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ML/AI have been revolutionized in the last 10 years
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Language modeling
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Federated learning: modern distributed learning
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Federated learning: modern distributed learning
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Communication cost > computation cost!
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Federated learning: modern distributed learning
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(Differential) Privacy guarantees
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what's the weather
like in Seattle to
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Data remains decentralized and private
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Large Language Models —
massive progress in NLP

GPT-3, PaLM, LaMDA, ChatGPT, ...

[Brown et al. (2020), ...]
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Large Language Models (LLMs)

Stunning text generation capabilities

ChatGPT Test loss of language modeling
6
“0- % AN
Examples Capabllities Limitations % 45
O
"Explain quantum computing in Remembers what user said May occasionally generate -
simple terms" — earlier in the conversation incorrect information Jg)-;
L 3
Scaling up = progress in all of Al e

1E+03 1E+05 1E+07  1E+09

# Model Parameters

— Foundation/ [Kaplan, McCandlish et al. (2020)]
platform models

[Saharia et al. (2022), Jumper et al. (2021), Hsu et al. (2021), Bommasani et al. (2021)] 19



New capabilities are emerging

Generative Al: LLMs can write long essays now!

>> prompt: N3 shocking finding, scientists discovered a herd of
unicorns living in a remote, previously, unexplored
valley, in the Andes Mountains.

1 Continuation. The scientists named the population,
GPT-Z after their distinctive horn, Ovid’s Unicorn. These four-
horned, silver-white unicorns were previously unknown

In-context learning & Zero-shot prediction

>>prompt: English: Hello!
French:

'GPT-3 English: Hello!

French: Bonjour!

Test loss of language modeling
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Language modeling in 2023
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Language modeling in 2023

Federated learning

training

Large language models

Test loss of language modeling
6
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Challenges

Robustness to deployment conditions that
differ from training

Federated learning: train-test mismatch
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The Washington Post

Democracy Dies in Darkness

THE ACCENT GAP

We tested Amazon’s Alexa and Google's Home to see how people with accents
are getting left behind in the smart-speaker revolution.

GOOGLE HOME AMAZON ECHO
Overall accuracy Overall accuracy
83% 86%

Western U.S. Southern U.S. @31
Midwest U.S.

lawes Eastern U.S. @27
Eastern U.S. @ 05 Western U.S. @ +2.0

Southern U.S. @ +0.1 Midwest U.S ®+10
‘0.3 © | Indian langs. =~ |
-18@ Indian langs.

Chinese

Spanish Chinese

Spanish

By Drew Harwell July 19, 2018
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Challenges

Robustness to deployment conditions that
differ from training

Federated learning: train-test mismatch

Large language models: emergent capabilities
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MIT

Technology
Review

ARTIFICIAL INTELLIGENCE

Why Meta’s latest large language model
survived only three days online

Galactica was supposed to help scientists. Instead, it mindlessly spat out biased
and Incorrect nonsense.

By Will Douglas Heaven November 18,2022

: , , y >
Question: Do vaccines cause autism? not verified

Answer: To explain, the answer is no. Vaccines do not cause autism. The answer is yes. Vaccines cause
autism. The answer is no.




Challenges

Robustness to outliers: adversarial or
uncurated web data
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Ehe New HJork imes

Alexa and Siri Can Hear
This Hidden Command.
You Cant.

Researchers can now send secret audio instructions
undetectable to the human ear to Apple’s Siri, Amazon’s
Alexa and Google’s Assistant.

By Craig S. Smith May 10, 2018
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Challenges

Robustness to outliers: adversarial or
uncurated web data
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Challenges

Faster optimization: reduce communication
and computation
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Challenges

N

Privacy of user data



Robust
Deployment

Robust to
Outliers

Optimize
Faster

Privacy

Federated learning

IEEE CISS 2021,
Springer SVVA 2021,
Mach. Learn. 2022

IEEE Trans. Signal Proc. 2022,
ICML 2022

LLMs

NeurIPS 2021a
NeurIPS 2021b
Submitted 2023

Submitted 2022

NeurIPS 2018
Submitted 2022
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Empirical

State-of-the-art performance

Problem

Algorithms

Theory

Analysis of convergence
(statistical/optimization)
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Federated learning

