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ML/AI have been revolutionized in the last 10 years
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Language modeling

Shall we go to the ___
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P( xt+1 | x1, …, xt )

[Markov (1913), Shannon (1948)]
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Neural language model
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Mikolov et al.  [Interspeech, 2010]
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Data Credit: Business Wire
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Federated learning: modern distributed learning

[McMahan et al. (AISTATS 2017)]
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Communication cost  computation cost!>

Federated learning: modern distributed learning
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(Differential) Privacy guarantees

Federated learning: modern distributed learning



Image Credit: Robotics Business Review

Image Credit: WellcomeRieke et al. NPJ Digit. Med. (2020)
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Image Credit: Robotics Business Review

Image Credit: WellcomeRieke et al. NPJ Digit. Med. (2020)

Data remains decentralized and private
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Large Language Models  
massive progress in NLP

⟹

[Brown et al. (2020), …]

1.5

3

4.5

6

1E+03 1E+05 1E+07 1E+09
# Model Parameters

Test loss of language modeling

[Kaplan, McCandlish et al. (2020)]
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Large Language Models (LLMs)
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[Kaplan, McCandlish et al. (2020)]
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Stunning text generation capabilities

Scaling up  progress in all of AI⟹

[Saharia et al. (2022), Jumper et al. (2021), Hsu et al. (2021), Bommasani et al. (2021)]

 Foundation/
platform models
→
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New capabilities are emerging

In a shocking finding, scientists discovered a herd of 
unicorns living in a remote, previously, unexplored 
valley, in the Andes Mountains.  

Continuation. The scientists named the population, 
after their distinctive horn, Ovid’s Unicorn. These four-
horned, silver-white unicorns were previously unknown 
… 

>> prompt:

GPT-2

Generative AI: LLMs can write long essays now!

>> prompt: English: Hello!                                                                       
French:

GPT-3 English: Hello!                                                                       
French: Bonjour!

In-context learning & Zero-shot prediction
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Test loss of language modeling

[Kaplan, McCandlish et al. (2020)]
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Server
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Federated learning Large language models
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Challenges
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Federated learning: train-test mismatch

Robustness to deployment conditions that 
differ from training
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Challenges

25

Federated learning: train-test mismatch

Large language models: emergent capabilities

Robustness to deployment conditions that 
differ from training
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Challenges
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Robustness to deployment conditions that 
differ from training

Robustness to outliers: adversarial or 
uncurated web data

outliers
Mean



By Craig S. Smith May 10, 2018
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Robustness to deployment conditions that 
differ from training

Robustness to outliers: adversarial or 
uncurated web data

outliers
Mean

Faster optimization: reduce communication 
and computation
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Robustness to deployment conditions that 
differ from training

Robustness to outliers: adversarial or 
uncurated web data

outliers
Mean

Faster optimization: reduce communication 
and computation

Privacy of user data
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LLMs
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Empirical Theory

Algorithms

State-of-the-art performance Analysis of convergence 
(statistical/optimization)

Problem
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Part 1: Diagnosing large-scale text generation 
models with Mauve
[NeurIPS (2021a) Outstanding Paper Award, 

NeurIPS (2021b), Submitted (2023)]

36

P: humanQ: machine

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)

Text

Pr
ob

ab
ili

ty

PQ
Type I Error:
The time is
the time is
the time is
the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

Pillutla 6 / 36



Open-ended generative AI
• New: LLMs can write long essays!

In a shocking finding, scientists discovered a herd of 
unicorns living in a remote, previously, unexplored 
valley, in the Andes Mountains.  

Continuation. The scientists named the population, 
after their distinctive horn, Ovid’s Unicorn. These four-
horned, silver-white unicorns were previously unknown … 

>> prompt:
• LLMs still make mistakes

• Widely deployed commercially

37



Open-ended generation is an emergent capability

Training: Language modeling

Deployment conditions differ from training

Guess the next 1 word

38

Shall we go to the ___
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Deployment: Sequential generation

Sample the next 500 words sequentially



In a shocking finding, scientists discovered a 
herd of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains. 

