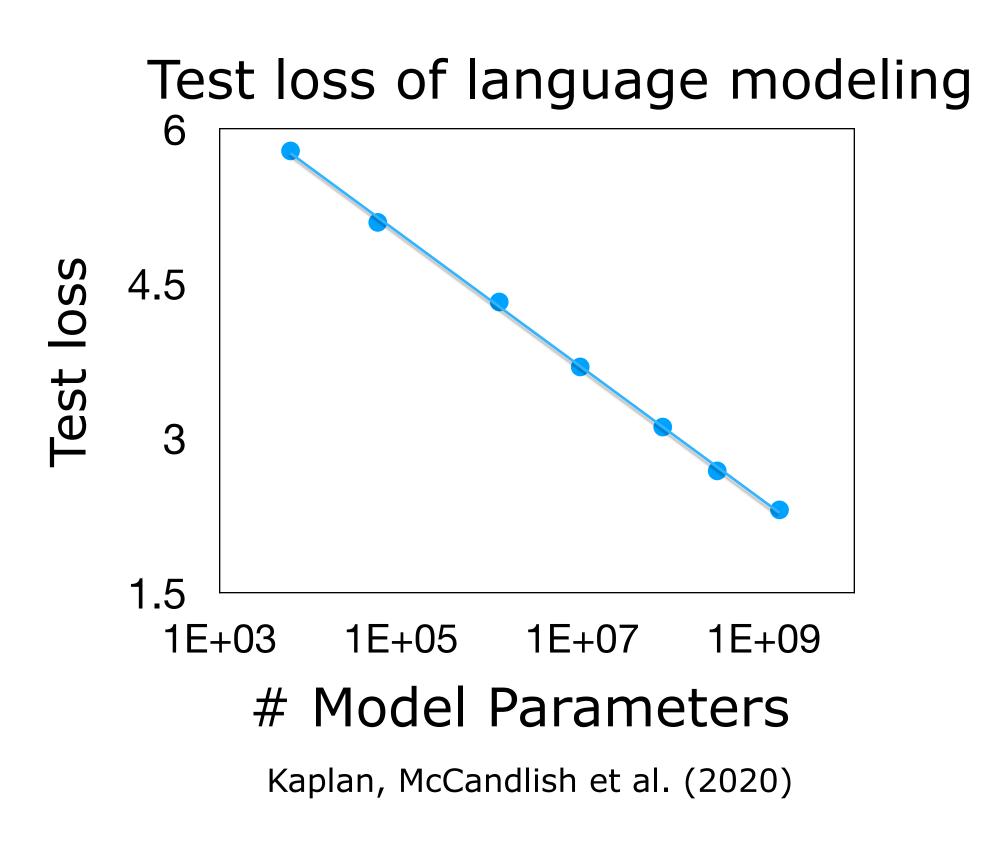
New capabilities are emerging

ELMs can write long essays now!

- >> prompt:
- In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

. . .

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These fourhorned, silver-white unicorns were previously unknown



New capabilities are emerging

ELMs can write long essays now!

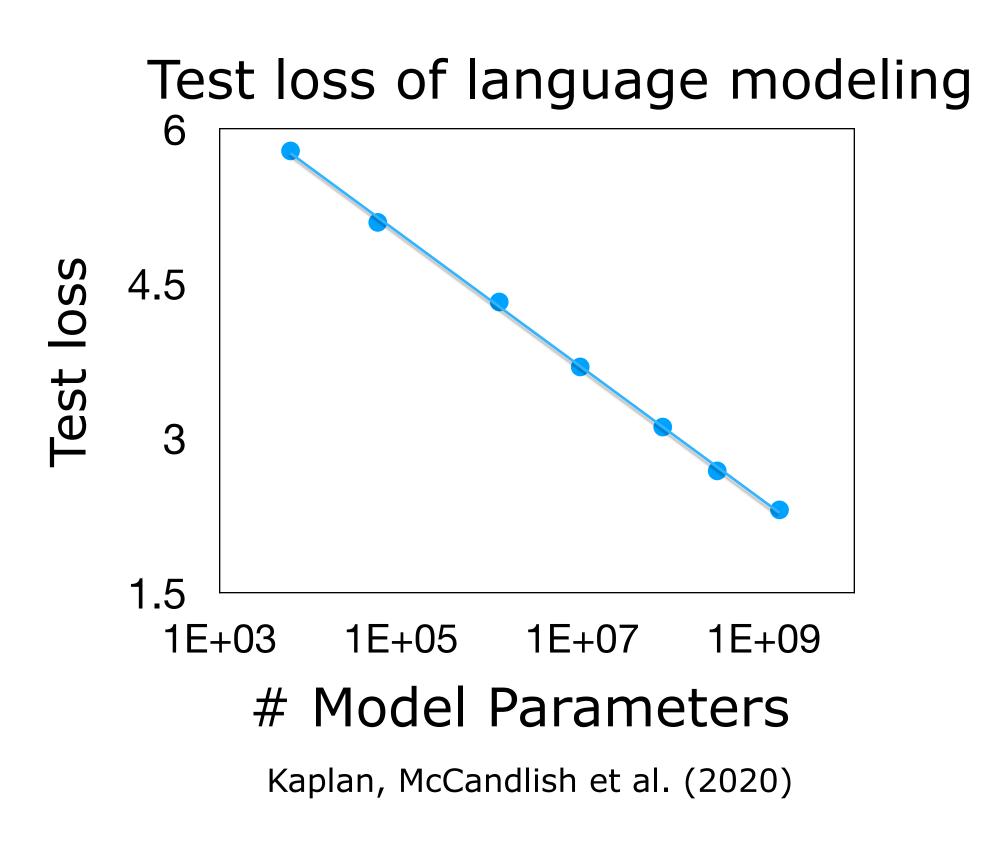
>> prompt:

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, GPT-2 after their distinctive horn, Ovid's Unicorn. These fourhorned, silver-white unicorns were previously unknown

Zero-shot prediction

- >> prompt: English: Hello! French:
- English: Hello! French: Bonjour!



• ELMs write long essays: open-ended

>> prompt:

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

 \times Q

- ELMs write long essays: open-ended
- Widely deployed commercially

ai text generator

About 75,700,000 results (0.33 seconds) Text Generation API | DeepAI

The text generation API is backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model, ...

Generate Text - InferKit app Sassbook AI Writer: High-quality AI Text Generator Use this cutting-edge AI text generator to write stories, poems ... AI Writer™ - The best AI Text Generator, promised. Let the AI Content Generator do all the hard work - Zyro

>> prompt:

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

XQ

- ELMs write long essays: open-ended
- Widely deployed commercially
- ELMs still make mistakes. But how close is it really to human text?

Google

ai text generator

About 75,700,000 results (0.33 seconds) Text Generation API | DeepAI

The text generation API is backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model, ...

Generate Text - InferKit app Sassbook AI Writer: High-quality AI Text Generator Use this cutting-edge AI text generator to write stories, poems ... AI Writer™ - The best AI Text Generator, promised. Let the AI Content Generator do all the hard work - Zyro

>> prompt:

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

XQ

- ELMs write long essays: open-ended
- Widely deployed commercially
- ELMs still make mistakes. **But how** close is it really to human text?

Google

ai text generator

About 75,700,000 results (0.33 seconds) Text Generation API | DeepAI

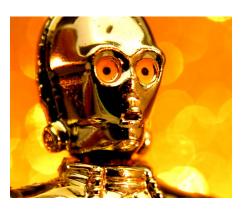
The text generation API is backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model, ...

Generate Text - InferKit app Sassbook AI Writer: High-quality AI Text Generator Use this cutting-edge AI text generator to write stories, poems ... Al Writer[™] - The best Al Text Generator, promised. Let the AI Content Generator do all the hard work - Zyro

>> prompt:

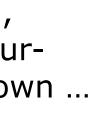
In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These fourhorned, silver-white unicorns were previously unknown ...

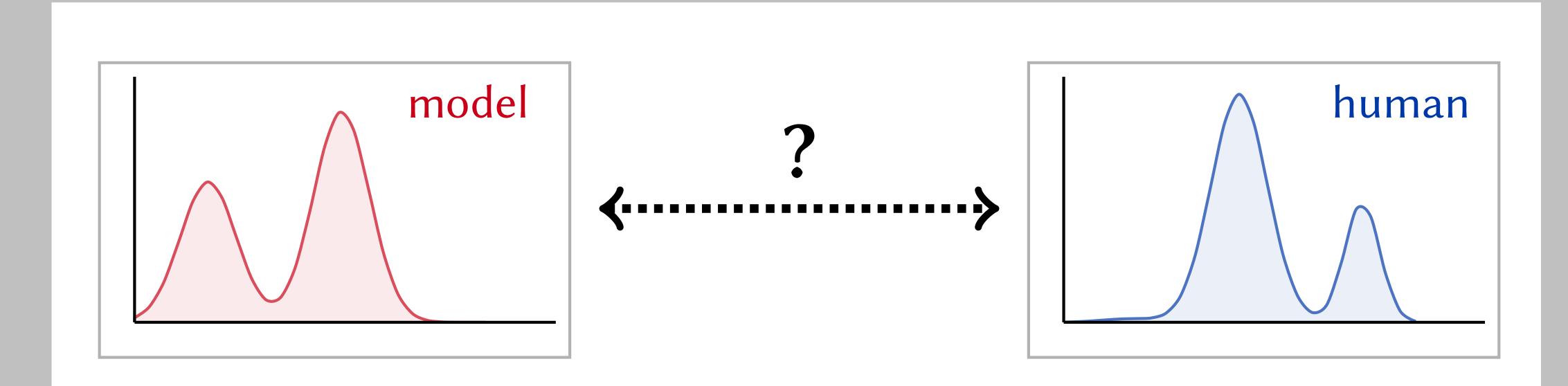


Continuation 2. This discovery has kicked off an all-out search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...



Our goal: measure the gap between the two *distributions*!



Open-ended text generation

Background and Motivation

• Mauve

- Computing Mauve in practice
- Experiments

Outline

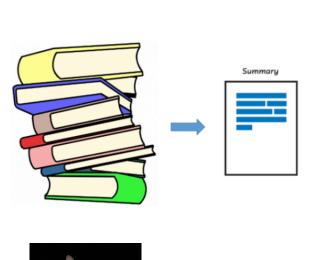
Directed

Hola

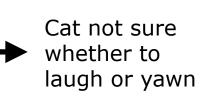
Translation

Summarization

Image captioning



 \rightarrow

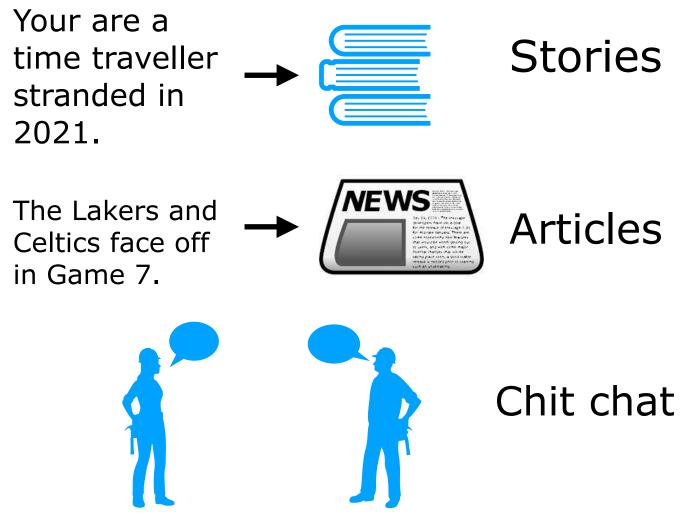


Hello

Open-Ended

Text Generation

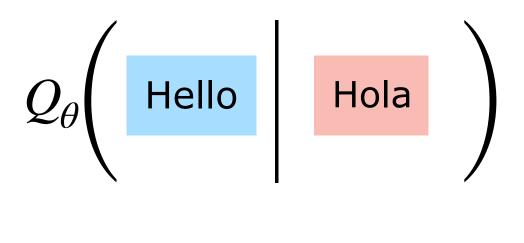
Goal-oriented dialog



Directed

Text Generation

Discriminative



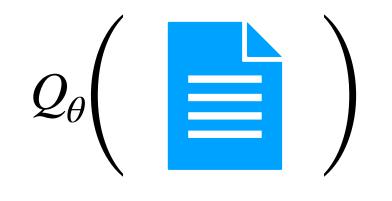
$$\approx P \operatorname{true} \left(\begin{array}{c|c} \operatorname{Hello} & \operatorname{Hola} \end{array} \right)$$

Automatic Evaluation

Open-Ended

Modeling

Generative



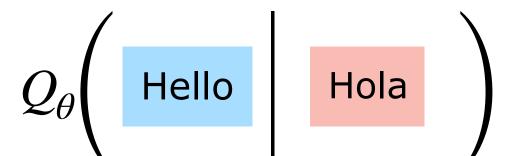
Goal

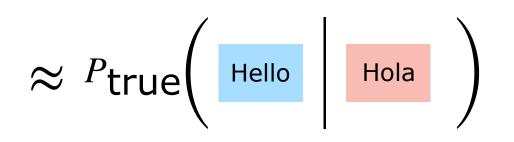
 $\approx P$ true

Directed

Text Generation

Discriminative





Compare with human ref

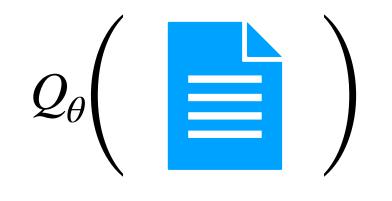
BLEU, METEOR, ROUGE, BERTScore, BLEURT, ...

Automatic Evaluation

Open-Ended

Modeling

Generative



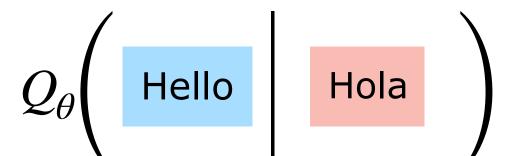
Goal

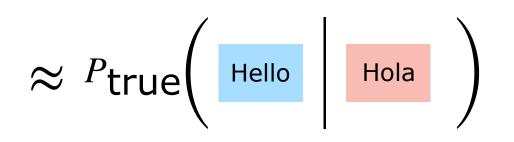
 $\approx P$ true

Directed

Text Generation

Discriminative





Compare with human ref

BLEU, METEOR, ROUGE, BERTScore, BLEURT, ...

