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Data is decentralized and private
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Challenges:

Communication efficiency

Privacy of user data

Statistical heterogeneity
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Tackling distribution shifts in federated learning

•Improving tail performance with a single model  

• Improving overall performance with local adaptation
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min
w∈ℝd
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∑
i=1

Fi(w)
Usual 

Learning 
Objective 

Clients

Data 
Distribution

Fi(w) = #z∼pi [f(w; z)]where

loss on client  i
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⋯

n

p1 p2 pn

Data 
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[McMahan et al. AISTATS (2017), Kairouz et al. (2021)]
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Problem Setup



Global model is trained on average distribution 
across clients

Server

min
w∈ℝd

1
n

n

∑
i=1

Fi(w)



Server

Global model is deployed on individual clients



Server
Distribution 
shift

Global model is deployed on individual clients



Server

Error

C
ou

nt

Error

High 
Error

Low 
Error

Global model is deployed on individual clients

Distribution 
shift



Error

C
ou

nt

Error

{

Our goal: improve performance on “tail clients”



Simplicial federated learning
Simplicial-FL Objective:

min
w

&θ( (F1(w), ⋯, Fn(w)) )
Superquantile | Conditional Value at Risk
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[Rockafellar & Uryasev (2000; 2002)]
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Our Approach: minimize the tail error directly! 
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0

1

1

1

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Dual expression  continuous knapsack problem≡

&θ(x1, ⋯, xn) = max {∑
i

πixi : πi ≥ 0, ∑
i

πi = 1, πi ≤ (nθ)−1}
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Distributional robustness in federated learning:  

Assuming a new test client with mixture distribution , 

Simplicial-FL objective is equivalent to:

pπ = ∑
i

πipi

min
w

max
π : πi≤(nθ)−1

#z∼pπ [f(w; z)]



plot of h(u1, u2) = &1/2( u1, u2, 0, 0 )

u1

u2

Challenge:  

The superquantile is non-smooth
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Optimizing Simplicial-FL



Nonsmooth: The subdifferential has a tractable form

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) π⋆

i ∝ 0(Fi(w) ≥ Qθ(F1(w), ⋯, Fn(w))) assuming  
is an integer

θnwhere
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π⋆ ∈ arg maxπ∈1θ ∑
i

πiFi(w)
0

1

1

1

Proof Chain rule  subdifferential holds with⟹

Alternate form of  comes from the continuous knapsack problem π⋆

[Dantzig. ORIJ (1957)]

Nonsmooth: The subdifferential has a tractable form

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) π⋆

i ∝ 0(Fi(w) ≥ Qθ(F1(w), ⋯, Fn(w))) assuming  
is an integer

θnwhere
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Algorithm
In each communication round: 

• Estimate the quantile 

• Aggregate over the tail
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Convergence rates

Non-convex case:  + lower order terms 

Strongly convex case: 

O(1/ t)

Õ (κ3/2 + 1
λε )
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: condition number 
: strong convexity

κ
λ



Experiments: EMNIST
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Usual

Ours

Histogram of per-client errors

Misclassification Error
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Tackling distribution shifts in federated learning

• Improving tail performance with a single model  

•Improving overall performance with local adaptation
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w⋆
1

w⋆
2

w⋆
1

w⋆
2

The need for local adaptation a.k.a. personalization

min
w∈ℝd

1
n

n

∑
i=1

Fi(w)Objective Fi(w) = #z∼pi [f(w; z)]where

loss on client  i
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Shared Params u Personal Params vi Full model wi = (u, vi)+ =Shared Params u

Personalization: Each model has a global component and a per-
client component

Objective:    min
u,v1,⋯,vn

1
n

n

∑
i=1

Fi(u, vi)

Example: Fi(u, vi) = #(X,Y)∼pi (ϕg(X ; u) + ϕl(X ; vi) − Y)
2
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+
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Fi(u, vi) = #(X,Y)∼pi (ϕg(X ; u) + ϕl(X ; vi) − Y)
2
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Arivazhagan et al. (2019) 
Collins et al. (2021) 

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004), 
Collobert & Weston (2005), Argyriou et al. (2008), … 

Liang et al. (2019) 
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Next word prediction Speech recognition Landmark detection
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Best personalization architecture depends on task heterogeneity 
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Best personalization architecture depends on task heterogeneity 
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Open problems: Deeper understanding of shifts

Many negative results: optimization can slow down, makes robustness harder, … 

Yet, federated learning is used widely in practice
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Quantify heterogeneity:
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Many negative results: optimization can slow down, makes robustness harder, … 

Yet, federated learning is used widely in practice

Statistical assumptions under which 
heterogeneity is benign?

What measures of heterogeneity impact 
optimization?

Best algorithms for different types of 
shifts (subject to federated constraints)
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