
DA 5001/6336 (Jan-May 2026): HW0

IIT Madras

Due Date: Jan. 30, 2026 at 11:59 PM

Instructions

• This HW is not graded but submission is mandatory. The marks shown below are only indicative of the
amount of effort required to solve these problems.

• The purpose of this HW is for you to assess whether you have the required background for this
mathematically-intensive course. Students who scored B or above on DA 2400 will be able to handle
the course, this is primarily targeted at other students.

– If you really struggle on this HW, then consider taking a later offering of this course (or not at
all). This course only gets more mathematical from here onwards.

– If you are able to solve these problems but had to refresh your memory every now and then, go
ahead and take the course. But please be prepared to spend some time later in the course on
necessary background reading.

– If this HW was very easy conceptually (but may have potentially taken some time), then you’ll
be fine in this course.

• Please submit PDFs of handwritten solutions either on a tablet or via scans/photographs. Typeset
solutions in LaTeX will not be accepted.

• List the names of students you collaborated with for the homework. Also, provide citations to any
books, notes, or web resources you used for any problem. Failure to do so will be considered as a
violation of the honour code.

• If you used an LLM for help in one of the exercises, you must specify the name of the LLM and the
exact prompt used.

Honour Code

Please read the full honour code on the course webpage and write “I ACCEPT THE HONOUR CODE” in
your submission. Your submission will not be graded if you do not accept the honour code.

0 Review of Linear Algebra, Calculus, Probability (Optional)

While this exercise is optional, we strongly recommend that you solve the following problems from the
Mathematics for Machine Learning (MML) book1 to review your mathematical fundamentals:

1Available at https://mml-book.github.io/book/mml-book.pdf
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1. Problem 3.1 (page 96)

2. Problem 4.11 (page 138)

3. Problems 5.2 and 5.3 (page 170)

4. Problem 5.8, parts a and b (page 171)

5. Problem 6.12, all parts (page 223-224)

6. Problem 6.13 (page 224).

1 Gaussian Log-Likelihood Ratio (5 marks)

Let p denote the probability density function (PDF) of the one-dimensional Gaussian distribution N (0, σ2)
and q denote the PDF of N (µ, σ2) the same variance σ2. Let the random variable X be distributed according
to p. Find the PDF of the random variable log(p(X)/q(X)). What is its distribution?

2 Markov and Chebyshev inequalities (5 marks)

1. For a non-negative random variable X , prove that

P(X > t) ≤ E[X]

t
.

You may assume that the variable is continuous for this proof (although Markov’s inequality holds
more generally).

2. For a random variable X with Var(X) < ∞ (i.e., it has finite variance), prove that

P(|X − E[X]| > t) ≤ Var(X)

t2
.

Hint: For Markov’s inequality, note that

E[X] =

∫ ∞

−∞
x fX(x) dx ≥

∫ ∞

t
x fX(x) dx

for any t > 0, where fX(x) is the PDF of X . Then, argue that the right side is at least t · P(X > t) to prove
Markov’s inequality. Chebyshev’s inequality follows from Markov’s inequality – how?

3 Moment Generating Functions (5 marks)

Recall that the moment generating function (MGF) of a random variable X is defined as ϕX(λ) = E[eλX ]
whenever the expectation exists and is finite. Find the MGF of:

1. The Gaussian distribution N (0, σ2).

2. The chi-squared distribution with 1 degree of freedom. That is, if X ∼ N (0, 1), find E[eλX2
].
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Context: Note that Markov’s inequality required only the first moment and the right side scales as 1/t,
while Chebyshev’s inequality, which required the 2nd moment), scales as 1/t2, which is smaller than 1/t. If
the MGF exists, then we get for any λ > 0, we have

P(X > t) = P(eλX > eλt) ≤ e−λt ϕX(λ) .

The right side here scales as e−λt which is asymptotically much smaller than even 1/t2, meaning that we get
a tighter bound. If the MGF exists at larger λ, this also gives a tighter bound. Of the examples above, which
do you think gives the tightest right-hand side?

4 Convexity of the KL Divergence (2 + 4 + 4 = 10 marks)

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) be two discrete distributions over k items. Recall that the
Kullback-Leibler (KL) divergence between discrete distributions p and q is defined as

DKL(p∥q) =
k∑

i=1

pi log(pi/qi) .