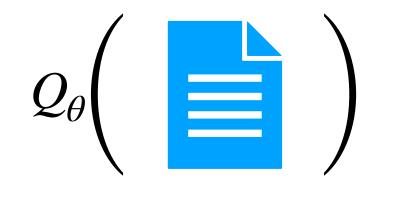
Automatic Evaluation

Goal

Open-Ended

Modeling

Generative

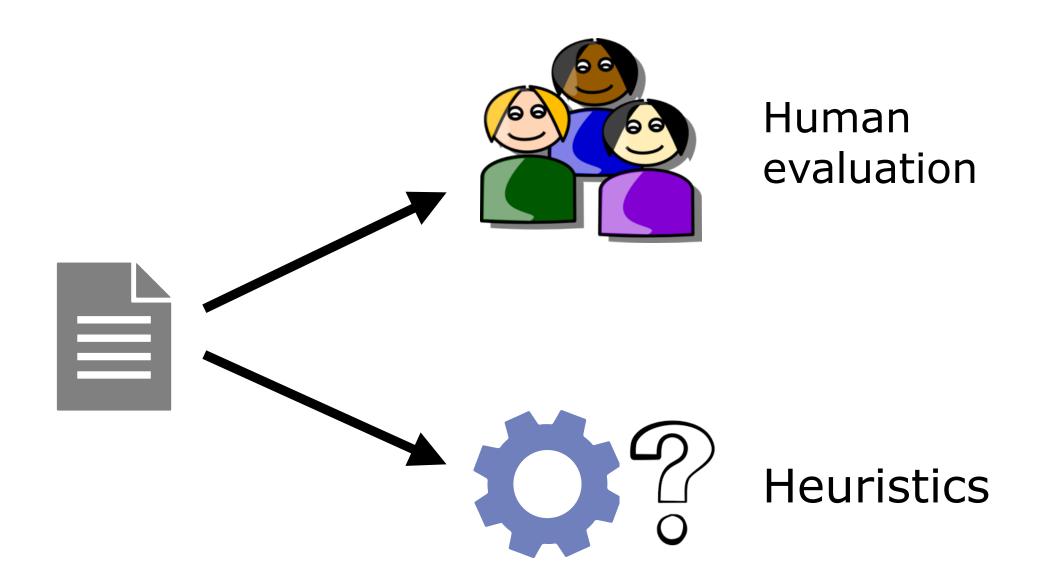


 $\approx P$ true

???

Open ended generation: How good is the model?

Numerous "correct" completions. Reference-based methods do not apply



Related: Hybrid human + automatic eval Hashimoto et al. (NAACL 2019)

Generative models in computer vision

Generative

Modeling

Goal

$\approx P$ true $\left(\boxed{\boxed{\bigcirc}} \right)$

Automatic Evaluation

Synthetic Images

Real Images

airplane

bird

cat

deer

dog

frog

horse

ship

truck

automobile

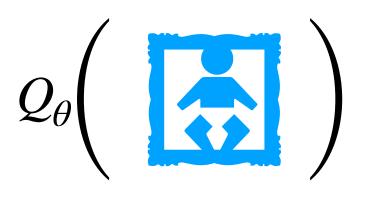
	1	H.		X	*	1	2	-17-		-
•			12		-	Test			-	×,
	S	ſ	2			4	1	1	2	-
	a state			Si.		12	E.	Å.	No.	7
	1	48	X	R		Y	Y	Y	-	
	376	C.	-	% .	1	(C)e		13	A	Tan
	.2	19	-		2 🦘	٨	and the second	5		S.
	- Adv	T.					1			
			ditte	-	144		2	180	and it	en.
			1	ġ.			Ard a	6		di

Generative models in computer vision

Modeling

Goal

Generative



 $\approx P$ true $\left(\boxed{\bigcirc} \right)$

Automatic Evaluation

 $\operatorname{Gap}(Q_{\theta}, P_{\operatorname{true}})$

Heusel et al. (NeurIPS 2017), Sajjadi et al. (NeurIPS 2018), Djolonga et al. (AISTATS 2020)

Synthetic Images

Real Images

airplane

bird

cat

deer

dog

frog

horse

ship

truck

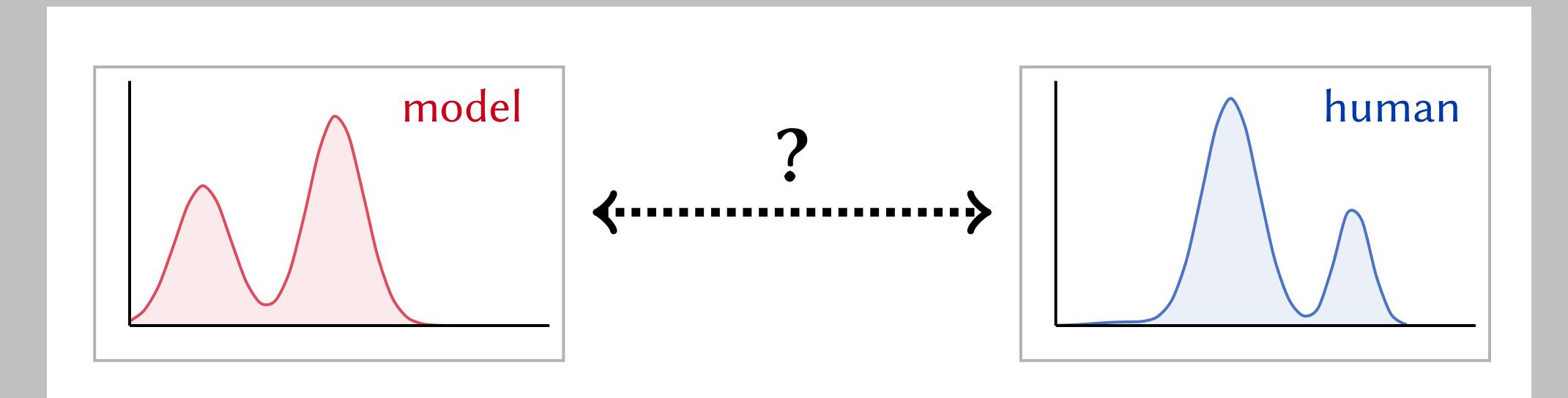
automobile

	1	1×4		X	*	1	2	-17-		-
•			1		-	The second			-	×,
	S	ſ	2			4	1	1	a la	4
				Si.			E.	Å.	No.	7
	1	48	X	R		Y	Y	1	-	\$
	37L	6	-	.	1			13	A	N.
	-7	19					A STATE	5		
	- Mar		1							
	-		ditte	-	144		Ż	12	1	.
	ALL OF		1	ġ.			And a	1		

Fréchet distance (FID) Precision-Recall Divergence frontiers

Open ended generation: How good is the model?

Our approach: measure the gap between the two *distributions*!

