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Data is decentralized and private



Federated Learning
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Federated Learning
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Federated Learning
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The Washington Post

Democracy Dies in Darkness

THE ACCENT GAP

We tested Amazon’s Alexa and Google's Home to see how people with accents
are getting left behind in the smart-speaker revolution.
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Tackling distribution shifts in federated learning

® Improving tail performance with a single model

e Improving overall performance with local adaptation
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Clients
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Distribution
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[McMahan et al. AISTATS (2017), Kairouz et al. (2021)]
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Global model is trained on average distribution ... .
across clients
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Global model is deployed on individual clients
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Global model is deployed on individual clients
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Our goal: improve performance on “tail clients”
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Simplicial federated learning

Simplicial-FL Objective:

Our Approach: minimize the tail error directly! min89< (Fi(w), -, F,(w)) )

w

Superquantile | Conditional Value at Risk

o Z]

Count

S Z | Z > Qo(Z)]
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Error Q

[Rockafellar & Uryasev (2000; 2002)]
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Distributional robustness in federated learning:

Assuming a new test client with mixture distribution P, = Zﬂip,-,
Simplicial-FL objective is equivalent to: !

min max = 1 f(w; 2)
N ”[ ]

Dual expression = continuous knapsack problem

[Dantzig (1957), Ben-Tal & Teboulle (1987), Follmer & Schied (2002)]
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Optimizing Simplicial-FL
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Challenge:

The superquantile is non-smooth 1(;."';_,
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Nonsmooth: The subdifferential has a tractable form

oF y(w) > Z Jri*VFl-(w) where T o H(Fi(w) > Qp(Fi(w), ---,Fn(w))>
=1

assuming on
IS an integer
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Nonsmooth: The subdifferential has a tractable form

aFQ(W) > Z ]z'i* VFZ(W) where Jz'l.* X ”(Fi(w) > Q9<F1(W)a 9Fn(W))> assuming 6n

IS an integer
=1

\
Proof Chain rule = subdifferential holds with \ ,,

Alternate form of z* comes from the continuous knapsack problem

[Dantzig. ORIJ (1957)]
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Algorithm

In each communication round:

e Estimate the quantile

e Aggregate over the talil

Per-client
loss

N
L1

Count

Histogram

(1 — 8)-Quantile
0"'

Loss
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Convergence rates

Non-convex case: O(1/4/r) + lower order terms

. 1 | N
Strongly convex case: O ( ¥ - k: condition number
e A: strong convexity
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EMNIST

Experiments
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Histogram of per-client errors
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Tackling distribution shifts in federated learning

e Improving tail performance with a single model

® Improving overall performance with local adaptation
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The need for local adaptation a.k.a. personalization
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Personalization: Each model has a global component and a per-
client component

Shared Params u <4 Personal Paramsv. = Full model w, = (u, v;)

. | <
Objective: min —ZFi(u, V)
v, N i1

u,vl,..., .

2
Example: Fiu,v) = Eyy., (¢g(x; 1)+ (X : v;) — Y)
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Personalization architectures

Pred.

f
f

()

Input Input

Pred. Pred.

f

2
F(u,v) = Ey vy (gbg(X; 1)+ X v) — Y)

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Personalization architectures

Pred. Pr d.

4 1
4 ¢

Arivazhagan et al. (2019) i (201
Collins et al. (2021) lang et al. (2019)

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Personalization architectures

Input

Personalized
Adapters

Multi-task learning: Caruana (1997), Baxter (2000), Evgeniou & Pontil (2004),
Collobert & Weston (2005), Argyriou et al. (2008), ...
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Best personalization architecture depends on task heterogeneity

> Shallwegotothe ® B ‘|||‘| hello

° store gym bank &

Next word prediction Speech recognition
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Best personalization architecture depends on task heterogeneity
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Open problems: Deeper understanding of shifts

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning is used widely in practice
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Open problems: Deeper understanding of shifts

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning is used widely in practice

Quantify heterogeneity.

Measure gaps between
distributions: MAUVE

[P., Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. NeurIPS (2021),
Liu, P., Welleck, Oh, Choi, Harchaoui. NeurIPS (2021)]
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Open problems: Deeper understanding of shifts

Many negative results: optimization can slow down, makes robustness harder, ...

Yet, federated learning is used widely in practice

Quantify heterogeneity.

Measure gaps between
distributions: MAUVE

[P., Swayamdipta, Zellers, Thickstun, Welleck, Choi, Harchaoui. NeurIPS (2021),
Liu, P., Welleck, Oh, Choi, Harchaoui. NeurIPS (2021)]

Best algorithms for different types of
shifts (subject to federated constraints)

Statistical assumptions under which
heterogeneity is benign?

What measures of heterogeneity impact
optimization?
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Federated Learning with Partial Model Personalization.

Krishna Pillutla, Kshitiz Malick, Abdulrehman Mohamed, Mike Rabbat, Maziar Sanjabi, Lin Xiao
ICML (2022).

Federated Learning with Heterogeneous Devices: A Superquantile Optimization Approach.
Krishna Pillutla*, Yassine Laguel*, Jérome Malick, Zaid Harchaoui.
Under Review (arXiv 2112.09429)

A Superquantile Approach to Federated Learning with Heterogeneous Devices.
Yassine Laguel*, Krishna Pillutla*, Jérome Malick, Zaid Harchaoui.
IEEE CISS (2021).

Superquantiles at Work : Machine Learning Applications and Efficient (Sub)gradient Computation.
Yassine Laguel, Krishna Pillutla, Jérome Malick, Zaid Harchaoui.
Set-Valued and Variational Analysis (2021).
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