Intuitively, it is large if p and q are very “different” from each other. In this exercise, we will prove that it is
jointly convex in (p, q).

Convexity Recall that a function f is convex if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all x1, x2 in the domain of f and all λ ∈ [0, 1]. See the figure below: convexity means the blue curve is
below the orange line between x1 and x2.

f(x)

x1 λx1 + (1− λ)x2 x2

f(λx1 + (1− λ)x2)

λf(x1) + (1− λ)f(x2)

x

y

Figure credits: Stack Exchange

1. Show that the negative entropy function h : (0, 1) → R given by h(x) = x log(x) is convex. All
logarithms are natural logarithms.

Hint: You may use the following equivalent condition of convexity: a twice differentiable function h
is convex if and only if its second derivative h′′(x) ≥ 0 is non-negative for all x in the domain of h.
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2. Use the convexity of h to establish the log-sum inequality: for any a1, a2, b1, b2 > 0, we have

(a1 + a2) log

(
a1 + a2
b1 + b2

)
≤ a1 log

(
a1
b1

)
+ a2 log

(
a2
b2

)
.

Hint: We can rewrite the right side as

b1 · h
(
a1
b1

)
+ b2 · h

(
a2
b2

)
= (b1 + b2)

(
λ · h

(
a1
b1

)
+ (1− λ) · h

(
a2
b2

))
,

where we take λ = b1/(b1 + b2) ∈ (0, 1). Now apply the convexity of h.

3. Prove that the function (p, q) 7→ DKL(p∥q) is convex. That is, for distributions p, p′, q, q′ and λ ∈ [0, 1],
show that

DKL(λp+ (1− λ)p′∥λq + (1− λ)q′) ≤ λDKL(p∥q) + (1− λ)DKL(p
′∥q′) .

Hint: Use the log-sum inequality per component.

5 KL divergence between multivariate Gaussians (5 marks)

Let P = N (µ1,Σ) and Q = N (µ2,Σ) be two multivariate Gaussian distributions with means µ1, µ2 ∈ Rd

and equal covariance Σ ∈ Sd++.2 Derive the KL divergence DKL(P∥Q) from first principles. (That is,
you cannot use a formula for KL divergence of Gaussians, you have it derive it from the definition of KL
divergence.)

6 Membership Inference: Toy Problem (5 × 2 = 10 marks)

Membership inference is a privacy attack in which an adversary tries to guess if a data point appeared in the
training dataset of a model. We will perform membership inference on a toy problem, where our function of
the data is simply a sum (rather than a model trained on this data). This toy problem is also a useful building
block for auditing rigorous privacy guarantees — we will discuss this later in the course.

Membership inference game Consider the following game:

• The learner has access to two datasets D0 = {x1, . . . , xn} and D1 = D0 ∪ {z} of d-dimensional
vectors. These two datasets differ in only one item z.

• The learner picks dataset D from either D0 or D1 uniformly at random and reveals its sum f(D) =∑
y∈D y.

• The privacy adversary observers the value f(D) and the datapoint z.

• The adversary must guess whether D = D0 or D = D1. In other words, the adversary must guess if
z ∈ D or z /∈ D.

2Note that Sd
+ denotes the set of positive semi-definite matrices. That is, A ∈ Sd

+ if A is symmetric and x⊤Ax ≥ 0 for all vectors
x ∈ Rd. If the above inequality is strict, then we say that A is positive definite and denote it as A ∈ Sd

++.
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The adversary’s task can be cast as a statistical hypothesis test

H0 : D = D0

H1 : D = D1 .

The purpose of this exercise is to bound the type-I error (i.e. the false positive rate, or FPR) and type-II error
(i.e. one minus the true positive rate or 1− TPR) of the adversary as a function of the problem parameters.

We consider the case when the data point z is random; in particular, z ∼ N (0, σ2Id) is component-wise
i.i.d. Gaussian with variance σ2 (and Id is the d × d identity matrix). This situation shows up in testing
the privacy property of models where we insert special datapoints known as “canaries” in order to test the
properties of the model.

Questions Now, suppose that x1, . . . , xn ∼ N (0, Id) are component-wise i.i.d. standard Gaussian. Express
the answers to following questions in terms of the dimension d and variance σ2 of z and the number of points
n.