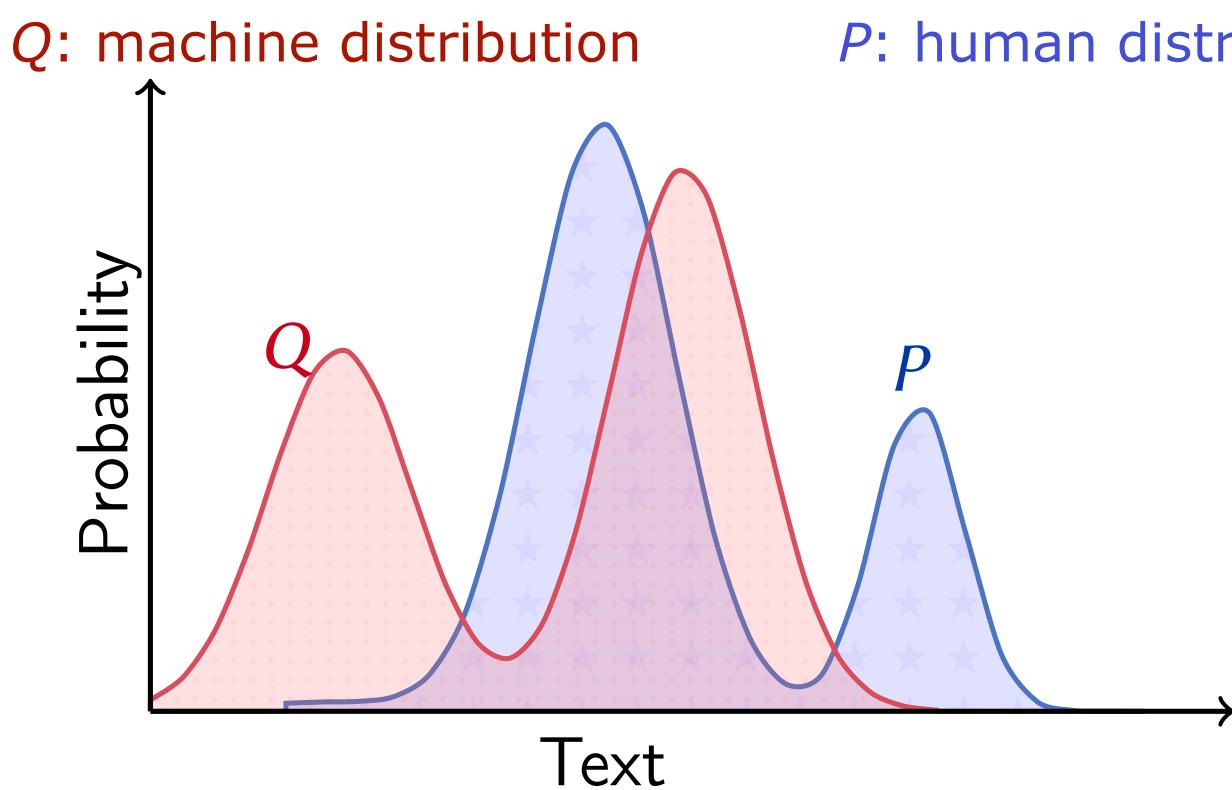


Background and Motivation

Mauve

- Computing Mauve in practice
- Experiments

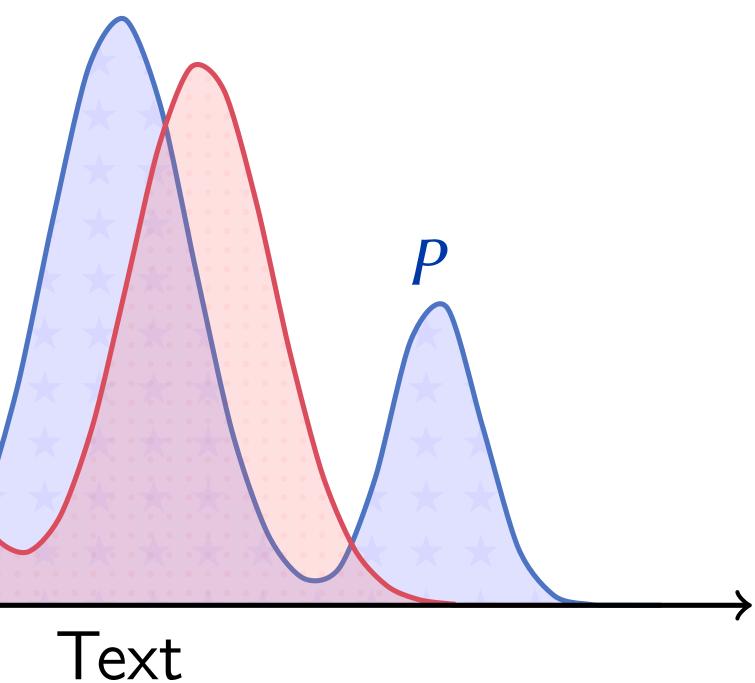
Outline



Distribution over text sequences

$$Q(x) = \prod_{t=1}^{|x|} Q(x_t | x_{< t})$$

Q: machine distribution Probability

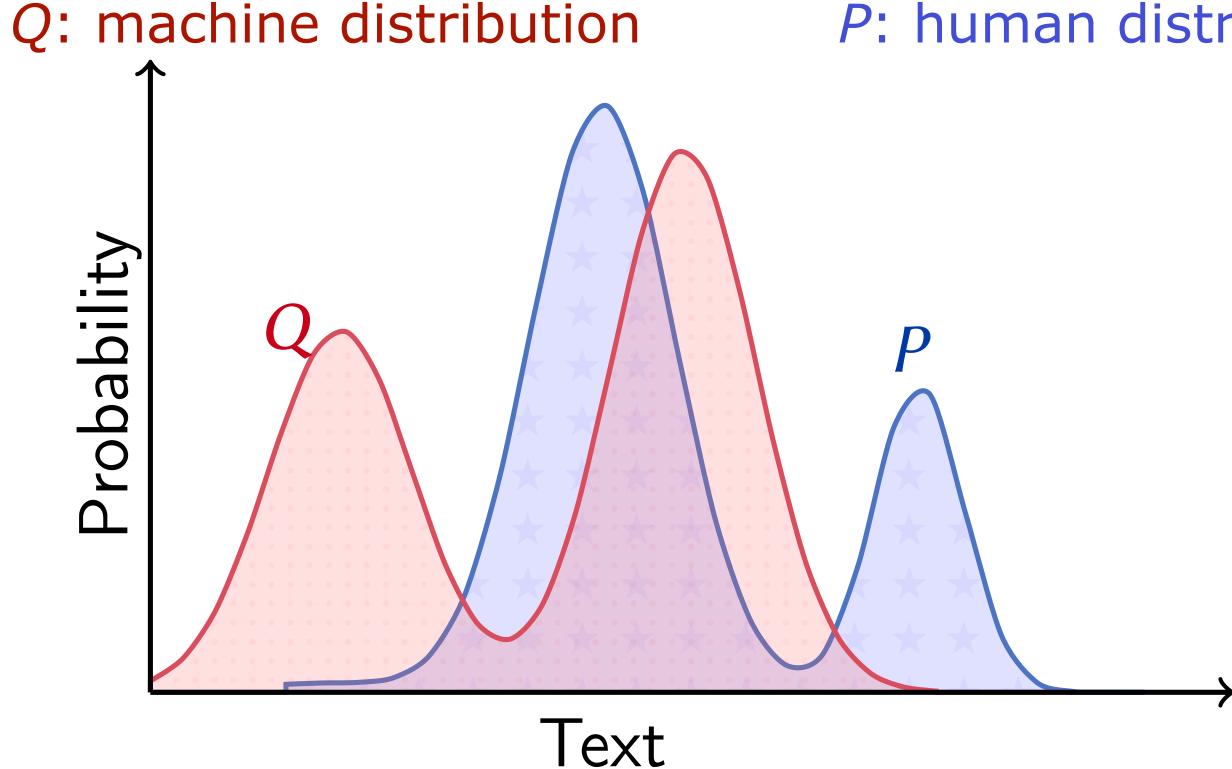


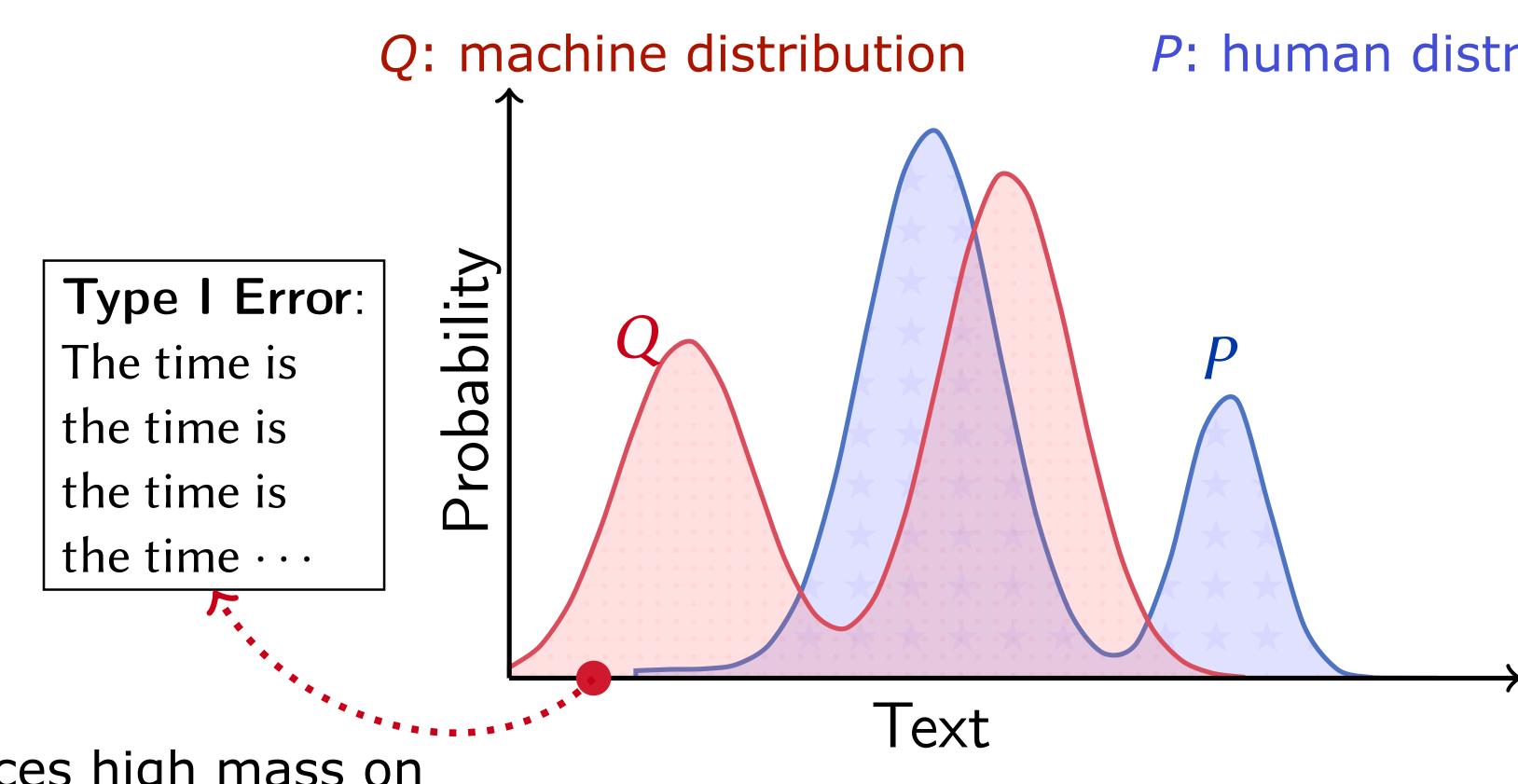
Distribution over text sequences

$$Q(x) = \prod_{t=1}^{|x|} Q(x_t | x_{< t})$$

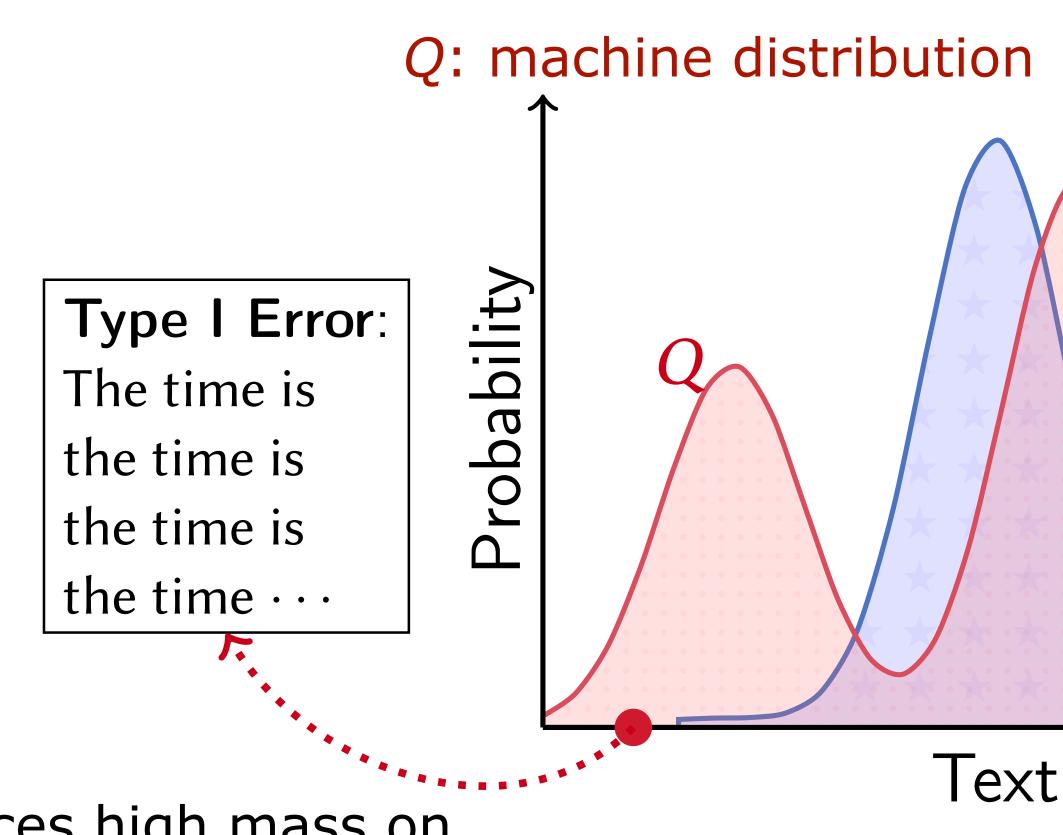
Model \hat{P} + Decoding Algo.

$$Q(\cdot | x_{< t}) = \mathsf{Decode}\left(\hat{P}(\cdot | x_{< t})\right)$$





Q places high mass on text unlikely under *P* (e.g. degenerate text)



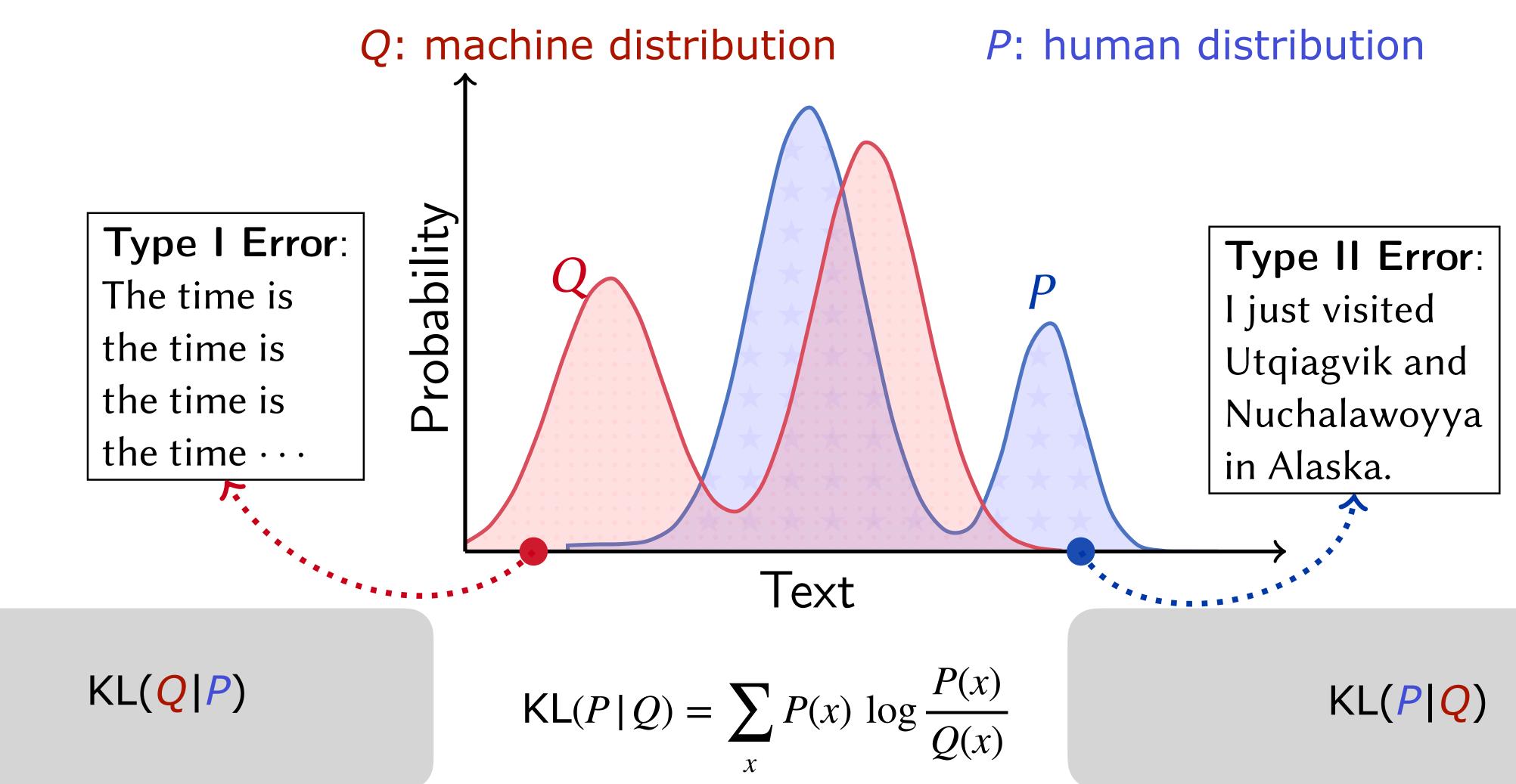
Q places high mass on text unlikely under *P* (e.g. degenerate text)

P: human distribution

Type II Error: I just visited Utqiagvik and Nuchalawoyya in Alaska.

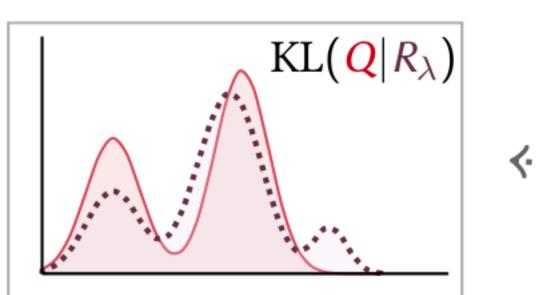
Text

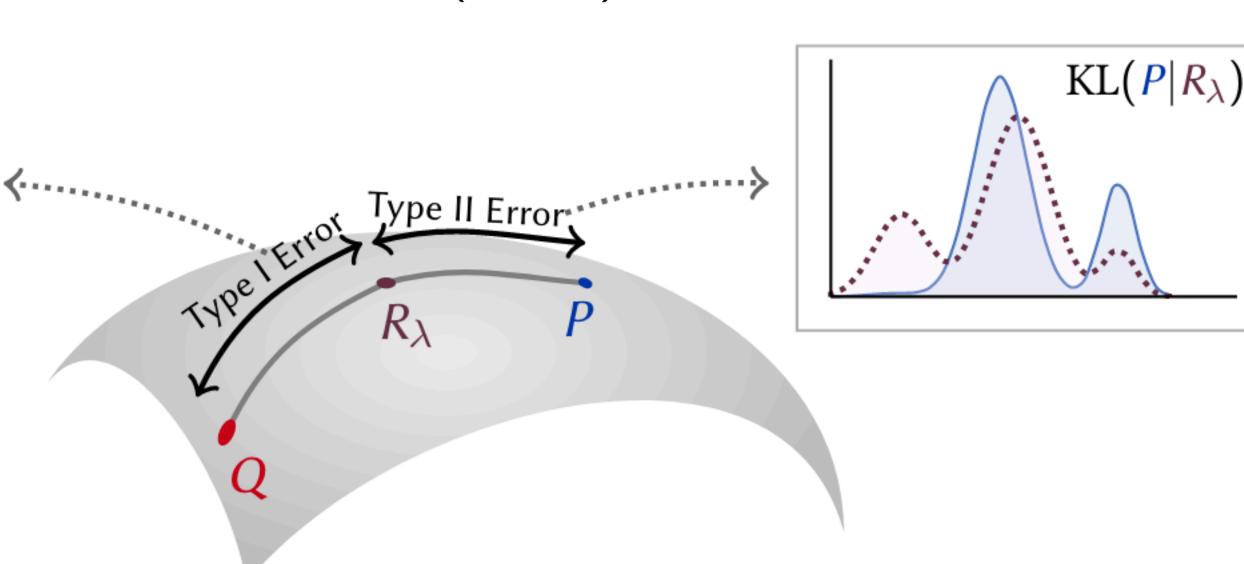
Q cannot produce text plausible under *P* (e.g. due to nucleus sampling)