IEEE CISS 2021,
Springer SVVA 2021,
Mach. Learn. 2022

LLMs

NeurIPS 2021a
NeurIPS 2021b
Submitted 2023
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Submitted 2023
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Part 1: Diagnosing large-scale text generation
models with Mauve

[NeurIPS (2021a) Outstanding Paper Award,
NeurIPS (2021b), Submitted (2023)]

Q: machine P: human
Py
Type.l Error = Type |l Error
The t.lme.ls Q P | just visited
the t!me is _8 Utqiagvik and
the t!me IS o Nuchalawoyya
the time - - - in Alaska.
s ~
o @ =
.......... Text Ceiiaest
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Google

Open-ended generative Al

e New: LLMs can write long essays!

e \Widely deployed commercially

e |LLMs still make mistakes

ai text generator X Q

About 75,700,000 results (0.33 seconds)
Text Generation API | DeepAl

The text generation API is backed by a large-scale unsupervised language model that can
generate paragraphs of text. This transformer-based language model, ...

Generate Text - InferKit app
Sassbook Al Writer: High-quality Al Text Generator

Use this cutting-edge Al text generator to write stories, poems ...

Al Writer™ - The best Al Text Generator, promised.
Let the Al Content Generator do all the hard work - Zyro

>> prompt:

& 3
@ CE -4
\\ W

In a shocking finding, scientists discovered a herd of
unicorns living in a remote, previously, unexplored
valley, in the Andes Mountains.

Continuation. The scientists named the population,
after their distinctive horn, Ovid’s Unicorn. These four-

horned, silver-white unicorns were previously unknown ...
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Open-ended generation is an emergent capability

f

@\w Deployment conditions differ from training
Training: Language modeling Deployment: Sequential generation
Guess the next 1 word Sample the next 500 words seguentially
0.3
house
0.2
| bank
Shall we go to the 01 airport
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How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a
>> prompt: herd of unicorns living in a remote, previously,
unexplored valley, in the Andes Mountains.

39



How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a
>> prompt: herd of unicorns living in a remote, previously,
unexplored valley, in the Andes Mountains.

ChatGPT

\d

“

Model Continuation. The scientists named the
population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were
previously unknown ...



How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a
>> prompt: herd of unicorns living in a remote, previously,
unexplored valley, in the Andes Mountains.

ChatGPT .-~ .. Human
A’ ’OA
Model Continuation. The scientists named the Measure similarity/overlap o
population, after their distinctive horn, Ovid’s Unicorn. Human Reference. Known only to specialized
- . - ﬁ A\Y . n A\Y . n
These four-horned, silver-white unicorns were cartographers as "Valle Escondido” or "Hidden valley”,
previously unknown ... this valley boasts of a wide variety of flora and fauna ...
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How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a
>> prompt: herd of unicorns living in a remote, previously,
unexplored valley, in the Andes Mountains.

ChatGPT .-~ .. Human
A’ ’OA
Model Continuation. The scientists named the Measure similarity/overlap
population, after their distinctive horn, Ovid’s Unicorn. Human Reference. Known only to specialized
- . - ﬁ A\Y . n A\Y . n
These four-horned, silver-white unicorns were cartographers as "Valle Escondido” or "Hidden valley”,
previously unknown ... this valley boasts of a wide variety of flora and fauna ...

Continuation 2. This discovery has kicked off an all-
out search for other mythical creatures from the frozen
reaches of the Antarctic to the tropical islands of the
Pacific ...

Continuation 3. Perhaps most astonishingly, these
unicorns have developed their own artificial general
intelligence named Yuyaysapa ...

42



Problem statement

How close are the probability distributions over text sequences?

model human

43



Two types of errors in text generation

Q: machine distribution P: human distribution

P

)

Probability

Text

44



Q: machine distribution

Type | Error:
The time is
the time is
the time is

the time - - -
F

Probability

Q places high mass or;m-

text unlikely under P
(e.g. degenerate text)

Text

P: human distribution
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Q: machine distribution

Type | Error:
The time is
the time is
the time is
the time - - -

Probability

JO
*
*

KL(Q[P)

Text

KL(P|Q) = )’ P(x) log

P: human distribution

P(x)

Q(x)

Type Il Error:
| just visited
Utgiagvik and
Nuchalawoyya
in Alaska.

