Distributed
ML

Distributed Machine Learning: lterative
Convex Optimization Methods

Krishna Pillutla

IIT Bombay

krishna.p@iitb.ac.in
www.cse.iitb.ac.in/"krishna.p

May 5, 2014

1/104

Advisor

Distributed
ML

Prof. SakethaNath J
saketh@cse.iitb.ac.in

2 /104

Overview

Distributed
ML

ehne Introduction

IPM
m Literature Review
m Algorithm

ADMM
m Literature Review
m A general framework for distributed optimization
m Approach

Experiments and Results

3/104

Distributed
ML

K 1a
Pillutla

Introduction

Introduction

4 /104

Introduction

Distributed 3
ML m To solve learning problems of the form

N
Introduction minw Z /(inTX,‘) + ’}/R(W)
i=1

5/104

Introduction

Distributed

ML m To solve learning problems of the form

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

6 /104

Introduction

Distributed .
ML m To solve learning problems of the form

Krishna
Pillutla

N
miny, Z I(yiw T x;) + YR(w)
i=1

Introduction

m / is the loss function (convex and V/ is Lipschitz

continuous)
m X; a training example and y; is its label (+1 or —1 for

binary classification)

7 /104

Introduction

Distributed

ML m To solve learning problems of the form

Krishna
Pillutla

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for
binary classification)

m w is the model

8 /104

Introduction

Distributed

ML m To solve learning problems of the form

Krishna
Pillutla

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for

binary classification)

w is the model

Regularizer R(w) = w'w/2

9/104

Introduction

Distributed

ML m To solve learning problems of the form

Krishna
Pillutla

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for
binary classification)

m w is the model

m Regularizer R(w) = w'w/2

m We wish to solve it in a distributed setting

10 /104

Introduction

Distributed

ML m To solve learning problems of the form

Krishna

Pillutla

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for
binary classification)

m w is the model

m Regularizer R(w) = w'w/2

m We wish to solve it in a distributed setting
m data is distributed across the nodes.

11 /104

Introduction

Distributed

ML m To solve learning problems of the form

Krishna

Pillutla

N
Introduction minw Z l(inTXi) + ’YR(W)
i=1

m / is the loss function (convex and V/ is Lipschitz
continuous)

m X; a training example and y; is its label (+1 or —1 for
binary classification)

m w is the model

m Regularizer R(w) = w'w/2

m We wish to solve it in a distributed setting

m data is distributed across the nodes.
m locally optimise and communicate the models to get one
common global model.

12 /104

Distributed
ML

Krishna
Pillutla

IPM
m Literature Review
m Algorithm

13 /104

Previous Work: Parameter Mixing

Distributed
ML

m Parameter Mixing(PM): Independently solve optimisation
on each node and take a convex combination of these to
represent the global model [Man], [MMM™09].

Literature
Review

14 /104

Previous Work: Parameter Mixing

Distributed
ML

Krishna
Filluta m Parameter Mixing(PM): Independently solve optimisation

on each node and take a convex combination of these to
represent the global model [Man], [MMM™09].

m Use local gradient information in coefficients of the convex
combination (to give weights to different components)
[ACDL11]

Literature
Review

15 /104

Previous Work: Parameter Mixing

Distributed
ML

Krishna

Fillutia m Parameter Mixing(PM): Independently solve optimisation
on each node and take a convex combination of these to
: represent the global model [Man], [MMM™09].

Ko m Use local gradient information in coefficients of the convex
combination (to give weights to different components)
[ACDL11]

m Use gradient and hessian information from quadratic
Taylor approximations from other nodes (did in my
Summer Internship at MSR).

16 /104

Previous Work: Parameter Mixing

Distributed
ML

Krishna

Fillutia Parameter Mixing(PM): Independently solve optimisation
on each node and take a convex combination of these to
: represent the global model [Man], [MMM™09].

Ko m Use local gradient information in coefficients of the convex
combination (to give weights to different components)
[ACDL11]

m Use gradient and hessian information from quadratic
Taylor approximations from other nodes (did in my
Summer Internship at MSR).

m What if the Taylor approximation does not hold?

17 /104

Previous Work: lterative Parameter Mixing

Distributed
ML

m IPM: Run multiple iterations of PM- by using the model
obtained at each PM step as the starting guess for the
next step- until global convergence. Theoretical bounds

exist for the perceptron [MHM]

Literature
Review

18 /104

Previous Work: lterative Parameter Mixing

Distributed
ML

Krishna m IPM: Run multiple iterations of PM- by using the model

e obtained at each PM step as the starting guess for the
next step- until global convergence. Theoretical bounds
exist for the perceptron [MHM]

m [MKSB13] uses functional approximation for IPM
(published in January 2014, after stage 1). It has
theoretical guarantees but requires a global line search
step.

