Towards Next-Generation ML/AI: Robustness, Optimization, Privacy

Google Research

UNIVERSITY of WASHINGTON

Krishna Pillutla January 16th, 2023 @ IIT Madras

ML/AI have been revolutionized in the last 10 years

Language modeling

Shall we go to the ____

[Markov (1913), Shannon (1948)]

 $P(x_{t+1} | x_1, ..., x_t)$

Data Credit: Business Wire

Federated learning: modern distributed learning

[McMahan et al. (AISTATS 2017)]

Data Credit: Business Wire

_	_
7	

Federated learning: modern distributed learning

Communication cost > computation cost!

Data Credit: Business Wire

_			
		1	
	5		
			,
-			

Federated learning: modern distributed learning

(Differential) Privacy guarantees

Data Credit: Business Wire

_			
		1	
	5		
			,
-			

Image Credit: Robotics Business Review

15

Rieke et al. NPJ Digit. Med. (2020) Image Credit: Wellcome

Rieke et al. NPJ Digit. Med. (2020) Image Credit: Wellcome

Data remains decentralized and private

Large Language Models (LLMs)

Stunning text generation capabilities

[Saharia et al. (2022), Jumper et al. (2021), Hsu et al. (2021), Bommasani et al. (2021)]

New capabilities are emerging

Generative AI: LLMs can write long essays now!

In a shocking finding, scientists discovered a herd of >> prompt: unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These fourhorned, silver-white unicorns were previously unknown

In-context learning & Zero-shot prediction

>> prompt: English: Hello! French:

English: Hello! French: Bonjour!

Language modeling in 2023

Language modeling in 2023

Federated learning

Large language models

Challenges

Robustness to deployment conditions that

Federated learning: train-test mismatch

THE ACCENT GAP

We tested Amazon's Alexa and Google's Home to see how people with accents are getting left behind in the smart-speaker revolution.

By Drew Harwell

The Washington Post Democracy Dies in Darkness

July 19, 2018

Federated learning: train-test mismatch

Large language models: emergent capabilities

Challenges

Robustness to deployment conditions that

ARTIFICIAL INTELLIGENCE Why Meta's latest large language model survived only three days online Galactica was supposed to help scientists. Instead, it mindlessly spat out biased and incorrect nonsense. **By Will Douglas Heaven** November 18, 2022 × not verified Question: Do vaccines cause autism? Answer: To explain, the answer is no. Vaccines do not cause autism. The answer is yes. Vaccines cause autism. The answer is no.

uncurated web data

Challenges

Robustness to deployment conditions that

Robustness to outliers: adversarial or

Alexa and Siri Can Hear This Hidden Command. You Can't.

Researchers can now send secret audio instructions undetectable to the human ear to Apple's Siri, Amazon's Alexa and Google's Assistant.

By Craig S. Smith

The New York Times

uncurated web data

Challenges

Robustness to deployment conditions that

Robustness to outliers: adversarial or

Robustness to outliers: adversarial or uncurated web data

Faster optimization: reduce communication and computation

Challenges

Robustness to deployment conditions that

Robustness to outliers: adversarial or uncurated web data

Faster optimization: reduce communication and computation

Privacy of user data

Challenges

Robustness to deployment conditions that

Federated learning

IEEE CISS 2021, Springer SVVA 2021, Mach. Learn. 2022

Robust to Outliers

IEEE Trans. Signal Proc. 2022, ICML 2022

Privacy

LLMS

NeurIPS 2021a NeurIPS 2021b *Submitted 2023*

Submitted 2022

NeurIPS 2018 Submitted 2022

State-of-the-art performance

Theory

Analysis of convergence (statistical/optimization)