>> prompt:

39

How good is open-ended generation? The classical approach
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How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a 
herd of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains. 

>> prompt:
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Model Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were 
previously unknown …

Human Reference. Known only to specialized 
cartographers as “Valle Escondido” or “Hidden valley”, 
this valley boasts of a wide variety of flora and fauna …

Human

Measure similarity/overlap

ChatGPT



How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a 
herd of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains. 

>> prompt:

42

Model Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were 
previously unknown …

Continuation 2. This discovery has kicked off an all-
out search for other mythical creatures from the frozen 
reaches of the Antarctic to the tropical islands of the 
Pacific …

Continuation 3. Perhaps most astonishingly, these 
unicorns have developed their own artificial general 
intelligence named Yuyaysapa …

Human Reference. Known only to specialized 
cartographers as “Valle Escondido” or “Hidden valley”, 
this valley boasts of a wide variety of flora and fauna …

Human

Measure similarity/overlap

ChatGPT



How close are the probability distributions over text sequences?

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

How to Evaluate Open-Ended Generation?

I Numerous “correct” completions: traditional evaluation methods relying on gold
references do not apply

I Our goal: measure the similarity/divergence at the level of distributions
I Ordering: a be�er model will generate samples whose distribution is “close” to

distribution of human text

model human
?

Pillutla 4 / 36
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Problem statement



Two types of errors in text generation

P: human distributionQ: machine distribution

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)
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P: human distributionQ: machine distribution

Q places high mass on 
text unlikely under P  
(e.g. degenerate text)
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P: human distributionQ: machine distribution

Q places high mass on 
text unlikely under P  
(e.g. degenerate text)

Q cannot produce text 
plausible under P    (e.g. 
truncation heuristics)

KL(Q|P) KL(P|Q)KL(P |Q) = ∑
x

P(x) log P(x)
Q(x)

46



Mauve: summarizing both errors

• KL(Q|P) and KL(P|Q) can be 
infinite, so measure errors softly 
using mixtures

• Mauve: area summary of the curve: a 
quantitative measure of similarity and 
takes values between 0 (dissimilar) 
and 1 (identical)

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Divergence Curve and Mauve

I Since � was arbitrary, consider Type I and
Type II errors at all � between 0 and 1

I This gives the divergence curve C(P,Q) =
{(x(�), y(�)) : � 2 (0, 1)} where

x(�) = exp(�KL(Q|R�))

y(�) = exp(�KL(P|R�))

I Mauve is defined as the area under the di-
vergence curve

I Mauve is a similarity measure and takes val-
ues between 0 and 1

exp
�
� KL(Q|R)

�

ex
p
� �

KL
(P
|R
)�

smaller
Type I
error

�! �
larger
Type I
error

x?
smaller
Type II
error
larger
Type II
error?y

R = �P + (1� �)Q

Pillutla 9 / 36

• Divergence Curve: Varying the 
mixture weight

P: generative model
Q: target distribution

47



Computing Mauve in practice

• Sum over documents intractable 

                                    

• Computation pipeline

KL(Q |R) = ∑
x

Q(x) log Q(x)
R(x)

Text x Embedding  
M(x)

LLM 
Encoding Multinomial 

q(M(x))

-means 
clustering
k

48



Goals of automatic evaluation

49

Humans are the end users, so human evaluation is the ultimate test

Human evaluation is slow and expensive

If Mauve can correlate with human evaluations, faster iterations + debugging

Correlation with human judgements



Correlation with human judgements

Head-to-head: Is A or B more (a) human-like, (b) interesting, (c) sensible?        