Introducing mixture distributions

 $R_{\lambda} = \lambda P + (1 - \lambda)Q$



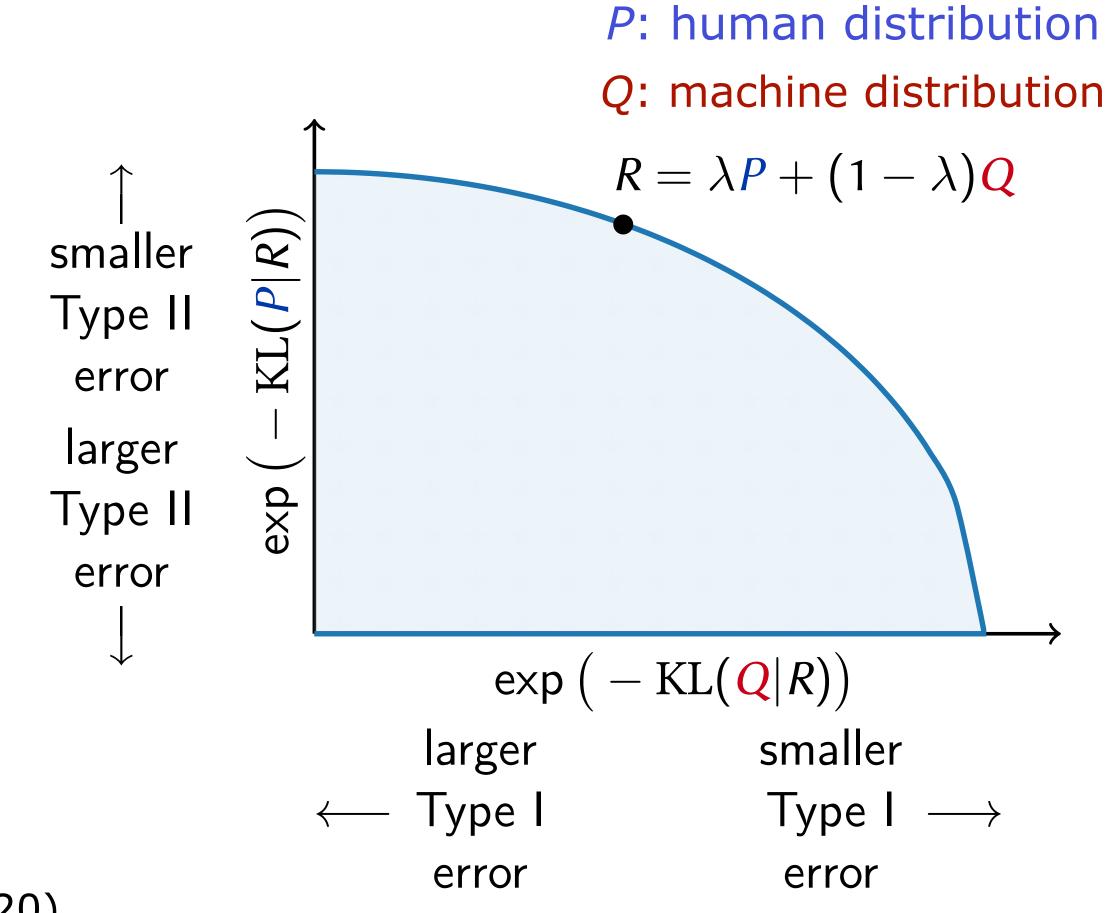


KL(Q|P) and KL(P|Q) can be infinite, so measure errors softly using mixtures

Mauve: summarizing both errors

• **Divergence Curve:** Varying the *mixture weight* captures trade-off between Type I and Type II errors

Sajjadi et al. (NeurIPS 2018); Djolonga et al. (AISTATS 2020)

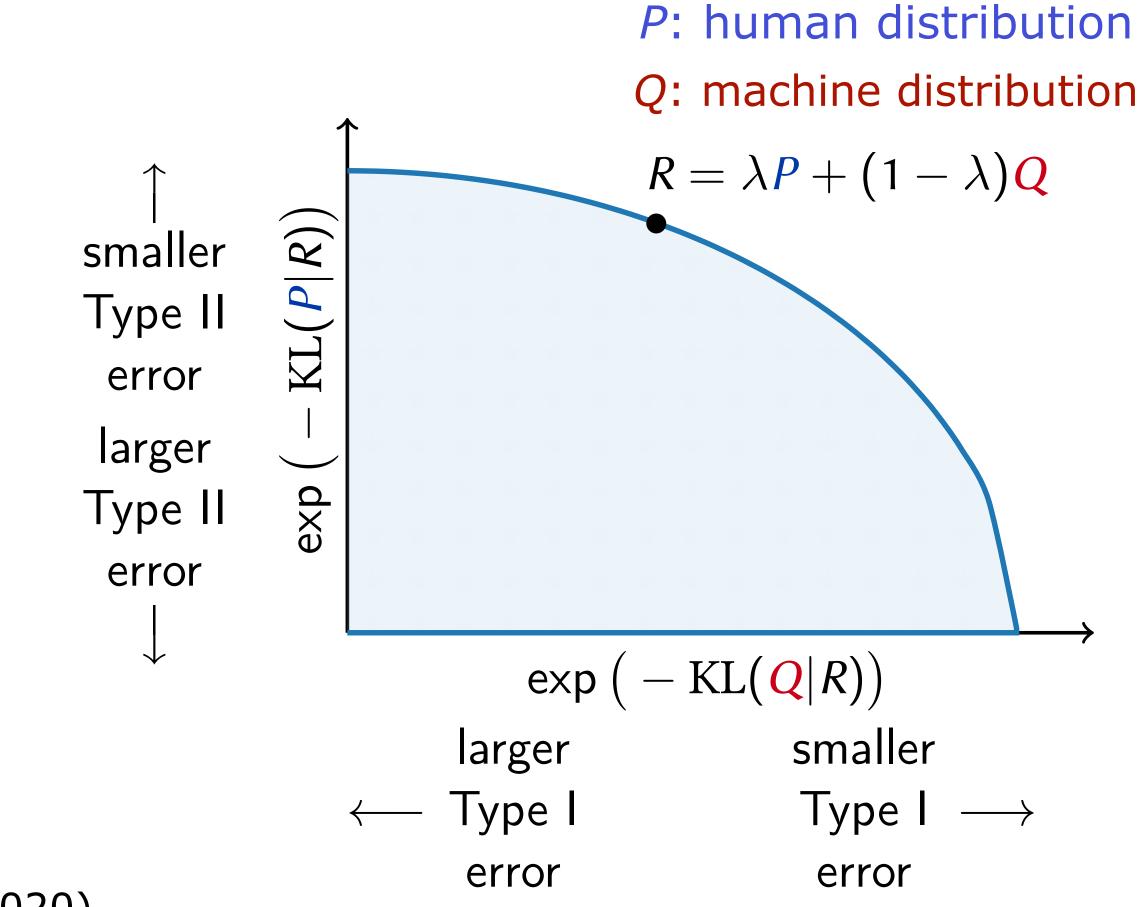


Mauve: summarizing both errors

• **Divergence Curve:** Varying the *mixture weight* captures trade-off between Type I and Type II errors

• Mauve, the area under this curve, is a quantitative measure of similarity and takes values between 0 (dissimilar) and 1 (identical)

Sajjadi et al. (NeurIPS 2018); Djolonga et al. (AISTATS 2020)



- Background and Motivation
- Mauve
- Computing Mauve in practice
- Experiments

Outline

• Sum over documents intractable for neural LMs

- $\mathsf{KL}(Q | R) = \sum_{x} Q(x) \log \frac{Q(x)}{R(x)}$

• Sum over documents intractable for neural LMs

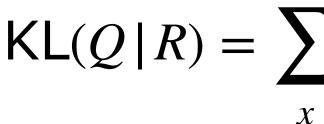
 $\mathsf{KL}(Q | R) = \sum_{x} Q(x) \log \frac{Q(x)}{R(x)} \quad \leq \quad$

neural LMs $Q(x) \log \frac{Q(x)}{Q(x)}$

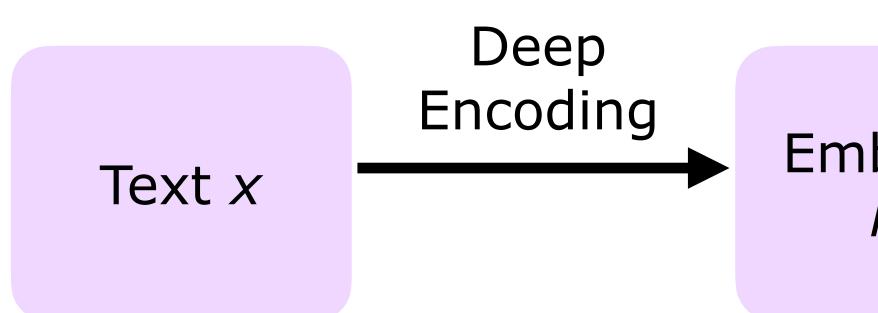
Monte Carlo?

Human prob. *P* not known

Sum over documents intractable for neural LMs



Computation pipeline



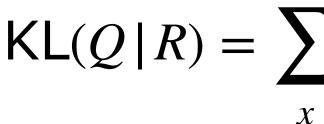
 $\mathsf{KL}(Q | R) = \sum Q(x) \log \frac{Q(x)}{R(x)} \quad \checkmark$

Monte Carlo?

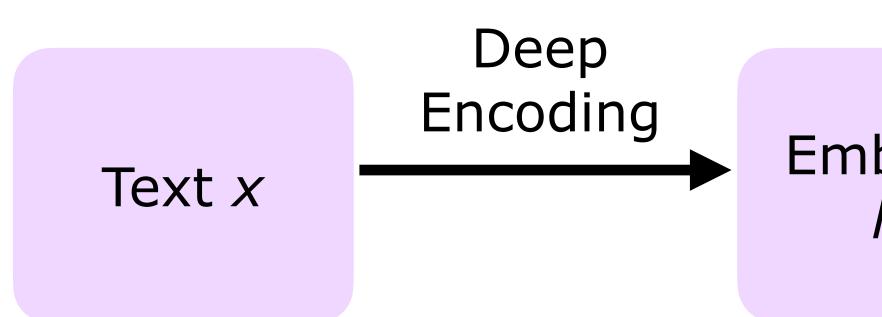
Human prob. *P* not known

Embedding M(x)

Sum over documents intractable for neural LMs



Computation pipeline



 $\mathsf{KL}(Q | R) = \sum Q(x) \log \frac{Q(x)}{R(x)} \quad \checkmark$

Monte Carlo?

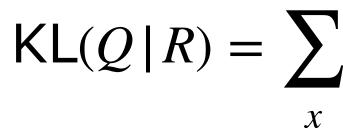
Human prob. *P* not known

Embedding M(x)

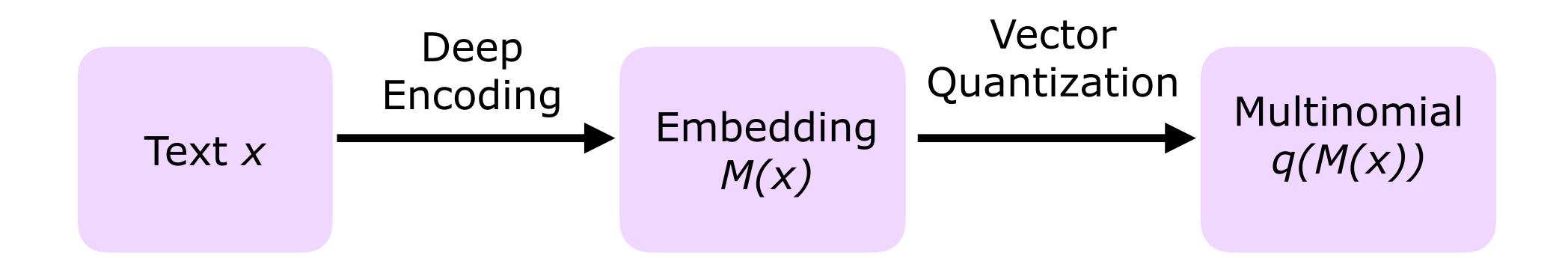
Estimating KL of continuous high-dim distributions from samples: Hard

Computing Mauve in practice

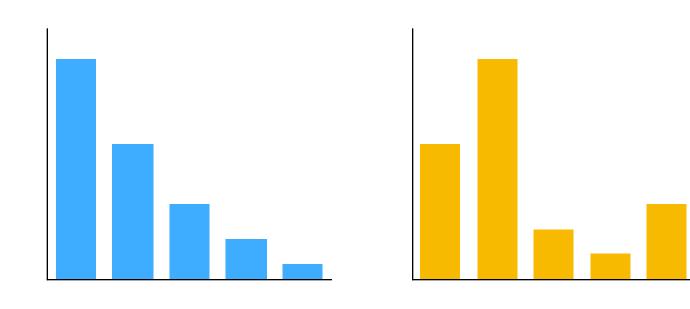
• Sum over documents intractable for neural LMs