Federated learning

IEEE CISS 2021, Springer SVVA 2021, Mach. Learn. 2022

Robust to Outliers

IEEE Trans. Signal Proc. 2022, ICML 2022

Privacy

LLMS

NeurIPS 2021a NeurIPS 2021b *Submitted 2023*

Submitted 2022

NeurIPS 2018 Submitted 2022

Federated learning

IEEE CISS 2021, Springer SVVA 2021, Mach. Learn. 2022

IEEE Trans. Sign ICML 2022

Privacy

LLMS

NeurIPS 2021a NeurIPS 2021b *Submitted 2023*

Part 1 Submitted 202

NeurIPS 2018 Submitted 2022

Part 1: Diagnosing large-scale text generation models with Mauve

[NeurIPS (2021a) Outstanding Paper Award, NeurIPS (2021b), *Submitted (2023)*]

- *New*: LLMs can write long essays!
- Widely deployed commercially
- LLMs still make mistakes

Google

ai text generator

About 75,700,000 results (0.33 seconds)

Text Generation API | DeepAI

The text generation API is backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model, ...

Generate Text - InferKit app Sassbook AI Writer: High-quality AI Text Generator Use this cutting-edge AI text generator to write stories, poems ... Al Writer[™] - The best Al Text Generator, promised. Let the AI Content Generator do all the hard work - Zyro

Open-ended generative AI

>> prompt:

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

XQ

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These fourhorned, silver-white unicorns were previously unknown ...

Open-ended generation is an emergent capability

Deployment conditions differ from training

Training: Language modeling Guess the next 1 word

Shall we go to the ____

Deployment: Sequential generation Sample the next 500 words sequentially

How good is open-ended generation? The classical approach

In a shocking finding, scientists discovered a >> prompt: herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

How good is open-ended generation? The classical approach

Model Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

>prompt: In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

How good is open-ended generation? The classical approach

Human Reference. Known only to specialized cartographers as "Valle Escondido" or "Hidden valley", this valley boasts of a wide variety of flora and fauna ...

How good is open-ended generation? The classical approach

ChatGP7 **Model Continuation**. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

>> prompt:

Continuation 2. This discovery has kicked off an allout search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...

Measure similarity/overlap

Human Reference. Known only to specialized cartographers as "Valle Escondido" or "Hidden valley", this valley boasts of a wide variety of flora and fauna ...

How close are the probability distributions over text sequences?

Problem statement

Two types of errors in text generation

P: human distribution

Q places high mass on text unlikely under P (e.g. degenerate text)

Mauve: summarizing both errors

 KL(Q|P) and KL(P|Q) can be infinite, so measure errors softly using mixtures

• **Divergence Curve:** Varying the *mixture weight*

 Mauve: area summary of the curve: a quantitative measure of similarity and takes values between 0 (dissimilar) and 1 (identical)

Computing Mauve in practice

• Sum over documents intractable

• Computation pipeline

Correlation with human judgements Goals of automatic evaluation

Human evaluation is slow and expensive

If Mauve can correlate with human evaluations, faster iterations + debugging

Humans are the end users, so human evaluation is the ultimate test

Correlation with human judgements

Head-to-head: Is A or B more (a) human-like, (b) interesting, (c) sensible? We compare text written by humans and 8 models

Spearman Correlation w/ human eval (1)

Mauve captures important trends

- Y-axis shows Mauve (1)
- Mauve captures all the trends while baselines fail

Large

Text Length

— Medium

— XL

Mauve: Estimation theory

Estimation of Mauve involves two approximations:

Clustering/

text distributions

Balance both by choosing $k = \Theta(n^{1/3})$

- *n*: number of samples from *P* and *Q*
- k: quantization size (Num. clusters)

k-means clustering

Multinomial q(M(x))

Mauve

- Nearest neighbor estimator
- Kernel density estimator
- Parametric Gaussian approx.
- **Classifier-based** estimation

General *f*-divergences

Optimal transport

Essential

k-means clustering

Multinomial q(M(x))

Mauve

pip install mauve-text

from mauve import compute_mauve

p_text = ... # list of strings for human distribution P **q_text** = ... # list of strings for model distribution Q

Obtain deep encoding, quantize it and compute Mauve out = compute_mauve(p_text=p_text, q_text=q_text)

print(f'Mauve(P, Q) = {out.mauve}')

60K downloads

Software

HuggingFace Evaluate: **pip install evaluate**

from evaluate import mauve

mauve = load("mauve")

