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Introduction

To solve learning problems of the form

minw

N∑
i=1

l(yiw
T xi ) + γR(w)

l is the loss function (convex and ∇l is Lipschitz
continuous)
xi a training example and yi is its label (+1 or −1 for
binary classification)
w is the model
Regularizer R(w) = wTw/2

We wish to solve it in a distributed setting

data is distributed across the nodes.
locally optimise and communicate the models to get one
common global model.
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Previous Work: Parameter Mixing

Parameter Mixing(PM): Independently solve optimisation
on each node and take a convex combination of these to
represent the global model [Man], [MMM+09].

Use local gradient information in coefficients of the convex
combination (to give weights to different components)
[ACDL11]

Use gradient and hessian information from quadratic
Taylor approximations from other nodes (did in my
Summer Internship at MSR).

What if the Taylor approximation does not hold?
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Previous Work: Iterative Parameter Mixing

IPM: Run multiple iterations of PM- by using the model
obtained at each PM step as the starting guess for the
next step- until global convergence. Theoretical bounds
exist for the perceptron [MHM]

[MKSB13] uses functional approximation for IPM
(published in January 2014, after stage 1). It has
theoretical guarantees but requires a global line search
step.

Node i minimises fi (w) + Ci (w) where Ci (w) is a
quadratic satisfying some mild requirements.

Can we achieve theoretical guarantees and practical results
without this line search step?
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Approach

Each nodes approximates the objective function at other
nodes by a linear or quadratic approximation about the
globally accepted starting point.

This way, each node has a global picture.
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Approach

Each node has an objective function fi (w).

If L is the Lipschitz constant of ∇f , define

f̂ w0(w) := f (w0) +∇f (w0)T (w − w0) +
L

2
‖w − w0‖2

If w (k) is the global model from the previous iteration,
node i solves,

minw fi (w) +
∑
j 6=i

f̂j
w (k)

(w)
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Algorithm

Algorithm 1 Our Algorithm for IPM

1: Initialise w (0)

2: for t = 1, 2, .. (outer iterations) do

3: f̃
(t)
i (w) = fi (w) + ˆf−i

w (k)

(w)

4: w
(t)
i = argmin

w
(f̃i ,t(w)) by some method

5: w (t+1) = ParameterMixing(w
(t)
i )

6: Obtain f (w (t+1)) and ∇f (w (t+1)) by communication
7: end for
8: return w (t+1)

ParameterMixing(w
(t)
i ) =

m∑
i=1

αiw
(t)
i
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Algorithm from [MKSB13]

Algorithm 2 IPM Algorithm proposed in [MKSB13] applied to
our setting

1: Initialise w (0)

2: for t = 1, 2, .. (outer iterations) do

3: f̃
(t)
i (w) = fi (w) + ˆf−i

w (k)

(w)

4: w
(t)
i = argminw (f̃i ,t(w)) by some method

5: d (t) = ParameterMixing(w
(t)
i )− w (t)

6: w (t+1) = w (t) + τd (t) where τ is a step length satisfying
Armijo-Wolfe conditions.

7: Obtain f (w (t+1)) and ∇f (w (t+1)) by communication
8: end for
9: return w (t+1)

28 / 104



Distributed
ML

Krishna
Pillutla

Introduction

IPM

Literature
Review

Algorithm

ADMM

Literature
Review

A general
framework for
distributed
optimization

Approach

Experiments
and Results

Algorithm from [MKSB13]

Linear Convergence is guaranteed for Algorithm 2
[MKSB13].
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Theorem (Convergence)

If f is convex and differentiable, ∇f is Lipschitz continuous
with constant L, a strict decrease in global objective function f
can be guaranteed in every outer iteration (parameter mixing
step) under suitable conditions. In particular, for gradient
descent, the condition is that the step size h satisfies

0 < h ≤ 1/L

Because f is convex, IPM converges to the unique global
minimizer w∗.
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Theorem

Local Rate of Convergence:

f if convex and differentiable, ∇f is Lipschitz continuous
with constant L

Gradient Descent (fixed number of iterations) is used for
inner optimization

w (0) is sufficiently close to the global optimum w∗

Convergence of IPM is O(1/k), for k outer iterations

If f is strongly convex, convergence is linear.
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Theorem (Local Rate of Convergence)