Computation pipeline



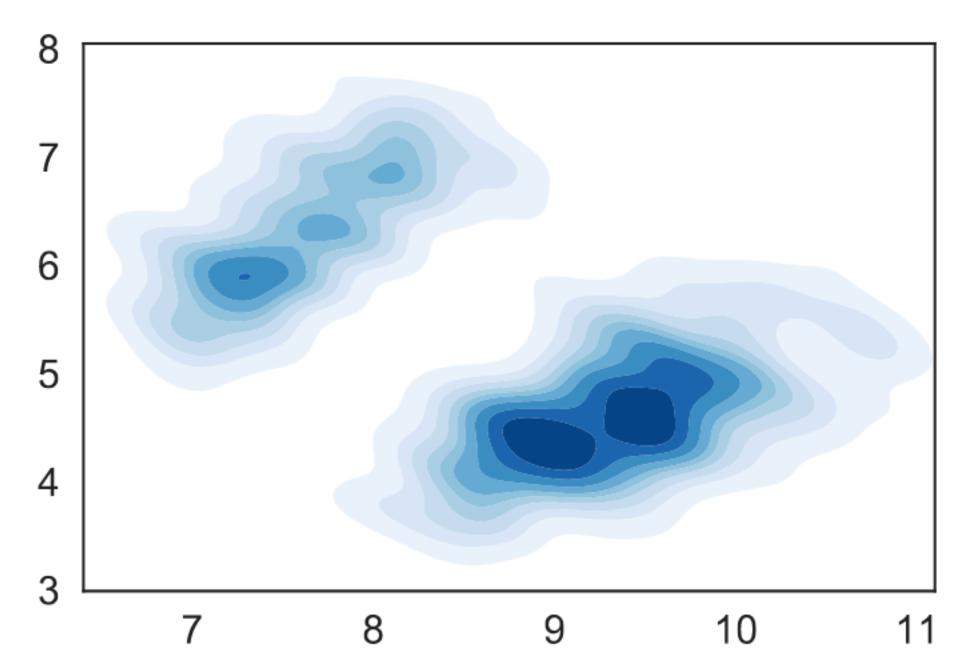
$$Q(x) \log \frac{Q(x)}{R(x)}$$



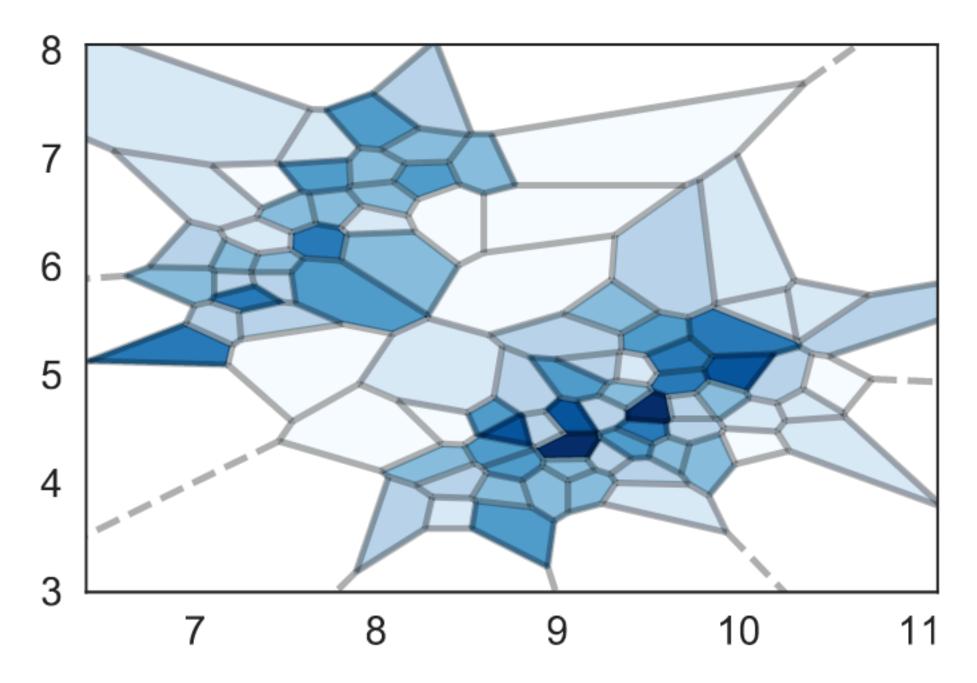
Computing Mauve in practice

Vector quantization

Continuous 2D distribution



Quantized distribution

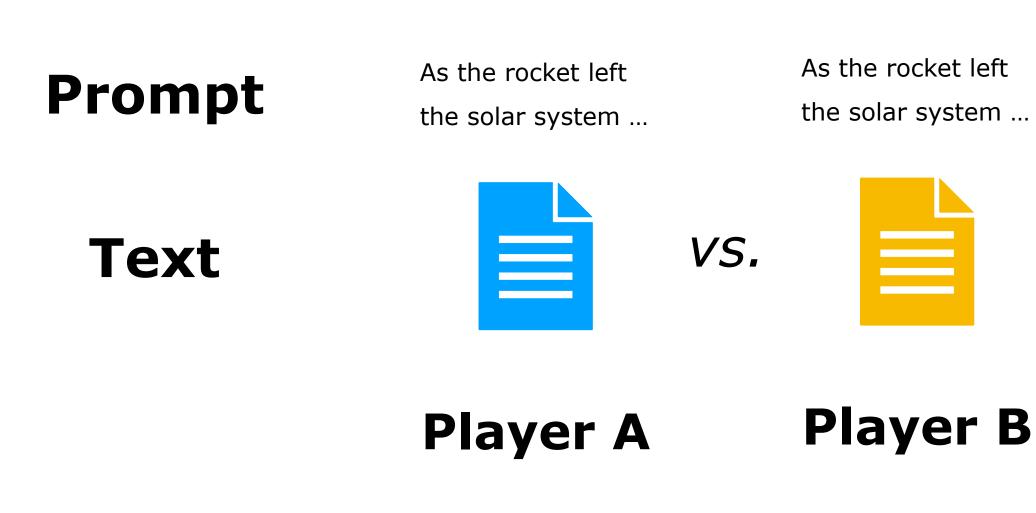


- Background and Motivation
- Mauve
- Computing Mauve in practice
- Experiments

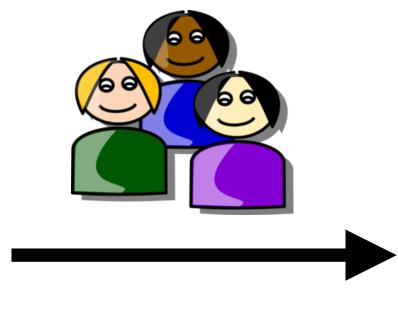
Outline

Human judgements

We compare text written by humans and 8 models



Head-to-head: Is A or B more (a) human-like, (b) interesting, (c) sensible?



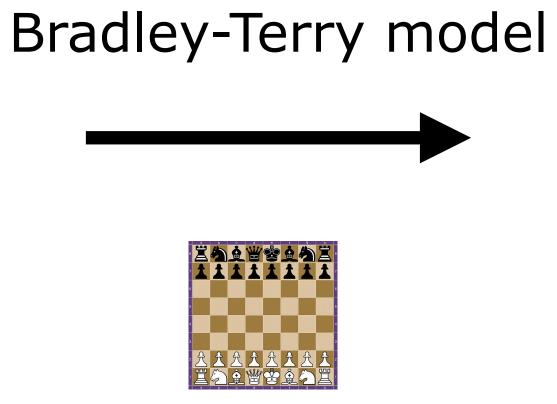
Human judgements

We compare text written by humans and 8 models

Head-to-head record

Head-to-head: Is A or B more (a) human-like, (b) interesting, (c) sensible?

Ranking



Spearman Correlation w/ human eval (1)

Sensible

Gen. PPL. Self-BLEU

Spearman Correlation w/ human eval (1)

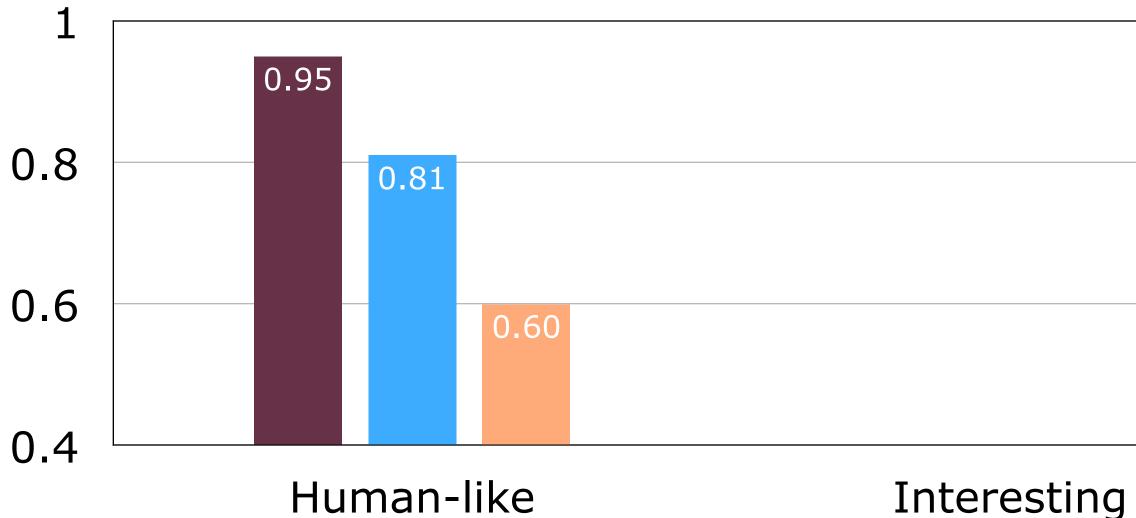
Gen. PPL.: Holtzman et al. (ICLR 2020)

Sensible

Self-BLEU: Zhu et al. (2018)

Gen. PPL. Self-BLEU

Spearman Correlation w/ human eval (1)



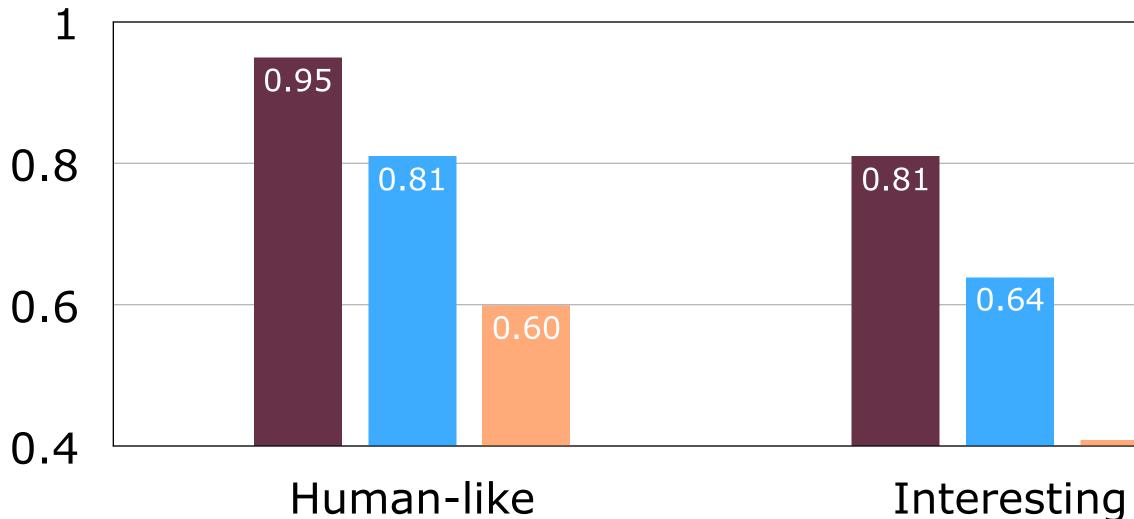
Gen. PPL.: Holtzman et al. (ICLR 2020)

Sensible

Self-BLEU: Zhu et al. (2018)

Gen. PPL. Self-BLEU

Spearman Correlation w/ human eval (1)



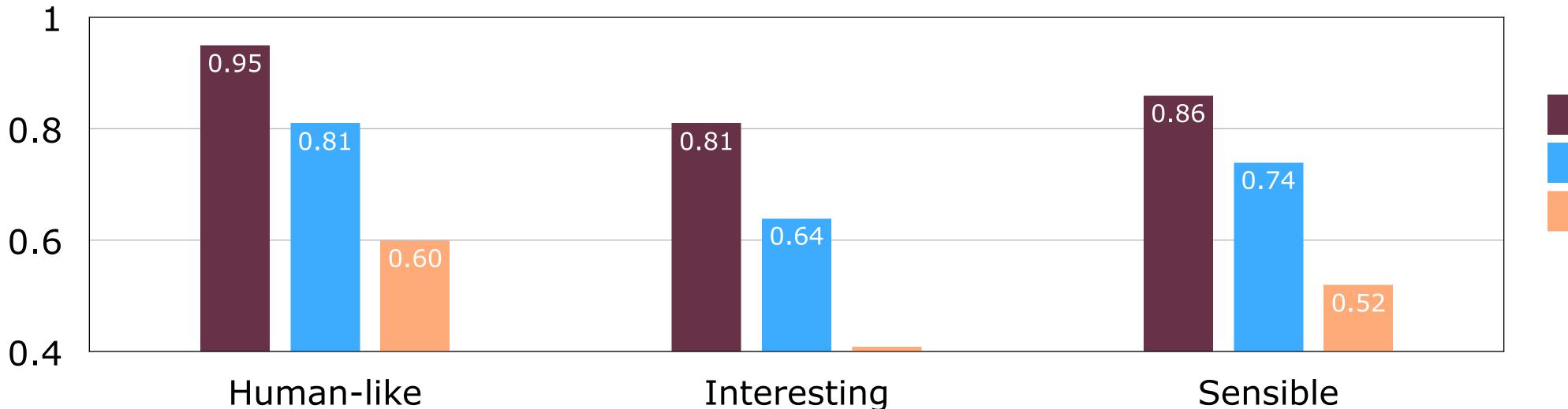
Gen. PPL.: Holtzman et al. (ICLR 2020)

Sensible

Self-BLEU: Zhu et al. (2018)

Gen. PPL. Self-BLEU

Spearman Correlation w/ human eval (1)

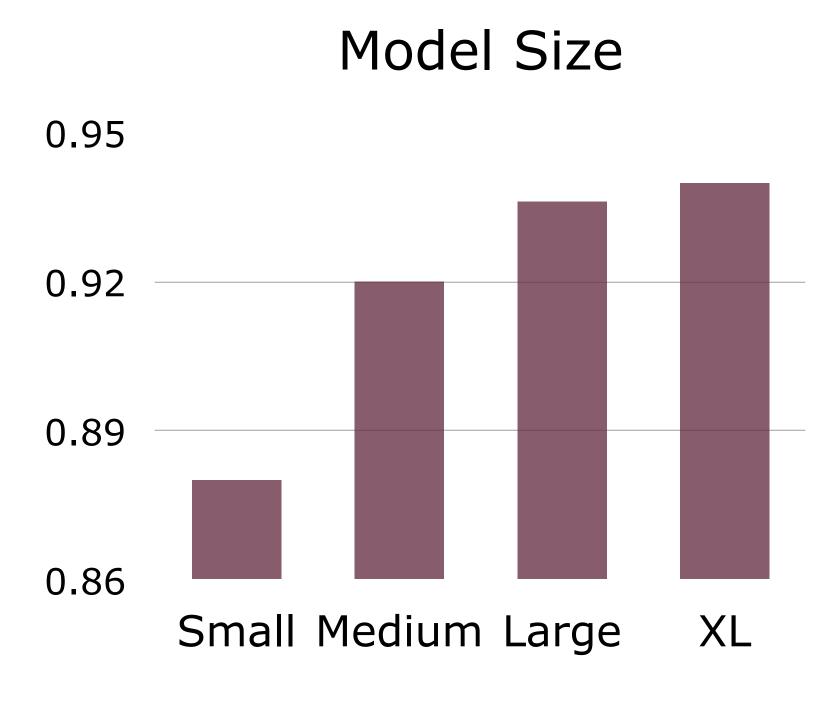


Gen. PPL.: Holtzman et al. (ICLR 2020)

