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Deep Generative Models

Prompt: In a shocking finding, scientist discov-
ered a herd of unicorns living in a remote, previ-
ously unexplored valley, in the Andes Mountains.
Even more surprising to the researchers was the
fact that the unicorns spoke perfect English.

Machine Completion: The scientist named the
population, a�er their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white uni-
corns were previously unknown to science.
Now, a�er almost two centuries, the mystery
of what sparked this odd phenomenon is finally
solved.
Dr. Jorge Pérez, an evolutionary biologist from
the University of La Paz, and several companions,
were exploring the Andes Mountains · · ·
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Ultimate Goal of Generative Models

I Generated images/text are indistin-
guishable from real-world images or
human-wri�en text

I Turing’s Imitation Game a.k.a.
The Turing Test

I “Can machines think?”
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Statistical Evaluation of Generative Models

I Compare the distribution generated by the model with the target distribution
I �ality: Are the generated images or text good?
I Diversity: Is the model able to capture all of the target distribution?

I Divergence Frontiers are one such a framework

model target
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Divergence Frontiers

I ROC-like operating characteristics of
a generative model Q w.r.t. target dis-
tribution P

I So�ly measure quality and diversity
I R is an auxiliary distribution used to

define the frontier (details later) Diversity Error

�
al
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y

Er
ro

r

R = Rλ
R→ Q

R→ P R = R′

Introduced by Sajjadi et. al. (NeurIPS 2018), formalized by Djolonga et. al. (AISTATS 2020)
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Divergence Frontiers in Vision

I Can quantify mode-dropping and mode-
inventing in GANs

I Can quantify that GANs tend to produce
higher quality and less diverse images than
VAEs

I �ality ≡ Precision, Diversity ≡ Recall
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Sajjadi et. al. (NeurIPS 2018)
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Divergence Frontiers in NLP

Mauve: compare open-ended
text generation models:
I Strong correlation with

human judgements
I Can quantify the e�ect of
. model size
. decoding algorithms
. generation length

Pillutla et. al. (NeurIPS 2021)
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Computation of Divergence Frontiers in Practice

Computing KL divergences between high-dimensional distributions is challenging. Use two
approximations in practice:
I �antization: �antize high dimensional distributions into k-dimensional multinomial

distributions: P,Q 7→ PS,QS where |S| = k
I Estimation: Estimate using n samples each from PS and QS using the plug-in estimate
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Our Contributions

We analyze the error of this procedure:
I �antization Error is O(1/k)
I Estimation Error is O(

√
k/n)

Empirical insights from the theory:
I Use smoothed estimators instead of the usual plug-in estimator
I Theoretical guidance on quantization size k = n−1/3
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Modeling P with Q

I Denote P for the target distribution and Q for the model distribution

Images/Text

P
ro

ba
bi

lit
y

PQ
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Modeling P with Q: Evaluation

I Denote P for the target distribution and Q for the model distribution
I �ality error: Q places high mass on regions unlikely under P
I Diversity error: Q cannot produce text/images plausible under P

Text

P
ro

ba
bi

lit
y

PQ
Quality Error:
The time is
the time is
the time is
the time · · ·

Diversity Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.
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Modeling P with Q: Mixture Distribution and Interpolated KL

I Use the mixture distribution Rλ = λP + (1− λ)Q for some λ between 0 and 1
I Diversity error is KLλ(P|Q) := KL(P|λP + (1− λ)Q)

I �ality error is KL1−λ(Q|P) := KL(Q|λP + (1− λ)Q)
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Divergence Frontiers: Definition

I Since λ ∈ (0, 1) is not fixed, varying it
gives a parametric curve F(P,Q) with

x(λ) = KLλ(P|Q), y(λ) = KL1−λ(Q|P)

I It is called the divergence frontier be-
cause it is the Pareto frontier of the
multi-objective optimization

min
R

(
KL(P|R),KL(Q|R)

) KL(P|R)

KL
(Q
|R
)

R = Rλ
R→ Q

R→ P R = R′
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Our Goal

I Estimation Error: What is the error in estimating the divergence frontier F(P,Q) given
n samples from mulitnomial distributions P,Q?

I �antization Error: We quantize P,Q to get PS,QS by some means. What is the closest
F(PS,QS) can be to F(P,Q)?
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Estimation Error of the Frontier with the Plug-In Estimator

Denote
I True population frontier: F(P,Q) =

{
(x
(
λ), y(λ)

)
: λ ∈ (0, 1)

}
I Plug-in estimate of the frontier: F(P̂n, Q̂n) =

{(
x̂n(λ), ŷn(λ)

)
: λ ∈ (0, 1)

}
Theorem
If the support size of P and Q is k, then,

E

[
sup

λ∈[λn,1−λn]

∥∥(x̂n(λ), ŷn(λ)
)
−
(
x(λ), y(λ)

)∥∥
1

]
.

log n
λn

(√
k
n
+

k
n

)
.