If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimisation is solved with gradient

descent i.e. w
(k,j+1)
i = w

(k,j)
i − h∇f̃i ,k(w

(k,j)
i ) with a fixed

number of steps c and fixed step size h = 1/L(c2 + 2c − 2)
and the initial guess w (0) is sufficiently close to the global
optimum w∗ then IPM converges as

f (w (k))− f (w∗) ≤ 2L‖w (0) − w∗‖2

k + 4
β2

where β > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex with constant µ,
convergence is linear as ‖w (k) − w∗‖ ≤ (L−µL+µ)k‖w (0) − w∗‖
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Global Rate of Convergence
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Theorem

We tried to but were unable to prove this theorem:

Theorem (Global Rate of Convergence)

If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimisation is solved with gradient

descent i.e. w
(k,j+1)
i = w

(k,j)
i − h∇f̃i ,k(w

(k,j)
i ) with a fixed

number of steps c and fixed step size h = 1/L(c2 + 2c − 2) ,

then IPM converges as f (w (k))− f (w∗) ≤ 2L‖w (0)−w∗‖2
k+4 β2

where β > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex with constant µ,
convergence is linear as ‖w (k) − w∗‖ ≤ (L−µL+µ)k‖w (0) − w∗‖
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Theorem

We had to settle for a weaker bound:

f if convex and differentiable, ∇f is Lipschitz continuous
with constant L

Gradient Descent (fixed number of iterations or with line
search) is used for inner optimization

Convergence of IPM is O(1/
√

k), for k outer iterations
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Theorem

Theorem (Global Rate of Convergence)

If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimization is solved with gradient

descent i.e. w
(k,j+1)
i = w

(k,j)
i − h∇f̃i ,k(w

(k,j)
i ) with a fixed

number of steps c, and a fixed step size of h = 1/L, we have,

‖∇f (w (k)‖ ≤

√
2L(f (w (0) − f (w∗))

k + 1

In other words, convergence is O(1/
√

k), for k outer iterations.
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Previous Work: Alternating Direction Method of
Multipliers

A separable problem of the form minw f (w) + g(w) is
recast as minx ,y f (x) + g(y) subject to x = y .

Based on theory of Lagrange Duality.

Because of the separable nature, x is updated keeping y
fixed and then, y is updated keeping x fixed 1.

Dual variables are updated and the process is repeated.

Can trivially be parallelized ([BPC+11]).

1similar in spirit to the Jacobi method used to solve diagonally
dominant systems of linear equations
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ADMM: continued

The same idea can be generalized to minw
∑m

i=1 fi (w)
([BT97]). We rewrite the problem as

min
wi ,...,wm

m∑
i=1

fi (wi )

subject to wi = wi+1; i = 1, . . . ,m − 1.

where fi (.) is the objective function at node i .
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ADMM: continued

λj represents the Lagrangian dual variable corresponding
to the j th constraint

c is the augmented lagrangian parameter

Apply equation (4.75) of [BT97] to get:

w
(t+1)
i =argmin

w
{fi (w) + c‖w‖2+

wT (λ
(t)
i − λ

(t)
i−1 − c(w

(t)
i +

w
(t)
i−1 + w

(t)
i+1

2
))}

(1)

λ
(t+1)
i = λ

(t)
i +

c

2
(w

(t+1)
i − w

(t+1)
i+1 ) (2)
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ADMM: continued: Implementation

w updates happen parallely

Node i communicates model with neighbours i − 1 and
i + 1.
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A general framework for distributed optimization

Add a linear or a quadratic correction C (w) to the
objective function at each node.

IPM adds f̂ w (k)

−i (w)

The correction is iteratively improved along with the
solution ([MKSB13], [BPC+11], [HMS08]).
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A general framework for distributed optimization

IPM adds f̂ w (k)

−i (w)

ADMM, based on Lagrangian Duality adds

C
(t)
i (w) = c‖w‖2 + wTd

(t)
i

where d
(t)
i = (λ

(t)
i − λ

(t)
i−1 − c(w

(t)
i +

w
(t)
i−1+w

(t)
i+1

2 ))

When Fenchel duality is used, we have a linear term
([HMS08], equation (2)) used to tie together solutions
from various nodes.
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A general framework for distributed optimization

Observation: Each of the above three methods involves a
communication of O(n) where n is the number of features.