Mauve Gen. PPL. Self-BLEU

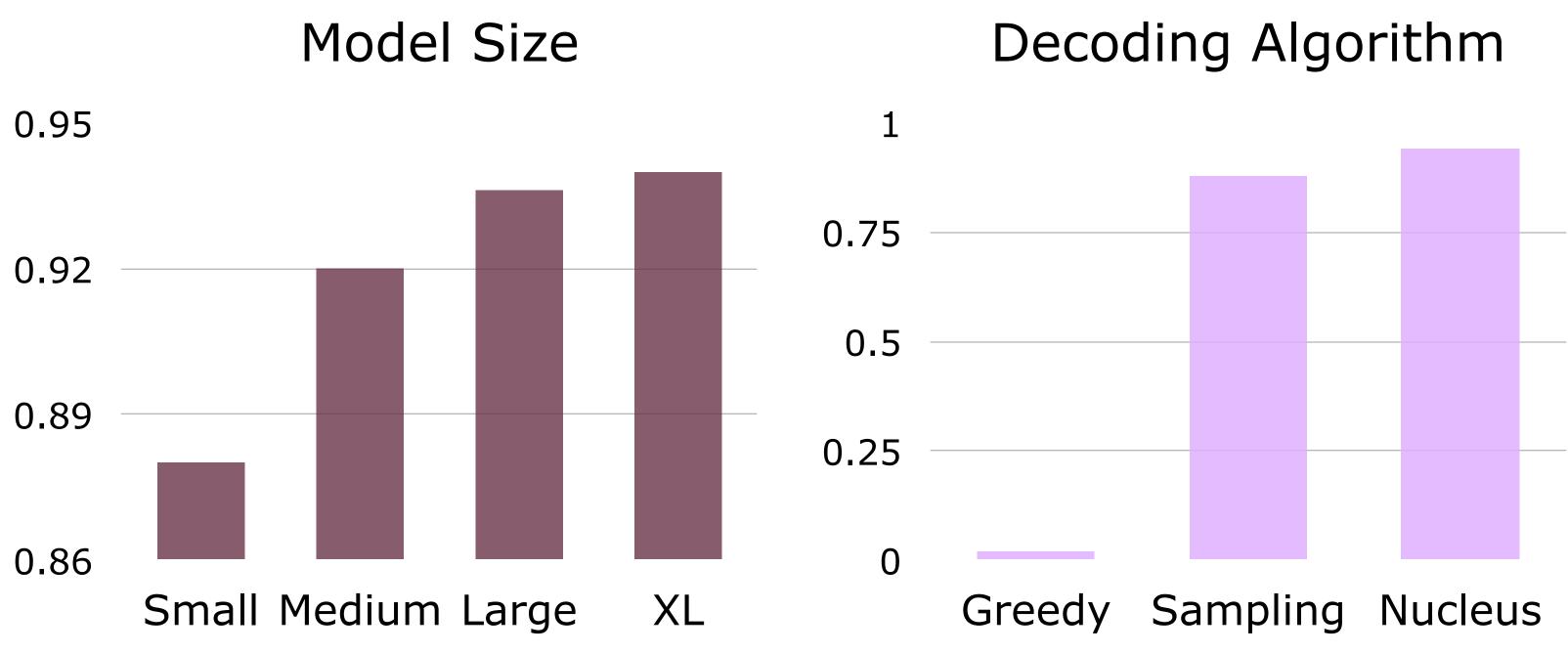
Self-BLEU: Zhu et al. (2018)

Mauve captures important trends



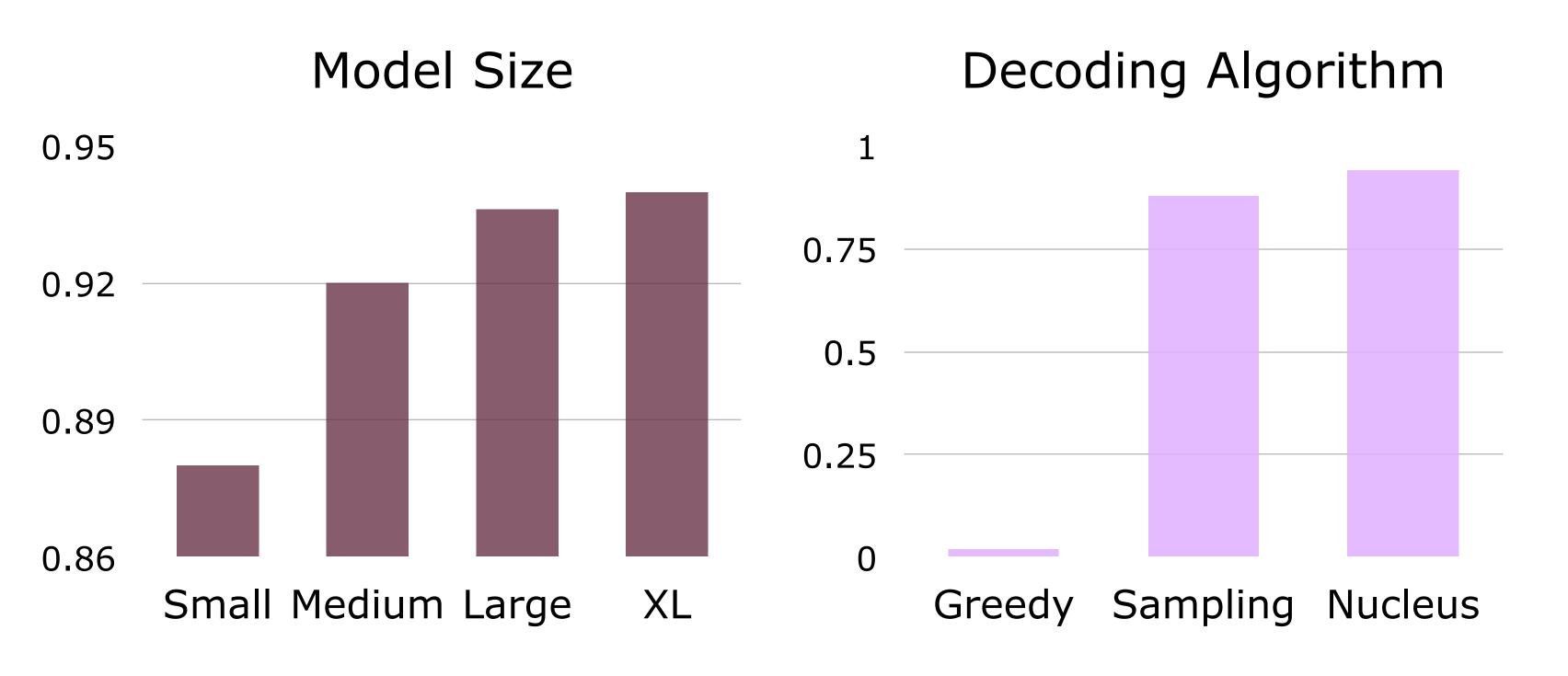
• Y-axis shows Mauve (1)

Mauve captures important trends

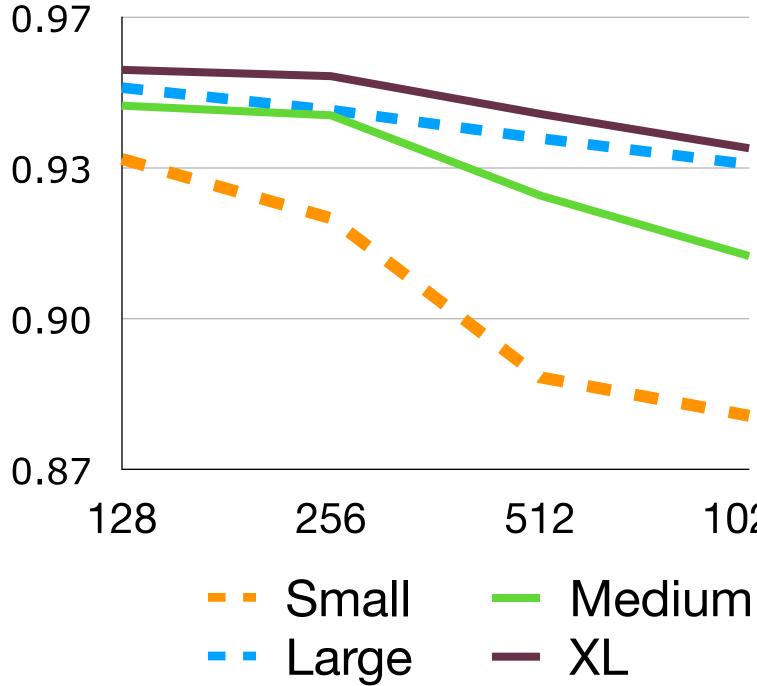


Y-axis shows Mauve (1)

Mauve captures important trends



Y-axis shows Mauve (1)

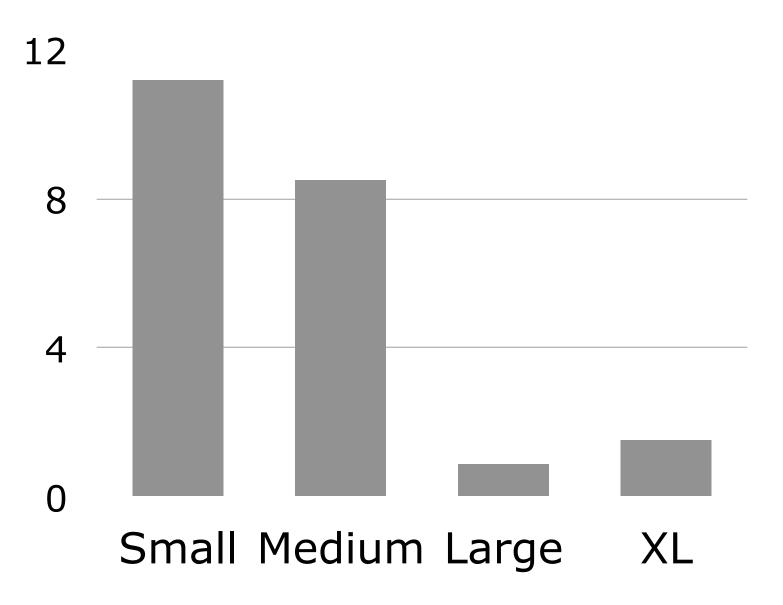


Text Length

Baselines fail to captures important trends

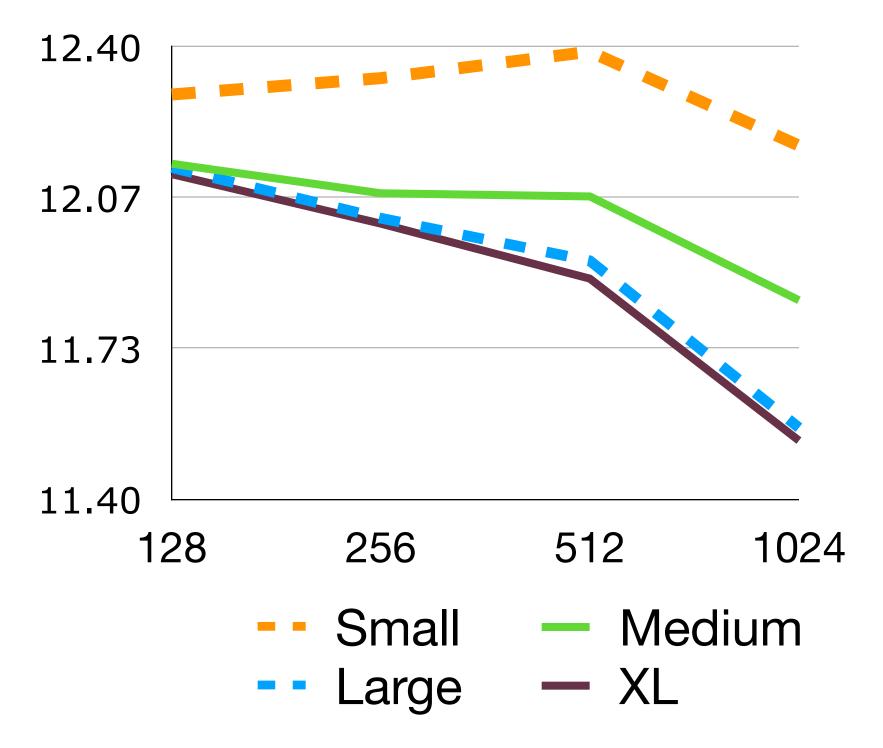
Gen. PPL. (↓**)**

Model Size

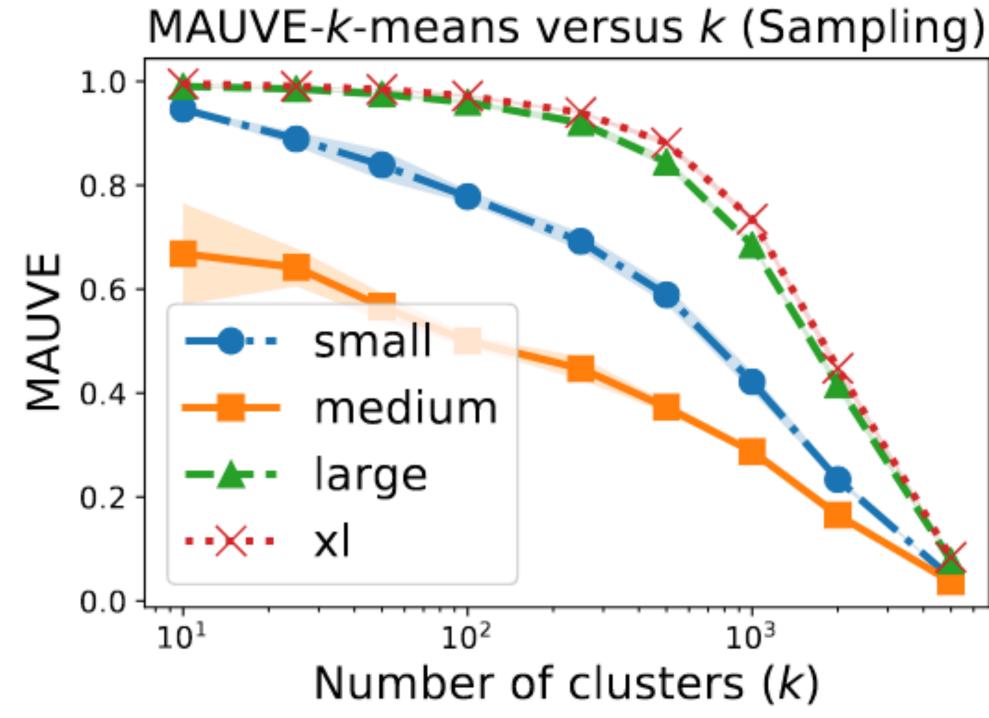


Fréchet distance (↓)