Truncation is necessary because KLλ → KL as λ→ 0 and minimax error of KL estimation is∞
without boundedness assumptions (Bu, Zou, Liang & Veeravalli, IEEE Trans. Inf. Theory, 2018)
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Integral Summary of the Divergence Frontier

Summarize the entire divergence curve in a scalar called the Frontier Integral:

FI(P,Q) = 2
∫ 1

0

(
λKLλ(P|Q) + (1− λ)KL1−λ(Q|P)

)
dλ

I Linear combination of
�ality (≡ Type-I) error and
Diversity (≡ Type-II) error

I Integrand is

min
R

{
λKL(P|R) + (1− λ)KL(Q|R)

}
I FI is a symmetric f -divergence

KL(P|R)

KL
(Q
|R
)

(
KLλ(P|Q),KL1−λ(Q|P)

)
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Improving Estimation with Smoothing

When the support size k is large, the statistical performance can be improved with
add-constant or Good-Turing estimators.

Theorem
Let P,Q have a support size of k <∞. We have,

E
∣∣FI(P̂, Q̂)− FI(P,Q)

∣∣ .

√

k
n log n , with the plug-in estimator

√
nk+bk
n+bk log (n/b + k) , with the add-b estimator

I Also: distribution dependent bounds, independent of k for the plug-in

I High probability bounds
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Missing Mass + Benefit of Smoothing

The bounds apply to long-tailed distributions
I no dependence on mina P(a)
I requires careful analysis of the missing mass

When k/n is large, smoothing is be�er:
I Plug-in: O(k log n/n).
I Add-b: O(log n + log (k/n))
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�antization Bound

Proposition
Let X be an arbitrary measurable space. There exists a distribution-dependent partition Sk of X
with level |Sk | = k with ∣∣FI(P,Q)− FI(PSk ,QSk )

∣∣ ≤ C k−1.

I Overall error of estimation + quantization: Õ(
√

k/n + 1/k). Balance errors at k � n1/3 so
that the total error is Õ(n−1/3)

I In practice, use data-dependent quantization with deep networks but theory out of reach
I Non-parametric density estimation can give data-dependent quantization schemes with

theoretical guarantees. Do not work well empirically due to curse of dimensionality
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Extensions

Extensions of f -divergences (with conjugate f ?(x) = xf (1/x)). Assume:
I Boundedness: f (0) + f ?(0) <∞
I Slow growth: f ′(t) ∝ − log t−1 as t → 0 and same for (f ?)′

I Technical condition on 2nd derivative

Assumptions are satisfied by KLλ, FI, interpolated χ2, etc.

Then, we have bounds on:
I Estimation error |Df (P̂|Q̂)− Df (P|Q)| for plug-in and add-b estimators
I + High probability bounds
I �antization error |Df (PS|QS)− Df (P|Q)|
Proofs are elementary once we have these assumptions! Based on Taylor expansions
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Experiments

Goals: Are the bounds tight? What practical insights can we extract from the theory?
Gold standard: Measure absolute error with the ground-truth for the synthetic case, and
with Monte-Carlo estimate otherwise
Se�ing
I Synthetic data (discrete): Zipf(r) distribution with P(i) = i−r

I Real data:
. Image: CIFAR-10 + StyleGAN
. Text: GPT-2 + WikiText-103
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Estimation Bounds are Tight

Real Data
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(a) Images (k = 128)
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Sample size

(b) Text (k = 2048)
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Support size

(c) Images (n = 1000)

101 102 103

Support size

(d) Text (n = 10000)

Monte Carlo Oracle bound Bound
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Smoothed Estimators Help

Synthetic Data

Zipf(2) & Zipf(2) + vary n Zipf(2) & Zipf(2) + vary k Unif & Zipf(r) + vary r Zipf(2) & Zipf(r) + vary r
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(a) k = 103
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Support size

(b) n = 2 × 104
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Tail decay

(c) k = 103, n = 104

100

Tail decay

(d) k = 103, n = 104

Empirical Good-Turing Laplace Krichevsky-Trofimov Braess-Sauer

Krichevsky-Trofimov (add-1/2) is a good default choice
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Theoretical Guidance on �antization Level is Correct

Synthetic Data: P = N(0, I) and Q = N(1, I) in R2

102 103 104 105

Sample size

10 3

10 2

10 1

Ab
so

lu
te

 e
rro

r

Estimation error of FI versus sample size n for k-means clustering with k n1/r

r = 2
r = 3
r = 4
r = 5

Theoretical guidance of k = n1/3 works the best empirically as well
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Conclusion

I Statistical analysis of divergence frontiers: bounds on both estimation and quantization
errors

I Empirically:
. Bounds capture empirical behavior (real and synthetic)
. Smoothed estimators work be�er
. Theoretical guidance on quantization level is correct
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Thank you

Thank you!

Please email questions to pillutla@cs.washington.edu.
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Estimation Error of the Frontier Integral with the Plug-In Estimate

Theorem
Let the support of P,Q have size k <∞. We have,

E
∣∣FI(P̂n, Q̂n)− FI(P,Q)

∣∣ . (√k
n
+

k
n

)
log n

I Bound does not depend on mina P(a), so it is good for long-tailed distributions; account
for missing mass to achieve this

I Can give a distribution-dependent bound, applicable for k =∞
I Parametric rate Õ(1/

√
n), tight for KL estimation w/ bounded distributions.
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Smoothed Estimators Help

Real Data
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