We compare text written by humans and 8 models

Spearman Correlation w/ human eval (↑)
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1

Human-like Interesting Sensible

0.52
0.41

0.60

0.74

0.64

0.81
0.86

0.81

0.95

Mauve
Gen. PPL.
Self-BLEU

Gen. PPL.: Holtzman et al. (ICLR 2020)          Self-BLEU: Zhu et al. (2018)
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Mauve captures important trends

Model Size

0.86

0.89

0.92

0.95

Small Medium Large XL

Decoding Algorithm

0
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0.75

1

Greedy Sampling Nucleus

Text Length

0.87

0.90

0.93

0.97

Text Length

128 256 512 1024

Small Medium
Large XL

• Y-axis shows Mauve (↑)

• Mauve captures all the trends while baselines fail
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Mauve: Estimation theory

Estimation of Mauve involves two approximations:

high-dimensional 
text distributions

quantized 
distributions

samples (empirical 
distributions)

Continuous Distribution Quantized Distribution Empirical Estimator
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P̂Sk,nClustering/ 
Quantization

Estimate from 
samples

P, Q PS, QS
̂PS,n, Q̂S,n
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Theorem (informal)

k
n

There exists a quantization of size  such that the 
approximation error of Mauve from  samples is

k
n

1
k

+Õ ( )
Statistical 

Error
Quantization 

Error

: number of samples from  and  

: quantization size (Num. clusters)

n P Q

k

Balance both by choosing k = Θ(n1/3)
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Mauve: Beyond clustering

Text x Embedding  
M(x)

Multinomial 
q(M(x))

LLM 
Encoding

-means 
clustering
k

Mauve

KL 
divergenc

e
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Mauve: Beyond clustering

Nearest neighbor estimator 

Kernel density estimator 

Parametric Gaussian approx. 

Classifier-based estimation

Text x Embedding  
M(x)

Multinomial 
q(M(x))

LLM 
Encoding

-means 
clustering
k

Mauve

KL 
divergenc

e
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Mauve: Beyond clustering

General f-divergences 

Optimal transport

Text x Embedding  
M(x)

Multinomial 
q(M(x))

LLM 
Encoding

-means 
clustering
k

Mauve

KL 
divergenc

e
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Mauve: Beyond clustering

Essential

Text x Embedding  
M(x)

Multinomial 
q(M(x))

LLM 
Encoding

-means 
clustering
k

Mauve

KL 
divergenc

e
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Software

from mauve import compute_mauve 

p_text = ... # list of strings for human distribution P 
q_text = ... # list of strings for model distribution Q 

# Obtain deep encoding, quantize it and compute Mauve 
out = compute_mauve(p_text=p_text, q_text=q_text) 

print(f'Mauve(P, Q) = {out.mauve}')

pip install mauve-text 

from evaluate import mauve 

mauve = load(“mauve”) 

# Obtain deep encoding, quantize it and compute Mauve 
out = mauve.compute(references=p_text, predictions=q_text) 

print(f'Mauve(P, Q) = {out.mauve}')

e

HuggingFace Evaluate: pip install evaluate

58
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Impact of Mauve

Standard metric for evaluation and hyper-parameter tuning

Meister et al. (TACL 2022) 

Su et al. (NeurIPS 2022) 

Lu et al. (NeurIPS 2022) 

Xu et al. (NeurIPS 2022)

Jawahar et al. (ACL 2022) 

Hewitt et al. (EMNLP 2022) 

Mattern et al. (EMNLP 2022) 

Hu et al. (NAACL 2022)
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Summary: Diagnosing large-scale text generation with Mauve

Used for open-ended generation 
but trained for language 
modeling. How good is it?

60

In a shocking finding, scientists discovered a herd 
of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains.  

Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s 
Unicorn. These four-horned, silver-white unicorns 
were previously unknown … 

Continuation 2. This discovery has kicked off an 
all-out search for other mythical creatures from 
the frozen reaches of the Antarctic to the tropical 
islands of the Pacific … 

Continuation 3. Perhaps most astonishingly, 
these unicorns have developed their own artificial 
general intelligence named Yuyaysapa …

>> prompt:

Directly measure the gap 
between distributions

P: humanQ: machine

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)

Text

Pr
ob

ab
ili

ty

PQ
Type I Error:
The time is
the time is
the time is
the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

Pillutla 6 / 36

Our approach correlates 
with human judgements and 
quantifies observed behavior

Spearman Correlation w/ 
human eval (↑)

0.4

0.6

0.8

1

0.60

0.81

0.95

Mauve
Baseline 1
Baseline 2



Summary: Diagnosing large-scale text generation with Mauve

Used for open-ended generation 
but trained for language 
modeling. How good is it?