Literature
Review

19 /104

Previous Work: lterative Parameter Mixing

Distributed
ML

Krishna m IPM: Run multiple iterations of PM- by using the model

Pillutla

obtained at each PM step as the starting guess for the
next step- until global convergence. Theoretical bounds
exist for the perceptron [MHM]

Literature
Review

m [MKSB13] uses functional approximation for IPM
(published in January 2014, after stage 1). It has
theoretical guarantees but requires a global line search
step.

m Node / minimises fj(w) + Cj(w) where Cj(w) is a
quadratic satisfying some mild requirements.

20 /104

Previous Work: lterative Parameter Mixing

Distributed
ML

Krishna m IPM: Run multiple iterations of PM- by using the model
e obtained at each PM step as the starting guess for the
next step- until global convergence. Theoretical bounds
exist for the perceptron [MHM]

Literature
Review

m [MKSB13] uses functional approximation for IPM
(published in January 2014, after stage 1). It has
theoretical guarantees but requires a global line search
step.

m Node i minimises fi(w) + Cij(w) where Ci(w) is a
quadratic satisfying some mild requirements.

m Can we achieve theoretical guarantees and practical results
without this line search step?

21 /104

Approach

Distributed
ML

m Each nodes approximates the objective function at other
Alaini nodes by a linear or quadratic approximation about the
globally accepted starting point.

22 /104

Approach

Distributed
ML

Krishna
Pillutla

m Each nodes approximates the objective function at other
Ml nodes by a linear or quadratic approximation about the
globally accepted starting point.

m This way, each node has a global picture.

23 /104

Approach

Distributed
ML

m Each node has an objective function f;(w).

Algorithm

24 /104

Approach

Distributed
ML

m Each node has an objective function f;(w).
m If L is the Lipschitz constant of Vf, define

n L
f(w) = f(wo) + Vf(Wo)T(W —wy) + EHW — W0H2

Algorithm

25 /104

Approach

Distributed
ML

e m Each node has an objective function f;(w).

m If L is the Lipschitz constant of Vf, define

~ L
f(w) = f(wo) + Vf(wo)T(W —wy) + §||W — W0”2

Algorithm

m If w(¥) is the global model from the previous iteration,
node i solves,

AWM
min,, fi(E

JF#i

26 /104

Algorithm

Distributed

ML Algorithm 1 Our Algorithm for IPM

Krishna
Pillutla

Initialise w(©)

for t = 1,2, .. (outer iterations) do
~ ~ wk
iOw) = fi(w) + 75" (w)

(t) = argmm(? +(w)) by some method

2L MR

Algorithm

5. w(ttl) = parameterMixing(w (t))

6: Obtain f(w(t+1)) and Vf(w(”r:l) by communication
7: end for

8: return w(t+1)

ParameterMixing(w Z o W

27 /104

Distributed
ML

Krishna

Pillutla

Algorithm

Algorithm from [MKSB13]

Algorithm 2 IPM Algorithm proposed in [MKSB13] applied to

our setting

1: Initialise w(®)
2: for t = 1,2, .. (outer iterations) do

(), N o Wk

3 fr(w)=fi(w)+ i (w)

4 Wi(t) = argmin,, (f, :(w)) by some method

5. dt) = ParameterMixing(Wi(t)) —wl®

6 w(ttD) = w() 4 7d(1) where 7 is a step length satisfying
Armijo-Wolfe conditions.

7. Obtain f(w(t+1)) and V£(w(t*t1) by communication

8: end for

9: return w(tt1)

28 /104

Algorithm from [MKSB13]

Distributed
ML

Algorithm m Linear Convergence is guaranteed for Algorithm 2
[MKSB13].

29 /104

Theorem

Distributed
ML

Krishna

Pillutla Theorem (Convergence)

If f is convex and differentiable, Vf is Lipschitz continuous
with constant L, a strict decrease in global objective function f
Algorithm can be guaranteed in every outer iteration (parameter mixing
step) under suitable conditions. In particular, for gradient
descent, the condition is that the step size h satisfies

0<h<1/L

Because f is convex, IPM converges to the unique global
minimizer w*.

