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m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for
binary classification)

m w is the model

m Regularizer R(w) = w'w/2

m We wish to solve it in a distributed setting

m data is distributed across the nodes.
m locally optimise and communicate the models to get one
common global model.
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on each node and take a convex combination of these to
: represent the global model [Man], [MMM™09].

Ko m Use local gradient information in coefficients of the convex
combination (to give weights to different components)
[ACDL11]

m Use gradient and hessian information from quadratic
Taylor approximations from other nodes (did in my
Summer Internship at MSR).

m What if the Taylor approximation does not hold?
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m [MKSB13] uses functional approximation for IPM
(published in January 2014, after stage 1). It has
theoretical guarantees but requires a global line search
step.

m Node i minimises fi(w) + Cij(w) where Ci(w) is a
quadratic satisfying some mild requirements.

m Can we achieve theoretical guarantees and practical results
without this line search step?
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m If L is the Lipschitz constant of Vf, define

~ L
f(w) = f(wo) + Vf(wo)T(W —wy) + §||W — W0”2

Algorithm

m If w(¥) is the global model from the previous iteration,
node i solves,

AWM
min,, fi( E

JF#i
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Initialise w(©)

for t = 1,2, .. (outer iterations) do
~ ~ wk
iOw) = fi(w) + 75" (w)

(t) = argmm(? +(w)) by some method

2L MR

Algorithm

5. w(ttl) = parameterMixing(w (t))

6:  Obtain f(w(t+1)) and Vf(w(”r:l ) by communication
7: end for

8: return w(t+1)

ParameterMixing(w Z o W
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Algorithm from [MKSB13]

Algorithm 2 IPM Algorithm proposed in [MKSB13] applied to

our setting

1: Initialise w(®)
2: for t = 1,2, .. (outer iterations) do

(), N o Wk

3 fr(w)=fi(w)+ i (w)

4 Wi(t) = argmin,, (f, :(w)) by some method

5. dt) = ParameterMixing(Wi(t)) —wl®

6 w(ttD) = w() 4 7d(1) where 7 is a step length satisfying
Armijo-Wolfe conditions.

7. Obtain f(w(t+1)) and V£(w(t*t1) by communication

8: end for

9: return w(tt1)
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If f is convex and differentiable, Vf is Lipschitz continuous
with constant L, a strict decrease in global objective function f
Algorithm can be guaranteed in every outer iteration (parameter mixing
step) under suitable conditions. In particular, for gradient
descent, the condition is that the step size h satisfies

0<h<1/L

Because f is convex, IPM converges to the unique global
minimizer w*.
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m f if convex and differentiable, Vf is Lipschitz continuous

with constant L

Algorithm

m Gradient Descent (fixed number of iterations) is used for
inner optimization

w(® is sufficiently close to the global optimum w*

[
m Convergence of IPM is O(1/k), for k outer iterations
m If f is strongly convex, convergence is linear.
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Theorem (Local Rate of Convergence)

If f if convex and differentiable, Vf is Lipschitz continuous

with constant L, the inner optimisation is solved with gradient

descent i.e. W,-(kﬁl) = W,-(k’J) AV i k(w, (k ”)) with a fixed
number of steps ¢ and fixed step size h = 1/L(c? + 2c — 2)
and the initial guess w(©) js sufficiently close to the global
optimum w* then IPM converges as

2L W — w*|?

(k)y _ *) <
Fw) — f(wt) < 22

where 5 > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex With constant I,

convergence is linear as ||w(*) — w*|| < ( ) w® — wH||
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Theorem (Global Rate of Convergence)

If f if convex and differentiable, Vf is Lipschitz continuous
Algorithm with constant L, the inner optimisation is solved with gradient
descent i.e. W,-(k”H) = Wi(k"’) - hV?;’k(Wi(k”)) with a fixed
number of steps ¢ and fixed step size h = 1/L(c? 4+ 2c —2) ,
then IPM converges as f(w(k)) — f(w*) < %ﬁ{w*lﬁﬂz
where 3 > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex with constant p,

convergence is linear as ||w(¥) — w*|| < (ﬁ)kﬂw(o) —w*|
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Algorithm

Theorem

Theorem (Global Rate of Convergence)

If f if convex and differentiable, V f is Lipschitz continuous
with constant L, the inner optimization is solved with gradient
descent i.e. w,.(kﬁl) — W,.(k’J) - thN‘,-,k(wi(k”)) with a fixed
number of steps ¢, and a fixed step size of h=1/L, we have,

2L(F(w(©) — f(w*))
V(W) < \/ s

In other words, convergence is O(1/+/k), for k outer iterations.
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m Because of the separable nature, x is updated keeping y
Literaturs fixed and then, y is updated keeping x fixed .

m Dual variables are updated and the process is repeated.