61

In a shocking finding, scientists discovered a herd 
of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains.  

Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s 
Unicorn. These four-horned, silver-white unicorns 
were previously unknown … 

Continuation 2. This discovery has kicked off an 
all-out search for other mythical creatures from 
the frozen reaches of the Antarctic to the tropical 
islands of the Pacific … 

Continuation 3. Perhaps most astonishingly, 
these unicorns have developed their own artificial 
general intelligence named Yuyaysapa …

>> prompt:

Directly measure the gap 
between distributions

P: humanQ: machine

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)

Text

Pr
ob

ab
ili

ty

PQ
Type I Error:
The time is
the time is
the time is
the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

Pillutla 6 / 36

Our approach correlates 
with human judgements and 
quantifies observed behavior

Spearman Correlation w/ 
human eval (↑)

0.4

0.6

0.8

1

0.60

0.81

0.95

Mauve
Baseline 1
Baseline 2



Summary: Diagnosing large-scale text generation with Mauve

Used for open-ended generation 
but trained for language 
modeling. How good is it?

62

In a shocking finding, scientists discovered a herd 
of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains.  

Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s 
Unicorn. These four-horned, silver-white unicorns 
were previously unknown … 

Continuation 2. This discovery has kicked off an 
all-out search for other mythical creatures from 
the frozen reaches of the Antarctic to the tropical 
islands of the Pacific … 

Continuation 3. Perhaps most astonishingly, 
these unicorns have developed their own artificial 
general intelligence named Yuyaysapa …

>> prompt:

Directly measure the gap 
between distributions

P: humanQ: machine

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)

Text

Pr
ob

ab
ili

ty

PQ
Type I Error:
The time is
the time is
the time is
the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

Pillutla 6 / 36

Our approach correlates 
with human judgements and 
quantifies observed behavior

Spearman Correlation w/ 
human eval (↑)

0.4

0.6

0.8

1

0.60

0.81

0.95

Mauve
Baseline 1
Baseline 2



Summary: Diagnosing large-scale text generation with Mauve

Used for open-ended generation 
but trained for language 
modeling. How good is it?

63

In a shocking finding, scientists discovered a herd 
of unicorns living in a remote, previously, 
unexplored valley, in the Andes Mountains.  

Continuation. The scientists named the 
population, after their distinctive horn, Ovid’s 
Unicorn. These four-horned, silver-white unicorns 
were previously unknown … 

Continuation 2. This discovery has kicked off an 
all-out search for other mythical creatures from 
the frozen reaches of the Antarctic to the tropical 
islands of the Pacific … 

Continuation 3. Perhaps most astonishingly, 
these unicorns have developed their own artificial 
general intelligence named Yuyaysapa …

>> prompt:

Directly measure the gap 
between distributions

P: humanQ: machine

Introduction: Open-Ended Generation Mauve: An Information Divergence Measure Experiments Conclusion

Two Types of Errors

I Denote P for the human text distribution and Q for the model text distribution
I Type I error: Q places high mass on text unlikely under P (e.g., degenerate text)
I Type II error: Q cannot produce text plausible under P (e.g., due to nucleus sampling)

Text

Pr
ob

ab
ili

ty

PQ
Type I Error:
The time is
the time is
the time is
the time · · ·

Type II Error:
I just visited
Utqiagvik and
Nuchalawoyya
in Alaska.

Pillutla 6 / 36

Theory: error bounds

k
n

1
k

+Õ ( )
Statistical 

Error
Quantization 

Error



outliers
Mean

Robust 
Deployment

Robust to 
Outliers

Optimize 
Faster

Privacy

64

LLMs

✓

Federated learning

IEEE CISS 2021,  
Springer SVVA 2021,  
Mach. Learn. 2022

IEEE Trans. Signal Proc. 2022,  
ICML 2022 

NeurIPS 2021a 
NeurIPS 2021b 
Submitted 2023

Submitted 2022

NeurIPS 2018 
Submitted 2022

✓

Part 2



Part 2: Tackling distribution shifts in 
federated learning

High 
Error

Low 
Error

Error

C
ou

nt

Error

[IEEE CISS ’21, DistShift-NeurIPS ’22 (Spotlight), 
SVVA ’21, Mach. Learn. ’22]
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min
w∈ℝd