Obtain deep encoding, quantize it and compute Mauve out = mauve.compute(references=p_text, predictions=q_text)

print(f'Mauve(P, Q) = {out.mauve}')

Standard metric for evaluation and hyper-parameter tuning

Meister et al. (TACL 2022) Su et al. (NeurIPS 2022) Lu et al. (NeurIPS 2022)

Xu et al. (NeurIPS 2022)

Impact of Mauve

Jawahar et al. (ACL 2022) Hewitt et al. (EMNLP 2022) Mattern et al. (EMNLP 2022) Hu et al. (NAACL 2022)

Used for open-ended generation but trained for language modeling. How good is it?

In a shocking finding, scientists discovered a herd >> prompt: of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

Continuation 2. This discovery has kicked off an all-out search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...

Used for open-ended generation but trained for language modeling. How good is it?

Directly measure the gap between distributions

In a shocking finding, scientists discovered a herd >> prompt: of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

Continuation 2. This discovery has kicked off an all-out search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...

Used for open-ended generation but trained for language modeling. How good is it?

In a shocking finding, scientists discovered a herd >> prompt: of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

Continuation 2. This discovery has kicked off an all-out search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...

Directly measure the gap between distributions

Our approach correlates with human judgements and quantifies observed behavior

Mauve

Baseline 1

Baseline 2

Spearman Correlation w/

Used for open-ended generation but trained for language modeling. How good is it?

In a shocking finding, scientists discovered a herd >> prompt: of unicorns living in a remote, previously, unexplored valley, in the Andes Mountains.

Continuation. The scientists named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown ...

Continuation 2. This discovery has kicked off an all-out search for other mythical creatures from the frozen reaches of the Antarctic to the tropical islands of the Pacific ...

Continuation 3. Perhaps most astonishingly, these unicorns have developed their own artificial general intelligence named Yuyaysapa ...

Q: machine

Federated learning

Robust Deployment

IEEE CISS 2021, Springer SVVA 2021, Mach. Learn. 2022

LLMS

NeurIPS 2021a NeurIPS 2021b Submitted 2023

Part 2: Tackling distribution shifts in federated learning

[IEEE CISS '21, DistShift-NeurIPS '22 (Spotlight), SVVA '21, Mach. Learn. '22]

Objective

[McMahan et al. (AISTATS 2017), Kairouz et al. (2021)]

loss on client *i*

Usual approach \implies Global model is trained on average distribution across clients

Global model is deployed on individual clients

Global model is deployed on *individual* clients

Global model is deployed on *individual* clients

Our goal Reduce tail error

Our goal Reduce tail error without sacrificing the mean error

Simplicial federated learning

Our Approach: minimize the tail error directly!

Simplicial-FL Objective:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Superquantile | Conditional Value at Risk

[Rockafellar & Uryasev (2002)]

Dual expression \equiv continuous knapsack problem

$$\mathbb{S}_{\theta}(x_1, \cdots, x_n) = \max_{\pi} \left\{ \sum_i \pi_i x_i : \pi_i \ge 0, \sum_i \pi_i = 1, \pi_i \le (n\theta)^{-1} \right\}$$

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Dual expression \equiv continuous knapsack problem

$$\mathbb{S}_{\theta}(x_1, \cdots, x_n) = \max_{\pi} \left\{ \sum_i \pi_i x_i : \pi_i \ge 0, \sum_i \pi_i = 1, \pi_i \le (n\theta)^{-1} \right\}$$

[Dantzig (1957), Ben-Tal & Teboulle (1987), Föllmer & Schied (2002)]

Simplicial-FL objective is equivalent to:

$$\min_{w} \max_{\pi: \pi_i \le (n\theta)^{-1}} \mathbb{E}_{z \sim p_{\pi}} \left[f(w; z) \right]$$

 \implies Distributionally robust learning

Optimization

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

FedAvg [MacMahan et al. (AISTATS 2017)]