Text Length



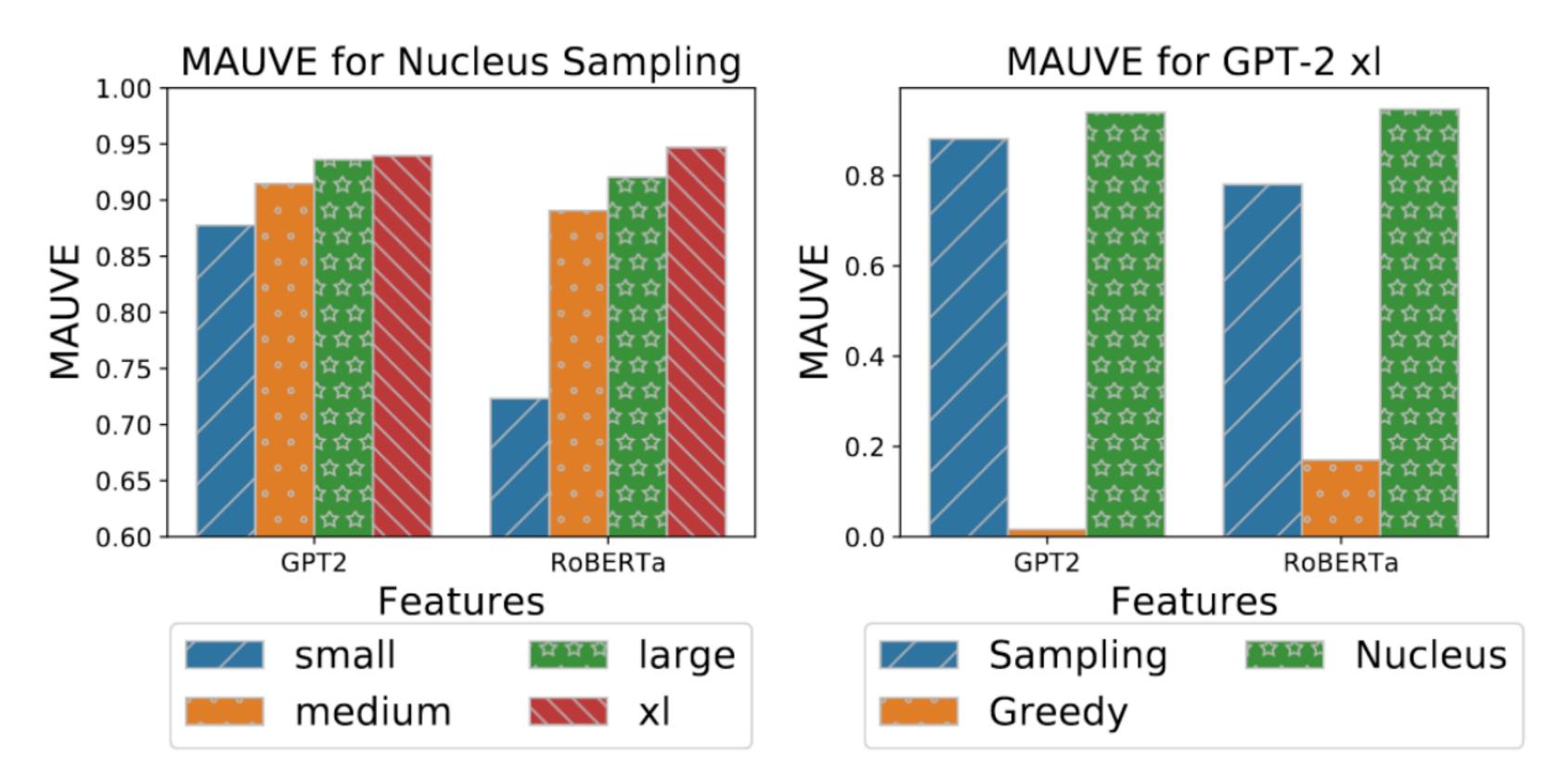
Mauve is robust to hyperparameter choices



Quantization

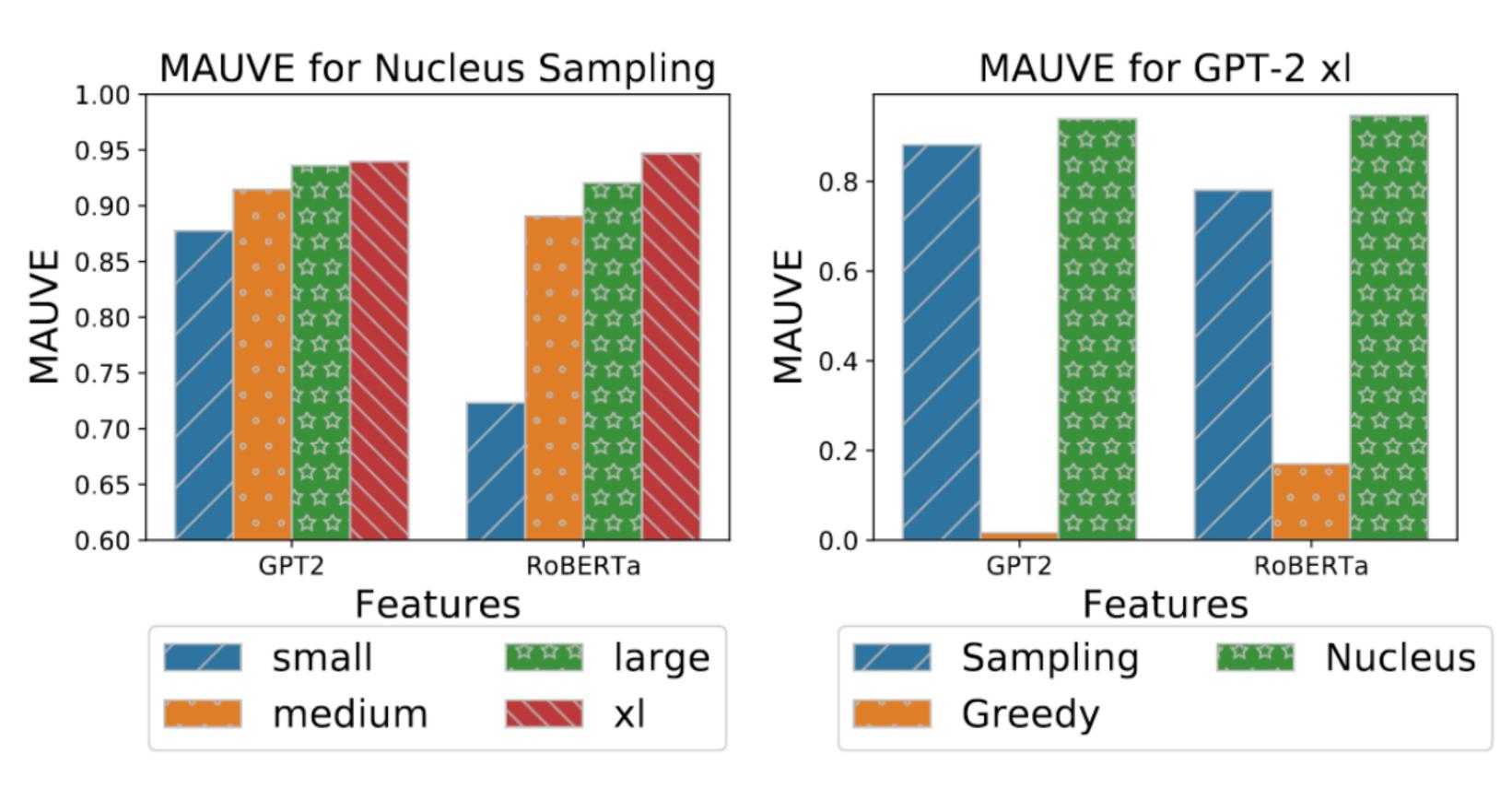
Mauve is robust to hyperparameter choices

Encoding Model

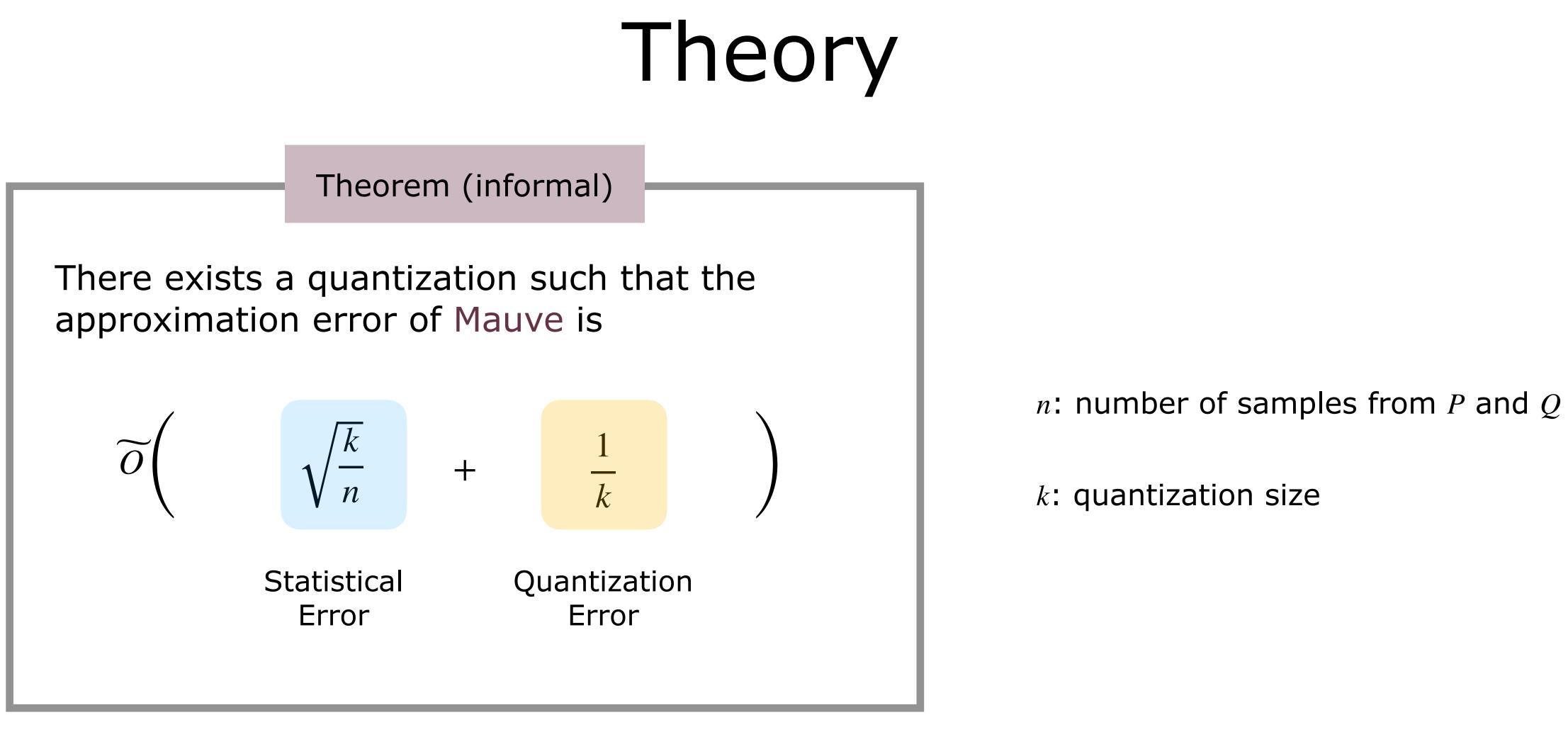


Discussion

What do different embedding models capture?



Can we use Mauve to quantify goodness of embedding models?