1. Calculate E[z⊤f(D0)] and E[z⊤f(D1)].

2. Calculate E
[
(z⊤f(D0))

2
]

and E
[
(z⊤f(D1))

2
]
.

Context: The above inequalities suggest that we should reject the null hypothesis H0 if z⊤f(D) is
larger than some threshold t. Next, we will bound the type-I and type-II errors.

3. Next, we wish to bound the error of the adversary. Assume that z⊤f(D0) and z⊤f(D1) are normally
distributed with their respective means and variances as computed above. Plot the trade-off between
the type-I error P(z⊤f(D0) > t) and the type-II error P(z⊤f(D1) < t) while varying the threshold t
in log-log scale.3 You may use d = 104 and σ = 1 and n = 10.

4. Plot the minimum total error mint{P(z⊤f(D0) > t) + P(z⊤f(D1) < t)} versus the dimension d
while σ2 is fixed. You may use d ∈ {101, 102, . . . , 107} for the x-axis and take n = 10. Repeat this
for σ2 ∈ {0.1, 0.25, 1, 4, 10}.

5. What are the type-I and type-II errors in the limit d → ∞ of high dimension (holding n fixed)?
Although it is not necessary, you may use the tail inequality PZ∼N (0,1)(Z > t) ≤ e−t2/2 for any t > 0.

6. What happens in the above problem when n, d → ∞ simultaneously such that n/d → constant?

Interpretation Random vectors in high dimensions are nearly orthogonal to each other (this is an example
of how weird geometry is in high dimensions). Basically, we have that the means grow apart linearly in d but
the standard deviations grow as

√
d. Thus, it becomes easier to separate these distributions (and membership

inference becomes trivial) as d → ∞ (when n is fixed).
3That is, plot the parametric curve (x(t), y(t)) where x(t) = log P(z⊤f(D0) > t) and y(t) = log P(z⊤f(D1) < t) while

varying t ∈ R.
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7 Gradient Descent on Quadratic Functions (5 × 2 = 10 marks, Optional)

Consider the quadratic function f : Rd → R given by

f(θ) =
1

2
θ⊤Aθ + b⊤θ ,

for some positive definite matrix A ∈ Sd++ and vector b ∈ Rd. Starting from some fixed θ0 ∈ Rd, gradient
descent with a learning rate γ > 0 produces the sequence (θt)

∞
t=0 given by

θt+1 = θt − γ∇f(θt) ,

where ∇f is the gradient of our quadratic function f with respect to its argument θ.

1. Find ∇f(θ).

2. Show that f is a strictly convex function. Thus, its global minimizer θ⋆ is unique and is the solution of
the equation ∇f(θ⋆) = 0. Then, find θ⋆

3. Show that the sequence (θ0)
∞
t=0 produced by gradient descent satisfies

θt − θ⋆ = (I − γA)(θt−1 − θ⋆) .

where I is the identity matrix in d dimensions. Thus, conclude that θt − θ⋆ = (I − γA)t(θ0 − θ⋆).

4. Let λ1 = λmax(A) denote the largest eigenvalue of A. If the learning rate satisfies γ ≤ 1/λ1, show
that

lim
t→∞

∥θt − θ⋆∥2 = 0 .

5. Conversely, if the learning rate γ > 2/λ1 is large, show that

lim
t→∞

∥θt − θ⋆∥2 = ∞ .

Context: With gradient descent or stochastic gradient descent, we usually want to use the largest
learning rate under which we still have convergence; this is called the divergent learning rate. The
above argument shows that 1/λ1 is the divergent learning rate for this problem.

Hint for the last two parts: The eigenvectors of A form a basis of Rd – it is convenient to analyze
the iterations in that basis. Concretely, let A =

∑d
i=1 λiuiu

⊤
i be the eigenvalue decomposition of A

with eigenvalues λ1 > · · · > λd > 0.

To represent our iterates in this eigen basis, define δt,i = u⊤i (θt − θ⋆); this is the component of θt − θ⋆
along the eigenvector δt. Next, prove that δt,i = (1− γλi)

tδ0,i. In other words, gradient descent on
the objective is equivalent to running one-dimensional gradient descent along each eigenvector.

Now complete the proof from here: Part 4 requires that δt,i → 0 for all i. while part 5 requires showing
that δt,i → ∞ for some i.
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