Parallel Gradient Distribution [Mangasarian. (SICON 1995)] Iterative Parameter Mixing [McDonald et al. (ACL 2009)] BMUF [Chen & Huo. (ICASSP 2016)] Local SGD [Stich. (ICLR 2019)]

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

and broadcasts global model

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Step 1 of 3: Server samples *m* clients

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

Step 2 of 3: Clients perform local

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

gradient descent on their local data

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

Step 3 of 3: Aggregate updates contributed by **all clients**

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Step 3 of 3: Aggregate updates contributed by **tail clients** only

Experiments: EMNIST

٦	١	٦	Q	Г
¥.	١	ŝ	ø	ч
۲	٥	Ф	ø	ð
٦	4	٩	٥	0
τ	Ø	dr	١	φ

١	5	۱	-	ч
7	3	3	Л	6
8	0	5	0	n
٦	ł	ъ	η	6
7.	6	a	١	ц

Histogram of per-client errors

Misclassification Error

Histogram of per-client errors

Misclassification Error

- Simplicial-FL has the smallest 90th percentile error
- Simplicial-FL is competitive on the mean error

Misclassif. Error

Convergence analysis (non-convex)

Faster optimization: reduce communication

Challenge #1:

The superquantile is non-smooth

plot of $h(u_1, u_2) = S_{1/2}(u_1, u_2, 0, 0)$

Subgradient illustration

Smooth

Non-smooth

Nonsmooth: The subgradient has a tractable form

$$\partial F_{\theta}(w) \ni \sum_{i=1}^{n} \pi_{i}^{\star} \nabla F_{i}(w) \quad \text{where} \quad \pi_{i}^{\star} \propto \mathbb{I}\left(F_{i}(w) \ge Q_{\theta}\left(F_{1}(w), \cdots, F_{n}(w)\right)\right) \quad \text{assuming } \theta \in \mathbb{R}^{n}$$
 is an integer

Nonsmooth: The subgradient has a tractable form

$$\partial F_{\theta}(w) \ni \sum_{i=1}^{n} \pi_{i}^{\star} \nabla F_{i}(w) \quad \text{where} \quad \pi_{i}^{\star} \propto \mathbb{I}\Big(F_{i}(w) \ge Q_{\theta}\big(F_{1}(w), \cdots, F_{n}(w)\big)\Big) \quad \underset{\text{is}}{\text{as}}$$

Proof Chain rule \implies subgradient holds with

$$\pi^{\star} \in \arg\max_{\pi \in \mathcal{P}_{\theta}} \sum_{i \in \mathcal{P}_$$

Alternate form of π^* comes from the continuous knapsack problem

[Dantzig. ORIJ (1957)]

Nonsmooth: The subgradient has a tractable form

$$\partial F_{\theta}(w) \ni \sum_{i=1}^{n} \pi_i^* \nabla F_i(w) \quad \text{where} \quad \pi_i^* \propto \mathbb{I}\Big(F_i(w) \ge Q_{\theta}\big(F_1(w), \cdots, F_n(w)\big)\Big)$$

Other option: Use smoothing

assuming θn is an integer

[Nesterov. (Math. Prog. 2005), Beck & Teboulle. (SIAM J. Optim. 2012), P., Roulet, Kakade, Harchaoui. (NeurIPS 2018), Laguel, P., Malick, Harchaoui. (SVVA 2021)]

Challenge #2

The superquantile is *nonlinear* \implies unbiased stochastic gradients not possible

For i.i.d. copies
$$Z_1, \dots, Z_m$$
 of Z , we have

$$\mathbb{E}\left[\frac{1}{m}\sum_{i=1}^m Z_i\right] = \mathbb{E}[Z] \text{ but } \mathbb{E}\left[\mathbb{S}_{\theta}(Z_1, \dots, Z_m)\right] \neq \mathbb{S}_{\theta}(Z)$$

Nonlinear: We minimize a close surrogate

$$\overline{F}_{\theta}(w) = \mathbb{E}_{S:|S|=m} \left[\mathbb{S}_{\theta} \left(\left(F_{i}(w) : i \in S \right) \right) \right]$$

The surrogate is uniformly close for bounded losses:

For i.i.d. copies Z_1, \dots, Z_m of Z with $|Z| \le B$ a.s., we have

$$\left| \mathbb{E} \left[\mathbb{S}_{\theta}(Z_1, \cdots, Z_m) \right] - \mathbb{S}_{\theta}(Z) \right| \leq \frac{B}{\sqrt{\theta m}}$$

[Levy et al. (NeurIPS 2020)]

$$\mathsf{Var}\Big[\mathbb{S}_{\theta}(Z_1,\cdots,Z_m)\Big] \leq \frac{B^2}{\theta m}$$

- Suppose each F_i is *L*-smooth and *G*-Lipschitz.
- Then, Simplicial-FL satisfies the convergence guarantee:

$$\mathbb{E}\left\|\nabla \Phi_{\theta}^{2L}(w_t)\right\|^2 \leq \sqrt{\frac{\Delta_0 L G^2}{t}} + (1-\tau)^{1/3} \left(\frac{\Delta_0 L G}{t}\right)^{2/3} + \frac{\Delta_0 L}{t}$$

$$\Phi^{\mu}_{\theta}(w) = \inf_{z} \left\{ \overline{F}_{\theta}(z) + \frac{\mu}{2} \|z - w\|^2 \right\} \quad \epsilon$$

Theorem [*P.*, Laguel, Malick, Harchaoui]

t: #comm. rounds τ : #local update steps Δ_0 : initial error

Suppose each F_i is *L*-smooth and *G*-Lipschitz.

Then, Simplicial-FL satisfies the convergence guarantee:

$$\mathbb{E}\left\|\nabla\Phi_{\theta}^{2L}(w_t)\right\|^2 \leq \sqrt{\frac{\Delta_0 L G^2}{t}} + (1-\tau)^{1/3} \left(\frac{\Delta_0 L G}{t}\right)^{2/3} + \frac{\Delta_0 L}{t}$$

$$\Phi^{\mu}_{\theta}(w) = \inf_{z} \left\{ \overline{F}_{\theta}(z) + \frac{\mu}{2} \|z - w\|^2 \right\} \quad \epsilon$$

Theorem [*P.*, Laguel, Malick, Harchaoui]

t: #comm. rounds τ : #local update steps Δ_0 : initial error

- Suppose each F_i is *L*-smooth and *G*-Lipschitz.
- Then, Simplicial-FL satisfies the convergence guarantee:

$$\mathbb{E} \left\| \nabla \Phi_{\theta}^{2L}(w_t) \right\|^2 \le \sqrt{\frac{\Delta_0 L G^2}{t}} + (1 - \tau)^{1/3} \left(\frac{\Delta_0 L G}{t} \right)^{2/3} + \frac{\Delta_0 L}{t}$$

$$\Phi^{\mu}_{\theta}(w) = \inf_{z} \left\{ \overline{F}_{\theta}(z) + \frac{\mu}{2} \|z - w\|^2 \right\} \quad \leftarrow$$

Theorem [*P.*, Laguel, Malick, Harchaoui]

t: #comm. rounds τ : #local update steps Δ_0 : initial error

- Suppose each F_i is *L*-smooth and *G*-Lipschitz.
- Then, Simplicial-FL satisfies the convergence guarantee:

$$\mathbb{E}\left\|\nabla \Phi_{\theta}^{2L}(w_t)\right\|^2 \leq \sqrt{\frac{\Delta_0 L G^2}{t}} + (1-\tau)^{1/3} \left(\frac{\Delta_0 L G}{t}\right)^{2/3} + \frac{\Delta_0 L}{t}$$

$$\Phi^{\mu}_{\theta}(w) = \inf_{z} \left\{ \overline{F}_{\theta}(z) + \frac{\mu}{2} \|z - w\|^2 \right\}$$

Theorem [*P.*, Laguel, Malick, Harchaoui]

t: #comm. rounds τ : #local update steps Δ_0 : initial error

Privacy of user data

Privacy analysis

A randomized algorithm is ε -differentially private if the addition of one user's data does not alter its output distribution by more than ε

[Dwork, McSherry, Nissim, Smith (2006)]

ε -differential privacy

Large $\varepsilon \implies$ more privacy leakage

Privacy goal

Extend our algorithm to make it **differentially private**

Step 3 of 3: Aggregate updates

Why is it challenging?