1
n

n

∑
i=1

Fi(w)
Usual 

Learning 
Objective 

Clients

Data 
Distribution

Fi(w) = (z∼pi [f(w; z)]where

loss on client  i

1 2

⋯

n

p1 p2 pn

Diverse users

[McMahan et al. (AISTATS 2017), Kairouz et al. (2021)]
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Usual approach  Global model is trained on 
average distribution across clients

⟹

Server
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Server

Global model is deployed on individual clients
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Global model is deployed on individual clients

Server
Train-test 
mismatch!
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Error

Global model is deployed on individual clients

Server
Train-test 
mismatch!
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Error
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Error
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Error

Reduce tail errorOur goal
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Error

High 
Error

Low 
Error

Error

C
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nt

Error

High 
Error

Low 
Error

Reduce tail error without sacrificing the mean errorOur goal
Mean 
Error

Mean 
Error
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Simplicial federated learning
Simplicial-FL Objective:

min
w

+θ( (F1(w), ⋯, Fn(w)) )
Superquantile | Conditional Value at Risk

m
ea

n

qu
an

til
e

ta
il m

ea
n

[Rockafellar & Uryasev (2002)]

Error

C
ou

nt

Error

{

Our Approach: minimize the tail error directly! 
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0

1

1

1

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Dual expression  continuous knapsack problem≡

+θ(x1, ⋯, xn) = maxπ {∑
i

πixi : πi ≥ 0, ∑
i

πi = 1, πi ≤ (nθ)−1}
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0

1

1

1

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Dual expression  continuous knapsack problem≡

+θ(x1, ⋯, xn) = maxπ {∑
i

πixi : πi ≥ 0, ∑
i

πi = 1, πi ≤ (nθ)−1}

min
w

max
π : πi≤(nθ)−1

(z∼pπ [f(w; z)]

 Distributionally robust learning⟹

Assuming a new test client with mixture distribution , 

Simplicial-FL objective is equivalent to:

pπ = ∑
i

πipi
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Optimization

High 
Error

Low 
Error

Error

C
ou

nt

Error
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Usual Algorithm (FedAvg): Our Algorithm:

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

FedAvg [MacMahan et al. (AISTATS 2017)] 

Parallel Gradient Distribution [Mangasarian. (SICON 1995)]                 
Iterative Parameter Mixing [McDonald et al. (ACL 2009)]  
BMUF [Chen & Huo. (ICASSP 2016)]                             
Local SGD [Stich. (ICLR 2019)]
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Server

Usual Algorithm (FedAvg):

Step 1 of 3: Server samples  clients 
and broadcasts global model

m

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)
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Our Algorithm:



Usual Algorithm (FedAvg):

Step 2 of 3: Clients perform local 
gradient descent on their local data

Server

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)
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Our Algorithm:



Loss

C
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nt
Tail

-Quantile(1 − θ)

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

Server Server

Our Algorithm:

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

Usual Algorithm (FedAvg):

80



Experiments: EMNIST
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Usual

Ours

Histogram of per-client errors

Misclassification Error
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Misclassif. Error

7.50

15.00

22.50

30.00

90th Percentile Mean

Ours FedAvg
FedProx q-FFL

• Simplicial-FL has the smallest 90th percentile error 

• Simplicial-FL is competitive on the mean error

Usual

Ours

Histogram of per-client errors

Misclassification Error

3.3 pp

83



Convergence analysis (non-convex)

High 
Error

Low 
Error

Error

C
ou

nt

Error

84

Faster optimization: 
reduce communication



plot of h(u1, u2) = +1/2( u1, u2, 0, 0 )

u1

u2

Challenge #1:  

The superquantile is non-smooth

85



Subgradient illustration
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xc

f(x)

f(c) + f 0(c)(x� c)

1
xc

f(x)

f(c) + s(x� c)