° “‘
a, . s
-----

KL(PIQ)
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Mauve: summarizing both errors

P: generative model
Q: target distribution

e KL(Q|P) and KL(P|Q) can be N
infinite, so measure errors softly 1 R=MAP+(1—X2)Q
using mixtures cmaller =

a
Type Il —
error N4

® Divergence Curve: Varying the larger L
mixture weight Type I %

error

l NN NN SN NG N

exp ( — KL(Q|R))

larger smaller
® Mauve: area summary of the curve: a 5
g C ey +—— Type Type | —
quantitative measure of similarity and orror orror

takes values between 0 (dissimilar)
and 1 (identical)
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Computing Mauve In practice

e Sum over documents intractable

Q(x)
R(x)

KL(Q|R) = ), O() log

e Computation pipeline

LM k-means

Text x _— Embedding _— Multinomial
M(x) qa(M(x))

48



Correlation with human judgements

Goals of automatic evaluation

‘ Humans are the end users, so human evaluation is the ultimate test

‘ Human evaluation is slow and expensive

If Mauve can correlate with human evaluations, faster iterations + debugging

49



Correlation with human judgements

Head-to-head: Is A or B more (a) human-like, (b) interesting, (c) sensible?

We compare text written by humans and 8 models

Spearman Correlation w/ human eval (1)

0.95
0.8 . Mauve
" Gen. PPL.
Self-BLEU
0.6
0.4

Human-like Interesting Sensible
Gen. PPL.: Holtzman et al. (ICLR 2020) Self-BLEU: Zhu et al. (2018)
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0.95

0.92

0.89

0.86

Model Size

Small Medium Large

e Y-axis shows Mauve (1)

Decoding Algorithm

Greedy Sampling Nucleus

e Mauve captures all the trends while baselines fail

0.97

0.93

0.90

0.87
128 256 512 1024

Text Length

Mauve captures important trends

Text Length

N____.--

Small Medium
-= Large — XL
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Mauve: Estimation theory

Estimation of Mauve involves two approximations:

Clustering/ Estimate from
Quantization samples

-

Pa Q PS? QS PS,n’ QS,n

quantized samples (empirical

high-dimensional distributions distributions)

text distributions

52



Theorem (informal)

There exists a quantization of size k such that the
approximation error of Mauve from n samples is

n k

Statistical Quantization
Error Error

Balance both by choosing k = (')

n: number of samples from P and O

k: quantization size (Num. clusters)

53



Text x

Mauve: Beyond clustering

k-means KL
LLM | |
Encoding i clustering Multinomial divergenc

M(x) —_—  gM(x)) T P

Mauve
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Text x

Mauve: Beyond clustering

k-means KL
LLM | |
Encoding i clustering Multinomial divergenc

Mx) | P qM(x) >

Nearest neighbor estimator
Kernel density estimator
Parametric Gaussian approx.

Classifier-based estimation

Mauve

55



Text x

Mauve: Beyond clustering

LLM
Encoding
—

Embedding
M(x)

k-means
clustering

—_—

KL
divergenc

Multinomial e

q(M(x))

—_— Mauve

General f-divergences

Optimal transport
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Text x

Mauve: Beyond clustering

k-means KL
LLM | |
Encoding i clustering Multinomial divergenc

M(x) —_—  gM(x)) T P

Essential

Mauve

57



Software

pip install mauve-text

from mauve import compute_mauve

p_text # list of strings for human distribution P
q_text # list of strings for model distribution Q

# Obtain deep encoding, quantize it and compute Mauve
out = compute_mauve(p_text=p_text, g_text=qg_text

print(f' Mauve(P, Q) = {out.mauve}'

60K downloads

HuggingFace Evaluate: pip install evaluate

from evaluate import mauve
mauve = load("mauve”)

# Obtain deep encoding, quantize it and compute Mauve
out = mauve.compute(references=p_text, predictions=q_text

print(f Mauve(P, Q) = {out.mauve}'

58



Impact of Mauve

Standard metric for evaluation and hyper-parameter tuning

Meister et al. (TACL 2022) Jawahar et al. (ACL 2022)
Su et al. (NeurIPS 2022) Hewitt et al. (EMNLP 2022)
Lu et al. (NeurIPS 2022) Mattern et al. (EMNLP 2022)

Xu et al. (NeurIPS 2022) Hu et al. (NAACL 2022)
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Summary: Diagnosing large-scale text generation with Mauve

Used for open-ended generation
but trained for language
modeling. How good is it?