Usual Algorithm:

 $\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$

Private mean estimation of gradients

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Non-linear

Communication primitive: secure sum

Only reveal $x_1 + x_2$ to the server without revealing x_1 or x_2

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]

Perform all operations modulo M

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]

[Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020)]

Total communication for m vectors in $\mathbb{R}^d = O(m \log m + md)$ numbers

Server only sees $x'_1, x'_2 \sim \text{Unif}($

Client 1

Real-world communication constraint: All client-to-server communication must go through secure summation

Client 2

Total communication for *m* vectors in $\mathbb{R}^d = O(m \log m + md)$ numbers

) but calculates the correct sum

Server

How to achieve non-linear aggregation with a secure sum?

Non-linear aggregate:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Client 1

Client 2

Secure sum

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

Step 3 of 3: Aggregate updates contributed by **all clients**

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Step 3 of 3: Aggregate updates contributed by **tail clients** only

Proposition (informal) [*P.*, Laguel, Malick, Harchaoui]

private α' -quantile where

Total communication cost $\approx bm \log^2 m$

If we wish to compute the α -quantile, our algorithm returns an ε -differentially

$$-\alpha \Big| \leq \frac{\sqrt{b}}{\varepsilon m}$$

 α'

m #clients per round *b* #bins in the histogram privacy parameter ${\cal E}$

Usual Algorithm (FedAvg):

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_{i}(w)$$

Step 3 of 3: Aggregate updates contributed by **all clients**

Our Algorithm:

 $\min_{w} \mathbb{S}_{\theta} \left(\left(F_1(w), \cdots, F_n(w) \right) \right)$

Step 3 of 3: Aggregate updates contributed by **tail clients** only

Private mean estimation of (potentially zeroed out) gradients

Quantile privacy leakage + Parameter privacy leakage

Total privacy leakage =

Privacy of user data:

First end-to-end **differentially private** algorithm for distributionally robust federated learning

Algorithm requires **2** secure summations per update

Distributionally robust learning with 1 additional line of code

import torch.nn.functional as F **from** sqwash **import** reduce_superquantile

for x, y in dataloader: $y_hat = model(x)$ loss.backward() # Proceed as usual from here

Install: pip install sqwash

Documentation: krishnap25.github.io/sqwash/

batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set `reduction='none'` loss = reduce_superguantile(batch_losses, superguantile_tail_fraction=0.5) # Additional line

 $\min_{w} \mathbb{S}_{\theta} \Big(\left(F_1(w) \right)$

$$(v), \cdots, F_n(w) \Big) \Big)$$

 $\mathbb{S}_{\theta}(Z) = \mathbb{E}[Z \mid Z > Q_{\theta}(Z)]$

$$(), \cdots, F_n(w))$$

Our approach reduces tail error

Misclassification Error

Convergence + Privacy analysis

 $O(1/\sqrt{t})$ error rate after t comm. rounds in the nonsmooth, non-convex case

Differentially private algorithm for distributional robust federated learning

Future research plans

differ from training

uncurated web data

and computation

Privacy of user data

Challenges

Robustness to deployment conditions that

- Robustness to outliers: adversarial or
- Faster optimization: reduce communication

Federated learning

IEEE CISS 2021, Springer SVVA 2021, Mach. Learn. 2022

Robust to Outliers

IEEE Trans. Signal Proc. 2022, ICML 2022

Privacy

LLMS

NeurIPS 2021a NeurIPS 2021b *Submitted 2023*

Submitted 2022

NeurIPS 2018 Submitted 2022

Future plan 1

What comes after federated learning?

Robust Deployment

Robust to Outliers

Future plan 2

Privacy

LLMS

NeurIPS 2021a NeurIPS 2021b Submitted 2023

Submitted 2022

NeurIPS 2018 Submitted 2022