Lsimilar in spirit to the Jacobi method used to solve diagonally
dominant systems of linear equations
47 /104



Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

Krishna

Pillutla

A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.

Based on theory of Lagrange Duality.

Because of the separable nature, x is updated keeping y
Literature fixed and then, y is updated keeping x fixed 1.

Review

Dual variables are updated and the process is repeated.
Can trivially be parallelized ([BPC*11]).

Lsimilar in spirit to the Jacobi method used to solve diagonally

dominant systems of linear equations
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The same idea can be generalized to min,, > i~ fi(w)
([BT97]). We rewrite the problem as

m

min E fi(w;)
Literature Wi,...,Wm .
Review =1

subject to w; =wjt1;i=1,...,m—1.

where f;(.) is the objective function at node /.
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m c is the augmented lagrangian parameter
m Apply equation (4.75) of [BT97] to get:

w Y Zargmin{fi(w) + c||w|?+

1

(t) (t)
4w
WT(Agt) — )\Ei)l - c(wi(t) + %))}

(1)
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CGEE to the j™ constraint

c is the augmented lagrangian parameter

m Apply equation (4.75) of [BT97] to get:
| |
w{ ) =argmin{fi(w) + c||w|*+
() (t)
M4 ws
w T = A = e+ ZEL L))
(1)
" C
t+1 t t+1 t+1
A =X 4 S — i) )
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Literature .
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m Add a linear or a quadratic correction C(w) to the
objective function at each node.

= IPM adds 7% (w)
A general m The correction is iteratively improved along with the
e solution ([MKSB13], [BPC*11], [HMS08]).

optimization
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O w) = clw|?+ wTd?

w(t) (®)
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= IPM adds 7% (w)
m ADMM, based on Lagrangian Duality adds
Cw) = clw|?+ wTd?
(®) _ (O _\® (t)  wtwid
where d; = (A} = N — (w7 + 7))
m When Fenchel duality is used, we have a linear term

([HMSO08], equation (2)) used to tie together solutions
from various nodes.
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m Observation: Each of the above three methods involves a
communication of O(n) where n is the number of features.

m Can we reduce this further?
P for

dist»rib}ute_d

optimization
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Algorithm 3 General Algorithm

1: Initialise w(9) and other quantities required arbitrarily

2: for t = 1,2, .. (outer iterations) do

3:  Compute C,-(t)(w), the correction

4 w't) = argmin(fi(w) + Ci(t)(w)) by some method
w

A general
framework for
distributed

]

optimization 5: Communication: communicate the required vectors (such
as dual vectors, or gradients)
6: end for

7. return w(Y) = ParameterMixing(w})
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m Original Problem:

m
min Z fi(w;)
WiyeeoysWm P

subject to w;=wjq;i=1,...,m—1.

Approach

m Relax Constraints w; = w1
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m Constraint w; = w;y1 enforces component-wise equality
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m Relax to sum of elements over a set of indices being equal.

m Divide features into sets I, b, ..., Iy (not necessarily
disjoint).
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m Constraint w; = w;y1 enforces component-wise equality
wilj] = wis1[].

m Relax to sum of elements over a set of indices being equal.

m Divide features into sets 1, b, ..., Iy (not necessarily

disjoint).

m Enforce: > w;[j] = > wji1]j] for each set I,.
Jel Jel

Approach
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Pillutla m Represent all k scalar equations as a vector equation
STW,' = STW,'+1 2.

m New problem:

m
min Z fi(w;)
Wis-.r;Wm i—1

subjectto STw; = STW,-+1; i=1...,m—1.