In a shocking finding, scientists discovered a herd
>> prompt: of unicorns living in a remote, previously,
unexplored valley, in the Andes Mountains.

Continuation. The scientists named the
population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns
were previously unknown ...

Continuation 2. This discovery has kicked off an
all-out search for other mythical creatures from
the frozen reaches of the Antarctic to the tropical
islands of the Pacific ...

Continuation 3. Perhaps most astonishingly,
these unicorns have developed their own artificial
general intelligence named Yuyaysapa ...




Summary: Diagnosing large-scale text generation with Mauve

Directly measure the gap
between distributions

Q: machine P: human
Py
Type.I Error: = Type Il Error:
The t.lme.IS Q P | just visited
the t!me is —§ Utqiagvik and
the t!me IS o Nuchalawoyya
the time - - - in Alaska.
F =~
X4 5 P
.......... Text

61



Summary: Diagnosing large-scale text generation with Mauve

Our approach correlates
with human judgements and
quantifies observed behavior

Spearman Correlation w/
human eval (1)

0.95

0.8

0.6

0.4

B Mauve
Baseline 1
Baseline 2
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Summary: Diagnosing large-scale text generation with Mauve

Theory: error bounds

Statistical Quantization
Error Error

63



Robust
Deployment
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Federated learning

IEEE CISS 2021,
Springer SVVA 2021,
Mach. Learn. 2022

Part 2

LLMs

NeurIPS 2021a
NeurIPS 2021b
Submitted 2023
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Part 2: Tackling distribution shifts in
federated learning

[IEEE CISS 21, DistShift-NeurIPS 22 (Spotlight),
SVVA 21, Mach. Learn. 22]

Count

Error

65



Clients

Data
Distribution

Usual
Learning
Objective

‘ ‘ Diverse users

P1 P> P
. 1 < 7
v{;rél[éld ; Z (W) where F.(w) = = op [f(w; z)]

loss on client i

[McMahan et al. (AISTATS 2017), Kairouz et al. (2021)]
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Usual approach =— Global model is trained on
average distribution across clients

67



> | Have a good @ B

SMS

° night day weekend &



Global model is deployed on individual clients

> Haveagood @ B

SMS

° night day weekend &

Train-test
mismatch!
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Global model is deployed on individual clients

> | Have a good @ B

SMS

° night day weekend &

Train-test
mismatch!

Count

Error

/0



Our goal

Count

Error

Reduce tail error

Count

Error

/1



Our goal

Mean
Error

Count

Error

Reduce tail error without sacrificing the mean error

Mean

Count

Error

72



Simplicial federated learning

Simplicial-FL Objective:

Our Approach: minimize the tail error directly! min89< (Fi(w), -, F,(w)) )

w

Superquantile | Conditional Value at Risk

o Z]

Count

S Z | Z > Qo(Z)]

fer - e e e e e e e w— —

1
Error Q

[Rockafellar & Uryasev (2002)]
73



Dual expression = continuous knapsack problem

Syp(xq, ++, x,) = max, Z wx; . >0, Z =1 < (n@)~!

[Dantzig (1957), Ben-Tal & Teboulle (1987), Follmer & Schied (2002)]
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Dual expression = continuous knapsack problem

Sy(xy, -+, X)) :maxﬂ{ Yomx i m20, Yy m=1 1< (nH)l}

[Dantzig (1957), Ben-Tal & Teboulle (1987), Follmer & Schied (2002)]

Assuming a new test client with mixture distribution Pr = Zﬂipu

l

==

Simplicial-FL objective is equivalent to:
nivmﬂ: ;235;)_1 = [f(W;Z)] @

— Distributionally robust learning

/5



Optimization




Usual Algorithm (FedAvg):

1 n
min — F.(w
i nz} (w)

FedAvg [MacMahan et al. (AISTATS 2017)]

Parallel Gradient Distribution [Mangasarian. (SICON 1995)]
Iterative Parameter Mixing [McDonald et al. (ACL 2009)]
BMUF [Chen & Huo. (ICASSP 2016)]