1

Smooth Non-smooth



Nonsmooth: The subgradient has a tractable form

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) π⋆

i ∝ 5(Fi(w) ≥ Qθ(F1(w), ⋯, Fn(w))) assuming  
is an integer

θnwhere
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Loss
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Tail

-Quantile(1 − θ)



π⋆ ∈ arg maxπ∈6θ ∑
i

πiFi(w)
0

1

1

1

Proof Chain rule  subgradient holds with⟹

Alternate form of  comes from the continuous knapsack problem π⋆

[Dantzig. ORIJ (1957)]

Nonsmooth: The subgradient has a tractable form

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) π⋆

i ∝ 5(Fi(w) ≥ Qθ(F1(w), ⋯, Fn(w))) assuming  
is an integer

θnwhere
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Other option: Use smoothing

[Nesterov. (Math. Prog. 2005),  
Beck & Teboulle. (SIAM J. Optim. 2012), 
P., Roulet, Kakade, Harchaoui. (NeurIPS 2018), 
Laguel, P., Malick, Harchaoui. (SVVA 2021)]

Nonsmooth: The subgradient has a tractable form

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) π⋆

i ∝ 5(Fi(w) ≥ Qθ(F1(w), ⋯, Fn(w))) assuming  
is an integer

θnwhere

Loss @ Rank  i

πi

Original π⋆
iSmoothed π⋆

i
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Challenge #2 

The superquantile is nonlinear                                           
  unbiased stochastic gradients not possible⟹

([+θ(Z1, ⋯, Zm)] ≠ +θ(Z)( [ 1
m

m

∑
i=1

Zi] = ([Z]

For i.i.d. copies  of , we haveZ1, ⋯, Zm Z

but
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Fθ(w) = (S : |S|=m [+θ( (Fi(w) : i ∈ S) )]

Nonlinear: We minimize a close surrogate
S

([+θ(Z1, ⋯, Zm)] − +θ(Z) ≤ B
θm

The surrogate is uniformly close for bounded losses: 

For i.i.d. copies  of  with  a.s., we haveZ1, ⋯, Zm Z |Z | ≤ B

[Levy et al. (NeurIPS 2020)]

Var[+θ(Z1, ⋯, Zm)] ≤ B2

θm
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( ∇Φ2L
θ (wt)

2
≤ Δ0LG2

t
+ (1 − τ)1/3( Δ0LG

t )
2/3

+ Δ0L
t

Suppose each  is -smooth and -Lipschitz.  

Then, Simplicial-FL satisfies the convergence guarantee:  

Fi L G

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds 
: #local update steps 
: initial error 

t
τ
Δ0

Φμ
θ(w) = inf

z {Fθ(z) + μ
2 ∥z − w∥2}       Moreau envelope of  | well defined for  ⟵ Fθ μ > L

92



( ∇Φ2L
θ (wt)

2
≤ Δ0LG2

t
+ (1 − τ)1/3( Δ0LG

t )
2/3

+ Δ0L
t

Suppose each  is -smooth and -Lipschitz.  

Then, Simplicial-FL satisfies the convergence guarantee:  

Fi L G

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds 
: #local update steps 
: initial error 

t
τ
Δ0

Φμ
θ(w) = inf

z {Fθ(z) + μ
2 ∥z − w∥2}       Moreau envelope of  | well defined for  ⟵ Fθ μ > L

93



( ∇Φ2L
θ (wt)

2
≤ Δ0LG2

t
+ (1 − τ)1/3( Δ0LG

t )
2/3

+ Δ0L
t

Suppose each  is -smooth and -Lipschitz.  

Then, Simplicial-FL satisfies the convergence guarantee:  

Fi L G

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds 
: #local update steps 
: initial error 

t
τ
Δ0

Φμ
θ(w) = inf

z {Fθ(z) + μ
2 ∥z − w∥2}       Moreau envelope of  | well defined for  ⟵ Fθ μ > L

94



( ∇Φ2L
θ (wt)

2
≤ Δ0LG2

t
+ (1 − τ)1/3( Δ0LG

t )
2/3

+ Δ0L
t

Suppose each  is -smooth and -Lipschitz.  