Approach

m Approximation of original problem: need not be solved by
ADMM.

2S € R™* is a matrix of Os and 1s such that Sy =1 < i €
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w(tD) — argmin{fi(w) + cw ™ (SST)w + WTd’.(t)} (3)

]

STWi(i)l + STW( )

t
4 — S(Agt) _ )‘('?1 _ C(STW,-(t) n i i+1y)
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w1 — argmin{fi(w) + cw " (SST)w + WTd’-(t)} (3)

]

m where

To®) 4 gT ()
g0 = SO AD, — (5Tl 4 2t ; > Y1)

m Dual Update:

)\I(,t+1) _ )\Et) + %(STWi(f+1) o STWI(—:'_‘{]-)) (4‘)

79 /104



Approach

> m Apply equation (4.75) of [BT97] to get:

Krishna
Pillutla

wt) = argmin{fi(w) + cw ™ (SST)w + WTd,-(t)} (3)

]

m where

To®) 4 gT ()
g0 = SO AD, — (5Tl 4 2t ; > Y1)

m Dual Update:

)\I(,t+1) _ )\St) + %(STWi(t+1) o STWI(—:{]-)) (4)

m Communication Cost
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Algorithm 4 ADMM with reduced communication

. Initialise W(o), WI-(O), Ai=0=X_1

1

2. fort=0,1,2,.. do
3: Solve for w
4

(t+1) .
; as per equation 3 X
Communicate models with neighbours and obtain w,-(flr )
(t+1)
and w; |,
P 5: Update A\; and \;_; by equation 4
6: end for
(t+1) t+1

7: return w

: or ParameterMixing(w; ™)
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Parameter Mixing
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Synthetic datasets with 4-10 features
200-4000 training and testing examples
ScR™3

Solved with cvx as black-box solver

Stopping based on duality gap
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Table : Performance with Synthetic Dataset TestFinal4.mat with 4
nodes

Method Objective value Test Accuracy
Full problem 0.4891 0.8000
PM 0.6009 0.7350
Our method 0.5128 0.7900
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and Results
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Results: low k values work
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Objective function vs Fraction of features for a9a and 2 nodes (hloss)
Krishna 0.355 T
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g
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2
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0352
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Fraction of features

Figure : Dataset a9a split into two nodes: objective function value
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Accuracy vs Fraction of features for a9a and 2 nodes (hloss)
Krishna 0.851 T T
Data

T

Pillutl v
Hllutla Parameter Mixing -~
ADMM ---

.

0.8505 N X

0.8495

Accuracy

0.849

0.8485

Experiments
and Results

0.848
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1

Fraction of features

Figure : Dataset a9a split into two nodes: test accuracy

88 /104



Results: Larger kK means a better approximation
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Objective function vs Fraction of features for usps36(hloss)
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, Full Data
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0.02 . . . . . . . . .
and Results 0 0.1 02 03 04 05 06 07 08 09 1

Fraction of features

Figure : Dataset usps36: 2,4 and 8 nodes
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Results: 25-100 Nodes
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Objective function vs Fraction of features for cov1(lloss)
K na 0.58 T T T
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Fraction of features

Figure : Dataset cov: 25, 50 and 100 nodes: objective value
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Results: 25-100 Nodes
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Accuracy vs Fraction of features for cov1(lloss)
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Figure : Dataset cov: 25, 50 and 100 nodes: Test Accuracy
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Results: Do we need a PM step in the end?
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ADIH with P ——
ADH without PH ——
Krishna 0,49156 |- R ..

Pillutla
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and Results
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Figure : cov: 4 nodes: Comparision of objective function values
ADMM with PM and ADMM without PM
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Results: Do we need a PM step in the end?

ADHH with PH ——
ADMH without PH —e—
0,61
0.605
0.6
0,535
o 0.2 0.4 0.6 0.8

1

Figure : cov: 4 nodes: Comparision of test accuracy values ADMM

with PM and ADMM without PM
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m There is some merit in this method
m TODO: Theoretical Treatment

m TODO: Run experiments on Hadoop with larger datasets
m TODO: Grouping of features

m Group similar features together
m Clustering of features
m Sampling of data
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