[Liu, Pillutla, Welleck, Oh, Choi, Harchaoui. NeurIPS 2021]

Software to compute Mauve: **pip install mauve-text**

Github (software): https://github.com/krishnap25/mauve

Software to compute Mauve: pip install mauve-text

Github (software): https://github.com/krishnap25/mauve

from mauve import compute_mauve

p_text = ... # list of strings for human distribution P
q_text = ... # list of strings for model distribution Q

Obtain deep encoding, quantize it and compute Mauve
out = compute_mauve(p_text=p_text, q_text=q_text)

print(f'Mauve(P, Q) = {out.mauve}')

Software to compute Mauve: pip install mauve-text

Github (software): https://github.com/krishnap25/mauve

from mauve import compute_mauve

p_text = ... # list of strings for human distribution P
q_text = ... # list of strings for model distribution Q

Obtain deep encoding, quantize it and compute Mauve
out = compute_mauve(p_text=p_text, q_text=q_text)

print(f'Mauve(P, Q) = {out.mauve}')

Github (experiments): https://github.com/krishnap25/mauve-experiments

Software to compute Mauve: pip install mauve-text

Github (software): https://github.com/krishnap25/mauve

from mauve import compute_mauve

p_text = ... # list of strings for human distribution P
q_text = ... # list of strings for model distribution Q

Obtain deep encoding, quantize it and compute Mauve
out = compute_mauve(p_text=p_text, q_text=q_text)

print(f'Mauve(P, Q) = {out.mauve}')

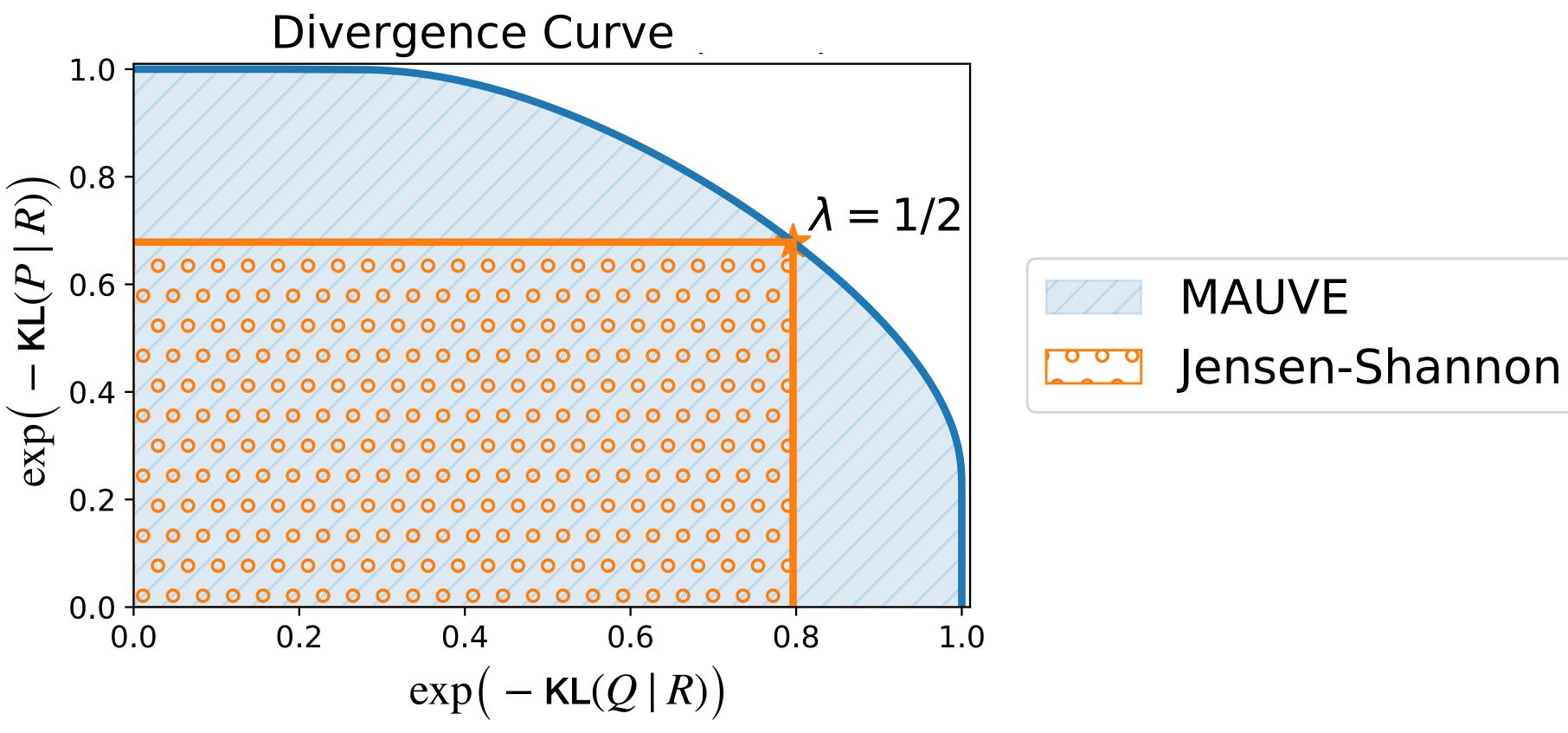
Github (experiments): https://github.com/krishnap25/mauve-experiments

Thank you!

Supplement

Other summaries of the divergence curve

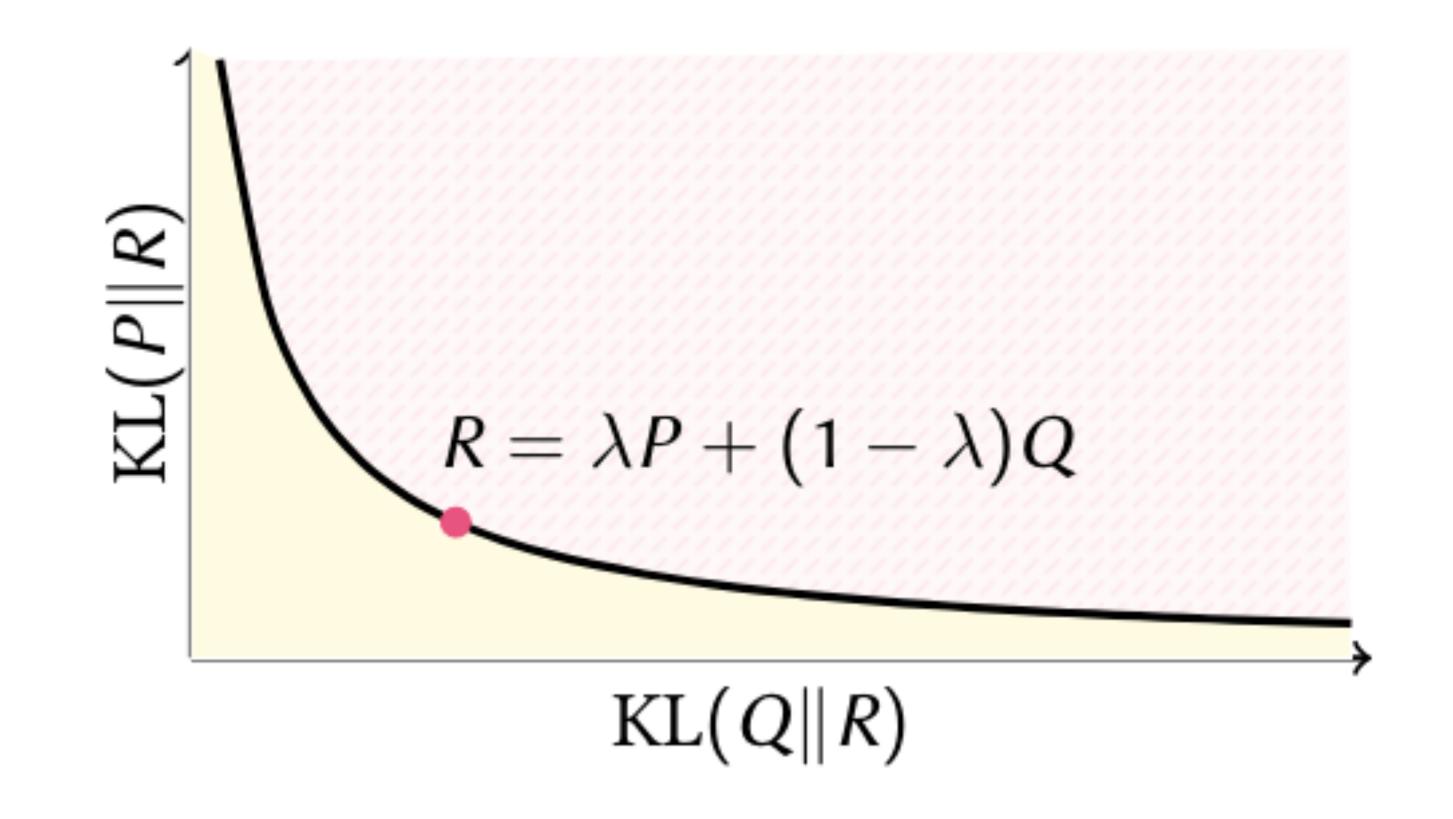
$$\mathsf{JS}(P,Q) = \frac{1}{2} \big(\mathsf{KL}(P \mid R) + \mathsf{K}$$



(L(Q|R)) where R = (P+Q)/2

Other summaries of the divergence curve

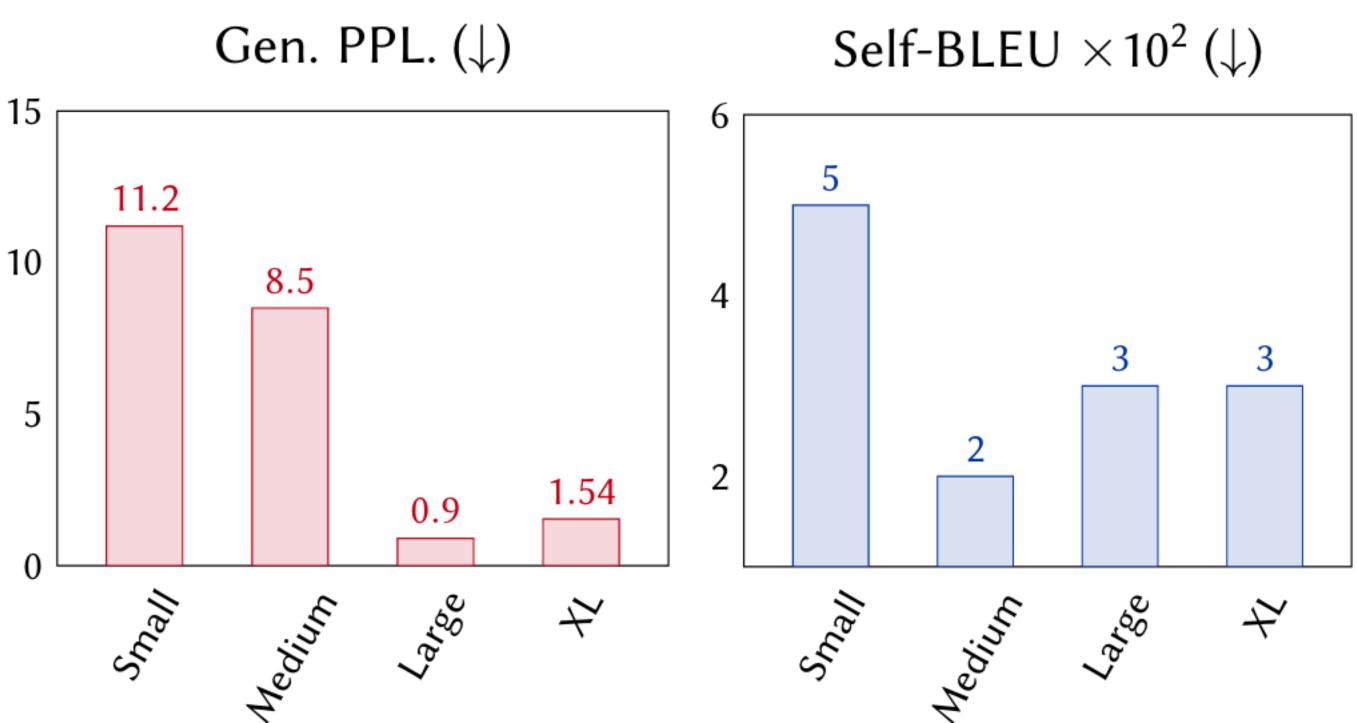
$$\mathsf{FI}(P,Q) = 2 \int_0^1 L_{\lambda}(P,Q) \,\mathrm{d}\lambda \quad \mathsf{W}$$



[Liu, Pillutla, Welleck, Oh, Choi, Harchaoui. NeurIPS 2021]

where $L_{\lambda}(P,Q) = \lambda \operatorname{KL}(P | R_{\lambda}) + (1 - \lambda) \operatorname{KL}(Q | R_{\lambda})$

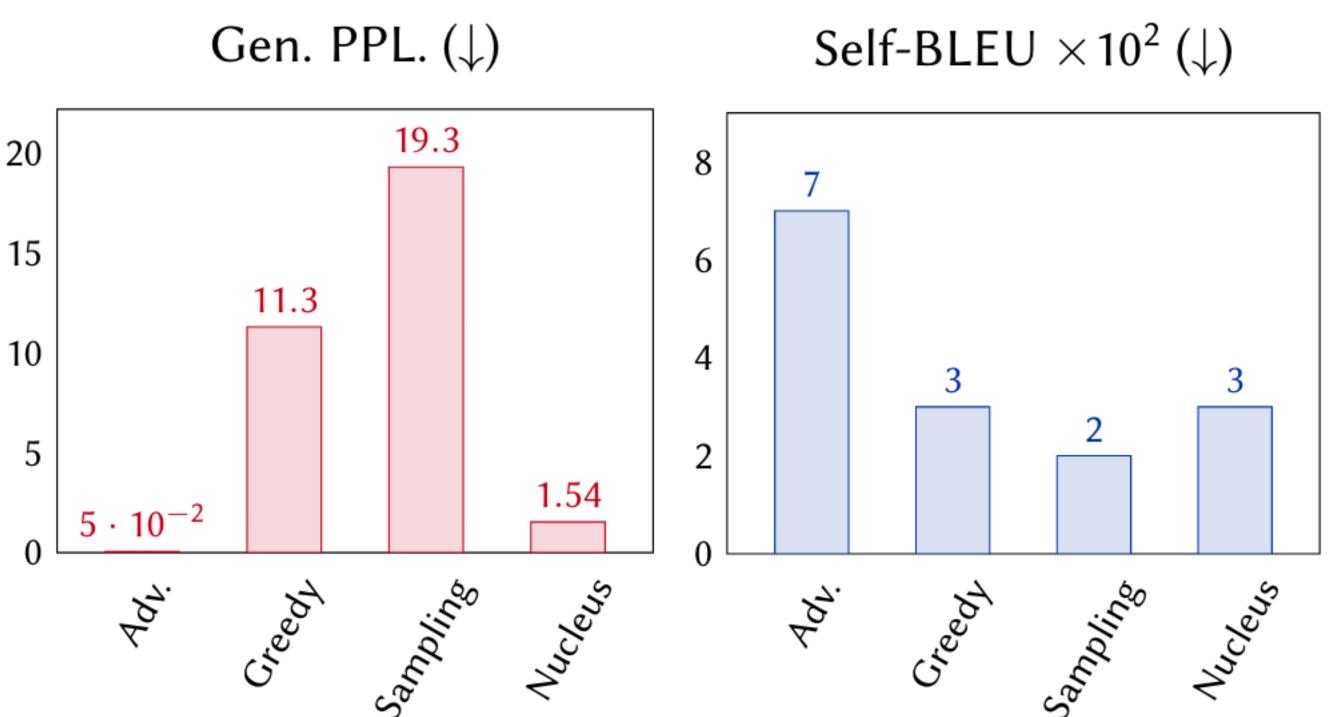
Baselines fail to captures important trends



Model Size

Baselines fail to captures important trends

Decoding Algorithm



Interpreting the quantization

News data: analyze news source (not seen by Mauve)

Groupings: semantic similarity in clusters:

Source: Only one or two sources per cluster

Geographical: Multiple sources from Canada/South Asia/UK

Conglomerate: Multiple sources from same parent company

Subject: Multiple sources from same subject: finance, etc.