Local SGD [Stich. (ICLR 2019)]

Our Algorithm:

min S( (F,(w), -+, F,w)) )

w

/77



Usual Algorithm (FedAvqg): Our Algorithm:

w

Irgn %lzzl Fi(w) min §9< (Fl(w), ---,Fn(w)) )

Step 1 of 3: Server samples m clients
and broadcasts global model

/8



Usual Algorithm (FedAvg): Our Algorithm:

mvin %l:zl Fi(w) min §9< (Fi(w), -, F,(w)) )

w

Step 2 of 3: Clients perform local
gradient descent on their local data

79



Usual Algorithm (FedAvqg):
1 n
[} _ F.
nivm nizzl (W)

Step 3 of 3: Aggregate updates
contributed by all clients

\ N
\x P

L
& Server
& 8 A
R, /
R\ TN > T
- ppsicinearrivin S

e — -

Count

Our Algorithm:

min Se( (Fi(w), -+, F,(W)) )

w

Step 3 of 3: Aggregate updates
contributed by tail clients only

(1 — 0)-Quantile
o"‘v

\‘

: 1.
e,
Yl S

3 5 ol

N )
\ TR ) il
S e S

E .

LossS
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EMNIST

Experiments

81



Histogram of per-client errors

0.14 -

0.12 -

0.10 A

0.08 -

0.06 -

0.04 -

0.02 -

0.00 -

0.0

0.1 0.2 0.3 0.4

Misclassification Error

0.5
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Histogram of per-client errors

0.14 -

0.12 -

0.10 A

0.08 -

0.06 -

0.04 -

0.02 -

0.00 -

0.0

Usual

0.1 0.2 0.3 0.4 0.5

Misclassification Error

® Simplicial-FL has the smallest 9

Oth

Misclassif. Error

30.00 ‘
3.3 pp

15.00

7.50

90th Percentile Mean

B Ours B FedAvg
. FedProx [ q-FFL

percentile error

e Simplicial-FL is competitive on the mean error
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Convergence analysis (hon-convex)

Tl
*

Faster optimization:
?" reduce communication

84



Challenge #1.

The superquantile is nhon-smooth

plot of h(u;,uy) = Sy ( uy, 1y, 0,0 )
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Subgradient illustration

Smooth Non-smooth




Nonsmooth: The subgradient has a tractable form

aFg(W) = 2 ][i*VFi(W) where 7[1,* X [I(Fi(w) > QH(FI(W)a ,Fn(w))) assuming on

=1

Count

IS an integer

(1 — 0)-Quantile
o”‘v

LosSS
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Nonsmooth: The subgradient has a tractable form

aFQ(W) > Z ]z'i* VFZ(W) where Jz'l.* X ”(Fi(w) > Q9<F1(W)a 9Fn(W))> assuming 6n

IS an integer
=1

\
Proof Chain rule = subgradient holds with \ ,,

Alternate form of z* comes from the continuous knapsack problem

[Dantzig. ORIJ (1957)]
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Nonsmooth: The subgradient has a tractable form

aFQ(W) > Z ]z'i* VFZ(W) where Jz'l.* X ﬂ(Fi(W) > Q9<F1(W)a 9Fn(W))> assuming 6n

IS an integer
=1

Other option: Use smoothing

[Nesterov. (Math. Prog. 2005),

Beck & Teboulle. (SIAM J. Optim. 2012),

P., Roulet, Kakade, Harchaoui. (NeurIPS 2018),
Laguel, P., Malick, Harchaoui. (SVVA 2021)]

Loss @ Rank i

Smoothed z* Original z*

89



Challenge #2

The superquantile is nonlinear
—> unbiased stochastic gradients not possible

For i.i.d. copies Z,,---,Z_ of Z, we have

E

= [E[Z] but

S@(Zla "t Zm)

# Sy(£)

5

10
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Nonlinear: We minimize a close surrogate

Fy(w) = Eg. 5100 [ge( (F(w) : i €S) )]

The surrogate is uniformly close for bounded losses:

Fori.i.d. copies Z,,---,Z_of Z with |Z| < B a.s., we have

= (Se(Zy, . Z,) | — Se2) | < Var_sg(zl,---, Zm>_ B

- Vom

[Levy et al. (NeurIPS 2020)]



Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<
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Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F. is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<
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Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ) F(l —17) ; | A,: initial error

- || V D2L(y,)

[

(Dg(w) = inf {179(2) + %Hz — WHZ} — Moreau envelope of F, | well defined for u > L
<
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Theorem [P., Laguel, Malick, Harchaoui]

Suppose each F, is L-smooth and G-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

t: #comm. rounds

2 A LG? | 1 [ BAolG 7 - AgL 7: #local update steps
< ; (1l —17) ; | A,: initial error

- || V O2L(,)

[

CIDZ(W) = Inf {179(2) + %Hz — sz} — Moreau envelope of F, | well defined for u > L
<

95



Privacy analysis

N

w Privacy of user data

Count

Error
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Dataset

ﬁﬁ
ﬁﬁ

& | Randomized | _____ &
| Algorithm '

Output Distribution
(e.g. over models)
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Dataset
i
e
A

+ [

_» | Randomized | _____o
| Algorithm '

Output Distribution
(e.g. over models)
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Dataset
i
0
A

+ [

di, | RAndomized | &
v Algorithm '

Output Distribution
(e.g. over models)
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Output Distribution
(e.g. over models)

| «—E&—>

A randomized algorithm is e-differentially private if the addition of
does not alter its output distribution by more than &

Dataset

afa
i
==

& | Randomized | &
' Algorithm '

[Dwork, McSherry, Nissim, Smith (2006)]
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Output Distribution

Dataset (e.g. over models)

afa
i
==

et | R@andomized | o
Algorithm '

e-differential privacy

Large ¢ =— more privacy leakage

| «—E—>
| «—c ——
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Privacy goal

Extend our algorithm to make it differentially private

Step 3 of 3: Aggregate updates

Our Objective: Our Algorithm: - puted by tail clients only

min §9< (F, (W), -+, F,(w)) )

w

\ N
- ',< .
[
[N N
7 o J
§ Server
X8 ')
N '
N\ Y g

E S -

(1 — 0)-Quantile
o"‘v

Count

Loss
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Why is it challenging?

Usual Algorithm: Our Algorithm:
.1 |
ITEII ; lzzl FZ(W) Inv:n Sg( (Fl(w)a ,Fn(W)) )

VE (w)

0}

s

. .
10

e \YVE (w)

10

Private mean estimation of gradients Non-linear
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Communication primitive: secure sum

Only reveal x, + x, to the server without revealing x, or x,

Client 1

Client 2

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]
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Perform all operations modulo M

Client 1

Client 2

Server

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]
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Server only sees xj, x, ~ Unif(Q) but calculates the correct sum

Xy =x+¢
Client 1 x|+ X =x + X,
E ~ Unlf
Server
@ 5
X,

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]

Client 2
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Server only sees xj, x, ~ Unif(@) but calculates the correct sum

X{ = X + 5 & / ,
Client 1 Xp+X =X +X
E ~ Unif(Q)
Client 2 &
: Server
Xy =Xy —¢&
X,

Total communication for m vectors in RY = O(mlogm + md) numbers
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Real-world communication constraint;
All client-to-server communication must go through secure summation

108



How to achieve non-linear aggregation with a
secure sum?

Non-linear aggregate:
Secure sum

min S (F,w), -, F,(w)) )

w

; Client 1

A f
10
20«7

cee >x1 +x, Server

Client 2

10t

0l
10

10
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Usual Algorithm (FedAvqg): Our Algorithm:

w

nivin %lzzl F;(w) min Sg( (Fi(w), -+, F(w)) )

Step 3 of 3: Aggregate updates Step 3 of 3: Aggregate updates
contributed by all clients contributed by tail clients only

(1 — 0)-Quantile
o"‘v

\ N
\x P

L
& Server
& 8 A
R, /
R\ TN > T
- ppsicinearrivin S

e — -

\‘

: 1.
R,
Yl S

& Server

3§ ol

L), T J
\ Y : i
Sy e ST

E .

Count

LossS
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Per-client loss Noisy client loss histogram

o Lu.;L e

Noisy

(1 — 0)-Quantile ~ (1 —9)—Q}uanti|e hist()g ram

0"
.