Then, Simplicial-FL satisfies the convergence guarantee:  

Fi L G

Theorem [P., Laguel, Malick, Harchaoui]

: #comm. rounds 
: #local update steps 
: initial error 

t
τ
Δ0

Φμ
θ(w) = inf

z {Fθ(z) + μ
2 ∥z − w∥2}       Moreau envelope of  | well defined for  ⟵ Fθ μ > L

95



Privacy analysis

High 
Error

Low 
Error

Error

C
ou

nt

Error
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Privacy of user data



97

Randomized 
Algorithm

1

Dataset Output Distribution 
(e.g. over models)
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Randomized 
Algorithm

+ 1

Dataset Output Distribution 
(e.g. over models)



1
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Randomized 
Algorithm

+

Dataset Output Distribution 
(e.g. over models)

1



1

100

Dataset

Randomized 
Algorithm

+

[Dwork, McSherry, Nissim, Smith (2006)]

ε

Output Distribution 
(e.g. over models)

A randomized algorithm is -differentially private if the addition of 
one user’s data does not alter its output distribution by more than 

ε
ε



1
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Dataset

Randomized 
Algorithm

+

ε

Output Distribution 
(e.g. over models)

1

ε

Large more privacy leakageε ⟹

-differential privacyε



Loss

C
ou

nt

Tail

-Quantile(1 − θ)

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Server

Our Algorithm:

102

Privacy goal
Extend our algorithm to make it differentially private

Our Objective:

min
w

+θ( (F1(w), ⋯, Fn(w)) )



Why is it challenging?

103

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

Our Algorithm:Usual Algorithm:

rF1(w)

rF2(w)

rF (w)

noisy gradient

1
Private mean estimation of gradients Non-linear



[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]

x1

x2
x1 + x2

Client 1

Client 2

Server∑

Only reveal  to the server without revealing  or x1 + x2 x1 x2

Communication primitive: secure sum
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Client 1

Client 2

x1

x2

x1

x2

∑

Server

Perform all operations modulo   M

105
[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]



x′ 1 = x1 + ξx1

x2

x′ 2 = x2 − ξ

x1
ξ

x2

−ξ

x′ 1

x′ 2

ξ ∼ Unif(◯)

Client 1

Client 2

x′ 1

x′ 2

∑

x′ 1 + x′ 2 = x1 + x2

Server

Server only sees  but calculates the correct sumx′ 1, x′ 2 ∼ Unif(◯)

106
[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]



x′ 1 = x1 + ξx1

x2

x′ 2 = x2 − ξ

x1
ξ

x2

−ξ

x′ 1

x′ 2

ξ ∼ Unif(◯)

Client 1

Client 2

[Bonawitz et al. CCS (2017), Bell et al. CCS (2020)]

x′ 1

x′ 2

∑

x′ 1 + x′ 2 = x1 + x2

Server

Server only sees  but calculates the correct sumx′ 1, x′ 2 ∼ Unif(◯)

Total communication for  vectors in   =  numbersm ℝd O(m log m + md)
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x′ 1 = x1 + ξx1

x2

x′ 1

x′ 2

x1
ξ

x2

−ξx′ 2 = x2 − ξ

x′ 1

x′ 2

∑

Server

ξ ∼ Unif(◯)

Server only sees  but calculates the correct sumx′ 1, x′ 2 ∼ Unif(◯)

Total communication for  vectors in   =  numbersm ℝd O(m log m + md)

x′ 1 + x′ 2 = x1 + x2Client 1

Client 2

x′ 1 = x1 + ξx1

x2

x′ 2 = x2 − ξ

x1
ξ

x2

−ξ

x′ 1

x′ 2

ξ ∼ Unif(◯)

Client 1

Client 2

x′ 1

x′ 2

∑

x′ 1 + x′ 2 = x1 + x2

Server

Server only sees  but calculates the correct sumx′ 1, x′ 2 ∼ Unif(◯)

Real-world communication constraint:  
All client-to-server communication must go through secure summation
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How to achieve non-linear aggregation with a 
secure sum?