30/104

Theorem

Distributed
ML

Local Rate of Convergence:

m f if convex and differentiable, Vf is Lipschitz continuous
with constant L

Algorithm

31/104

Theorem

Distributed
ML

Krishna
Pillutla
Local Rate of Convergence:

m f if convex and differentiable, Vf is Lipschitz continuous
with constant L

Algorithm

m Gradient Descent (fixed number of iterations) is used for
inner optimization

32 /104

Theorem

Distributed
ML

Krishna
Pillutla
Local Rate of Convergence:

m f if convex and differentiable, Vf is Lipschitz continuous
with constant L

Algorithm
y m Gradient Descent (fixed number of iterations) is used for
inner optimization

m w(® is sufficiently close to the global optimum w*

33 /104

Theorem

Distributed
ML

Krishna
Pillutla

Local Rate of Convergence:

m f if convex and differentiable, Vf is Lipschitz continuous
with constant L

Algorithm

m Gradient Descent (fixed number of iterations) is used for
inner optimization

m w(0 is sufficiently close to the global optimum w*
m Convergence of IPM is O(1/k), for k outer iterations

34 /104

Theorem

Distributed
ML

Krishna

Pillutla

| Local Rate of Convergence:
m f if convex and differentiable, Vf is Lipschitz continuous

with constant L

Algorithm

m Gradient Descent (fixed number of iterations) is used for
inner optimization

w(® is sufficiently close to the global optimum w*

[
m Convergence of IPM is O(1/k), for k outer iterations
m If f is strongly convex, convergence is linear.

35/104

Distributed
ML

Krishna
Pillutla

Algorithm

Theorem

Theorem (Local Rate of Convergence)

If f if convex and differentiable, Vf is Lipschitz continuous

with constant L, the inner optimisation is solved with gradient

descent i.e. W,-(kﬁl) = W,-(k’J) AV i k(w, (k ”)) with a fixed
number of steps ¢ and fixed step size h = 1/L(c? + 2c — 2)
and the initial guess w(©) js sufficiently close to the global
optimum w* then IPM converges as

2L W — w*|?

(k)y _ *) <
Fw) — f(wt) < 22

where 5 > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex With constant I,

convergence is linear as ||w(*) — w*|| < () w® — wH||

36 /104

Theorem

Distributed
ML

Algorithm

Global Rate of Convergence

37 /104

Theorem

Distributed
ML

Krishna We tried to but were unable to prove this theorem:

Pillutla

Theorem (Global Rate of Convergence)

If f if convex and differentiable, Vf is Lipschitz continuous
Algorithm with constant L, the inner optimisation is solved with gradient
descent i.e. W,-(k”H) = Wi(k"’) - hV?;’k(Wi(k”)) with a fixed
number of steps ¢ and fixed step size h = 1/L(c? 4+ 2c —2) ,
then IPM converges as f(w(k)) — f(w*) < %ﬁ{w*lﬁﬂz
where 3 > 0 is a constant i.e., convergence is O(1/k), for k
outer iterations. If f is strongly convex with constant p,

convergence is linear as ||w(¥) — w*|| < (ﬁ)kﬂw(o) —w*|

38 /104

Theorem

Distributed
ML

We had to settle for a weaker bound:

m f if convex and differentiable, Vf is Lipschitz continuous
At with constant L

39 /104

Theorem

Distributed
ML

Krishna
Pillutla

We had to settle for a weaker bound:
m f if convex and differentiable, Vf is Lipschitz continuous

At with constant L

m Gradient Descent (fixed number of iterations or with line
search) is used for inner optimization

40 /104

Theorem

Distributed
ML

Krishna
Pillutla

We had to settle for a weaker bound:

m f if convex and differentiable, Vf is Lipschitz continuous

At with constant L

m Gradient Descent (fixed number of iterations or with line
search) is used for inner optimization

m Convergence of IPM is O(1/v/'k), for k outer iterations

41 /104

Distributed
ML

Krishna

Pillutla

Algorithm

Theorem

Theorem (Global Rate of Convergence)

If f if convex and differentiable, V f is Lipschitz continuous
with constant L, the inner optimization is solved with gradient
descent i.e. w,.(kﬁl) — W,.(k’J) - thN‘,-,k(wi(k”)) with a fixed
number of steps ¢, and a fixed step size of h=1/L, we have,

2L(F(w(©) — f(w*))
V(W) < \/ s

In other words, convergence is O(1/+/k), for k outer iterations.

42 /104

Distributed
ML

Krishna
Pillutla

ADMM

m Literature Review
m A general framework for distributed optimization

m Approach

43 /104

Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

m A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.

Literature
Review

Lsimilar in spirit to the Jacobi method used to solve diagonally

dominant systems of linear equations
44 /104

Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

Krishna
Pillutla

m A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.

m Based on theory of Lagrange Duality.