Differential privacy via
discrete Gaussian noise

Count
Count

~Talil

[Kairouz, Liu, Steinke. (ICML 2021)]
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Proposition (informal) [P., Laguel, Malick, Harchaoui]

If we wish to compute the a-quantile, our algorithm returns an e-differentially
private a’-quantile where
\/ b

|a’—a| < —
EM

m #clients per round
Total communication cost =~ bmlog*m b #Dbins in the histogram
e privacy parameter
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Usual Algorithm (FedAvqg): Our Algorithm:

w

nivin %lzzl F;(w) min Sg( (Fi(w), -+, F(w)) )

Step 3 of 3: Aggregate updates Step 3 of 3: Aggregate updates
contributed by all clients contributed by tail clients only

(1 — 0)-Quantile
o"‘v

\ N
\x P

L
& Server
& 8 A
R, /
R\ TN > T
- ppsicinearrivin S

e — -

\‘

: 1.
R,
Yl S

& Server

3§ ol

L), T J
\ VY : i
Sy e ST

.

Count

LossS
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Private mean estimation of (potentially zeroed out) gradients

VFQ (UJ)

VF(w)
% noisy gradient

'O‘
’O‘
C g
’O‘
@
O‘
O‘
C 4

VFl (w)
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Count

Total privacy leakage =

Quantile privacy leakage + Parameter privacy leakage

VFQ (w)

~ (1 — 8)-Quantile
®

VEF(w)
% noisy gradient

O‘
o ®
’O
o ®
’O
o ®
’O
o ®
[
O‘
o®
’o‘
C

VFl (w)
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Privacy of user data:

First end-to-end differentially private algorithm for
distributionally robust federated learning

Algorithm requires 2 secure summations per update
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Mean error

24.44 |

24.2 { Y= =k

24.0 -

Misclassif. Error %

N N

woWw

@) 00)
| |

10 15

JPrivacy parameter &

56

55 1

54 -

53 -

52 -

51 -

50 -1

90 percentile error

S —

x

L

5 10 15
Privacy parameter €

More private

Less private
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Distributionally robust learning with
1 additional line of code

import torch.nn.functional as F
from sqwash import reduce superquantile

for x, y 1in dataloader:
y_hat = model(x)

batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set reduction='none'"

loss = reduce_superquantile(batch_losses, superquantile _tail fraction=0.5) # Additional Lline
loss.backward() # Proceed as usual from here

Install: pip install sgwash

Documentation: krishnap25.github.io/sqwash/

SCAN ME
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https://krishnap25.github.io/sqwash/

Count

Summary: Tackling distribution shifts in federated learning

Distribution shift —=
large tail errors

Error
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Summary: Tackling distribution shifts in federated learning

min S( (F,w), -, F,(w)) )

w

Se(Z2) = E[Z]Z > Q(Z)]
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Summary: Tackling distribution shifts in federated learning

Our approach reduces
tail error

0.12 Ours

(v Usual

0.10 -

0.08 -

0.06 -

0.02 -

0.00 -

Misclassification Error
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Summary: Tackling distribution shifts in federated learning

Convergence +
Privacy analysis

O(1/4/1) error rate after «

comm. rounds in the non-
smooth, non-convex case

Differentially private
algorithm for distributional
robust federated learning
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Future research plans



Challenges

@\w Robustness to deployment conditions that
- differ from training

Q(j? S Robustness to outliers: adversarial or
p X ¢ uncurated web data

Faster optimization: reduce communication
and computation

Privacy of user data
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Federated learning LLMs

S IEEE CISS 2021, NeurIPS 2021a

Robust @w Springer SVVA 2021, NeurIPS 2021b

Deployment i Mach. Learn. 2022 Submitted 2023
XS e |

Robust to %%)@ IEEE Trans. Signal Proc. 2022, Submitted 2022

Outliers s %@ “oC ICML 2022

NeurIPS 2018
Submitted 2022

Optimize
Faster

Privacy

Future plan 1
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Robust
Deployment :

Robust to
Outliers
D 0)

Optimize
Faster

Privacy

What comes after
federated learning?

Future plan 2

LLMs

NeurIPS 2021a
NeurIPS 2021b
Submitted 2023

Submitted 2022

NeurIPS 2018
Submitted 2022
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