109

min
w

+θ( (F1(w), ⋯, Fn(w)) )

Non-linear aggregate:

x1

x2
x1 + x2

Client 1

Client 2

Server∑

Secure sum



Loss

C
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nt
Tail

-Quantile(1 − θ)

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

Server Server

Our Algorithm:

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

Usual Algorithm (FedAvg):
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Loss

C
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nt

Tail

-Quantile(1 − θ)
Histogram

Per-client loss

∑

Noisy client loss histogram

h′ i = hi + >ℤ(0,σ2Ib)

Loss

C
ou

nt

Tail≈

-Quantile≈ (1 − θ)
 Noisy  

histogram

∑

Differential privacy via  
discrete Gaussian noise

[Kairouz, Liu, Steinke. (ICML 2021)]
111



If we wish to compute the -quantile, our algorithm returns an -differentially 
private -quantile where

α ε
α′ 

Proposition (informal) [P., Laguel, Malick, Harchaoui]

Total communication cost ≈ bm log2 m

112

  #clients per round 
   #bins in the histogram 
    privacy parameter

m
b
ε

 α′ − α ≤ b
εm



Server

Loss

C
ou

nt
Tail

-Quantile(1 − θ)

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

Server

Our Algorithm:

min
w

+θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

Usual Algorithm (FedAvg):
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rF1(w)

rF2(w)

rF (w)

noisy gradient

1

Private mean estimation of (potentially zeroed out) gradients

Server

∑
0⃗ 0⃗ 0⃗
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rF1(w)

rF2(w)

rF (w)

noisy gradient

1

Total privacy leakage =  

Quantile privacy leakage + Parameter privacy leakage

Loss

C
ou

nt

Tail≈

-Quantile≈ (1 − θ)



Privacy of user data: 

First end-to-end differentially private algorithm for       
distributionally robust federated learning

116

Algorithm requires 2 secure summations per update
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Ours

Usual

5 pp

0.5 - 0.6 pp Less privateMore private



Distributionally robust learning with  
1 additional line of code

Install: pip install sqwash 

Documentation: krishnap25.github.io/sqwash/

118

import torch.nn.functional as F 
  from sqwash import reduce_superquantile 

                                                                                                          
  for x, y in dataloader: 
      y_hat = model(x) 
      batch_losses = F.cross_entropy(y_hat, y, reduction='none')  # must set `reduction='none'` 
      loss = reduce_superquantile(batch_losses, superquantile_tail_fraction=0.5)  # Additional line 
      loss.backward()  # Proceed as usual from here

https://krishnap25.github.io/sqwash/


Summary: Tackling distribution shifts in federated learning
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Error
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min
w

+θ( (F1(w), ⋯, Fn(w)) )Distribution shift  
large tail errors

⟹

Usual

Ours

Misclassification Error

Our approach reduces 
tail error
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Summary: Tackling distribution shifts in federated learning
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⟹

Usual

Ours

Misclassification Error

Our approach reduces 
tail error
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Summary: Tackling distribution shifts in federated learning

High 
Error

Low 
Error

Error
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nt

Error

min
w

+θ( (F1(w), ⋯, Fn(w)) )Distribution shift  
large tail errors

⟹ Convergence + 
Privacy analysis

122

 error rate after  
comm. rounds in the non-
smooth, non-convex case

O(1/ t) t

Differentially private 
algorithm for distributional 
robust federated learning 



Future research plans
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Challenges

124

Robustness to deployment conditions that 
differ from training

Robustness to outliers: adversarial or 
uncurated web data

outliers
Mean

Faster optimization: reduce communication 
and computation

Privacy of user data
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LLMs

✓

Federated learning

IEEE CISS 2021,  
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NeurIPS 2018 
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LLMsWhat comes after 
federated learning?

NeurIPS 2021a 
NeurIPS 2021b 
Submitted 2023

Submitted 2022

NeurIPS 2018 
Submitted 2022

Future plan 2

outliers
Mean

Robust 
Deployment

Robust to 
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Optimize 
Faster

Privacy



Thank you!
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