Can we reduce this further?
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A general framework for distributed optimization

Algorithm to capture all variants described above

Algorithm 3 General Algorithm

1: Initialise w (0) and other quantities required arbitrarily
2: for t = 1, 2, .. (outer iterations) do

3: Compute C
(t)
i (w), the correction

4: w
(t)
i = argmin

w
(fi (w) + C

(t)
i (w)) by some method

5: Communication: communicate the required vectors (such
as dual vectors, or gradients)

6: end for
7: return w (t) = ParameterMixing(w t

i )
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Approach

To reduce communication costs further.

Original Problem:

min
wi ,...,wm

m∑
i=1

fi (wi )

subject to wi = wi+1; i = 1, . . . ,m − 1.

Relax Constraints wi = wi+1
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Approach

Constraint wi = wi+1 enforces component-wise equality
wi [j ] = wi+1[j ].

Relax to sum of elements over a set of indices being equal.

Divide features into sets I1, I2, ..., Ik (not necessarily
disjoint).

Enforce:
∑
j∈Ir

wi [j ] =
∑
j∈Ir

wi+1[j ] for each set Ir .
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Represent all k scalar equations as a vector equation
STwi = STwi+1

2.

New problem:

min
wi ,...,wm

m∑
i=1

fi (wi )

subject to STwi = STwi+1; i = 1, . . . ,m − 1.

Approximation of original problem: need not be solved by
ADMM.

2S ∈ Rn×k is a matrix of 0s and 1s such that Sij = 1 ⇔ i ∈ Ij
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Apply equation (4.75) of [BT97] to get:

w
(t+1)
i = argmin

w
{fi (w) + cwT (SST )w + wTd

(t)
i } (3)

where

d
(t)
i = S(λ

(t)
i − λ

(t)
i−1 − c(STw

(t)
i +

STw
(t)
i−1 + STw

(t)
i+1

2
))

Dual Update:

λ
(t+1)
i = λ

(t)
i +

c

2
(STw

(t+1)
i − STw

(t+1)
i+1 ) (4)

Communication Cost
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Algorithm

Algorithm 4 ADMM with reduced communication

1: Initialise w (0),w
(0)
i , λi = 0k = λi−1

2: for t = 0, 1, 2, .. do

3: Solve for w
(t+1)
i as per equation 3

4: Communicate models with neighbours and obtain w
(t+1)
i−1

and w
(t+1)
i+1

5: Update λi and λi−1 by equation 4
6: end for
7: return w

(t+1)
i or ParameterMixing(w t+1

i )
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Key Observation: Parameter Mixing step in the end can
be skipped

Can reduce communication cost to be smaller than Simple
Parameter Mixing
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Results: Synthetic Datasets

Synthetic datasets with 4-10 features

200-4000 training and testing examples

S ∈ Rn×3

Solved with cvx as black-box solver

Stopping based on duality gap
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Results: Synthetic Datasets

Table : Performance with Synthetic Dataset TestFinal4.mat with 4
nodes

Method Objective value Test Accuracy
Full problem 0.4891 0.8000

PM 0.6009 0.7350

Our method 0.5128 0.7900
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Results: low k values work
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Figure : Dataset a9a split into two nodes: objective function value
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Figure : Dataset a9a split into two nodes: test accuracy
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Results: Larger k means a better approximation
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Figure : Dataset usps36: 2,4 and 8 nodes
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Results: 25-100 Nodes
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Figure : Dataset cov: 25, 50 and 100 nodes: objective value
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Results: 25-100 Nodes
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Results: Do we need a PM step in the end?

Figure : cov: 4 nodes: Comparision of objective function values
ADMM with PM and ADMM without PM
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Results: Do we need a PM step in the end?

Figure : cov: 4 nodes: Comparision of test accuracy values ADMM
with PM and ADMM without PM
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Conclusion

There is some merit in this method

TODO: Theoretical Treatment

TODO: Run experiments on Hadoop with larger datasets

TODO: Grouping of features

Group similar features together
Clustering of features
Sampling of data
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The End. Thank You!
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