Literature
Review

Lsimilar in spirit to the Jacobi method used to solve diagonally

dominant systems of linear equations
45 /104

Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

Krishna
Pillutla

m A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.
m Based on theory of Lagrange Duality.

m Because of the separable nature, x is updated keeping y
Lzt fixed and then, y is updated keeping x fixed 1.

Lsimilar in spirit to the Jacobi method used to solve diagonally
dominant systems of linear equations

46 /104

Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

Krishna

Pillutla
m A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.

m Based on theory of Lagrange Duality.

m Because of the separable nature, x is updated keeping y
Literaturs fixed and then, y is updated keeping x fixed .

m Dual variables are updated and the process is repeated.

Lsimilar in spirit to the Jacobi method used to solve diagonally
dominant systems of linear equations
47 /104

Previous Work: Alternating Direction Method of
Multipliers

Distributed
ML

Krishna

Pillutla

A separable problem of the form min, f(w) + g(w) is
recast as miny ,f(x) + g(y) subject to x = y.

Based on theory of Lagrange Duality.

Because of the separable nature, x is updated keeping y
Literature fixed and then, y is updated keeping x fixed 1.

Review

Dual variables are updated and the process is repeated.
Can trivially be parallelized ([BPC*11]).

Lsimilar in spirit to the Jacobi method used to solve diagonally

dominant systems of linear equations
48 /104

ADMM: continued

Distributed
ML

Krishna
Pillutla

The same idea can be generalized to min,, > i~ fi(w)
([BT97]). We rewrite the problem as

m

min E fi(w;)
Literature Wi,...,Wm .
Review =1

subject to w; =wjt1;i=1,...,m—1.

where f;(.) is the objective function at node /.

49 /104

ADMM: continued

Distributed

ML m)\, represents the Lagrangian dual variable corresponding
to the j™ constraint

Literature
Review

50 /104

ADMM: continued

Distributed

ML m)\, represents the Lagrangian dual variable corresponding

Krishna to the j™ constraint
Pillutla

m c is the augmented lagrangian parameter

Literature
Review

51 /104

ADMM: continued

Distributed

ML m)\, represents the Lagrangian dual variable corresponding

Krishna to the j™ constraint
Pillutla

m c is the augmented lagrangian parameter
m Apply equation (4.75) of [BT97] to get:

Literature
Review

52 /104

ADMM: continued

Distributed

ML m)\, represents the Lagrangian dual variable corresponding

Krishna to the j™ constraint
Pillutla

m c is the augmented lagrangian parameter
m Apply equation (4.75) of [BT97] to get:

w Y Zargmin{fi(w) + c||w|?+

1

(t) (t)
4w
WT(Agt) —)\Ei)l - c(wi(t) + %))}

(1)

53 /104

ADMM: continued

Distributed

ML Aj represents the Lagrangian dual variable corresponding

CGEE to the j™ constraint

c is the augmented lagrangian parameter

m Apply equation (4.75) of [BT97] to get:
| |
w{) =argmin{fi(w) + c||w|*+
() (t)
M4 ws
w T = A = e+ ZEL L))
(1)
" C
t+1 t t+1 t+1
A =X 4 S — i))

54 /104

ADMM: continued: Implementation

Distributed
ML

m w updates happen parallely

Literature
Review

55 /104

ADMM: continued: Implementation

Distributed
ML

® w updates happen parallely

m Node / communicates model with neighbours /i — 1 and
Literature .
Review I + 1

56 /104

Distributed
ML

Krishna Introduction

Pillutla

IPM
ADMM
A
distributed
i m A general framework for distributed optimization

Experiments and Results

57 /104

A general framework for distributed optimization

Distributed
ML

m Add a linear or a quadratic correction C(w) to the
objective function at each node.

A general
framework for
distributed
optimization

58 /104

A general framework for distributed optimization

Distributed
ML

Krishna
Pillutla

m Add a linear or a quadratic correction C(w) to the
objective function at each node.

m IPM adds 7% (w)

A general
framework for
distributed
optimization

59 /104

A general framework for distributed optimization

Distributed
ML

Krishna
Pillutla

m Add a linear or a quadratic correction C(w) to the
objective function at each node.

= IPM adds 7% (w)
A general m The correction is iteratively improved along with the
e solution ([MKSB13], [BPC*11], [HMS08]).

optimization

60 /104

A general framework for distributed optimization

Distributed
ML

m IPM adds 74" (w)

A general
framework for
distributed
optimization

61 /104

A general framework for distributed optimization

Distributed
ML

= IPM adds 7% (w)
m ADMM, based on Lagrangian Duality adds
O w) = clw|?+ wTd?

w(t) (®)

where d() = (A — A0 — c(w(® 4 "2

62 /104

A general framework for distributed optimization

Distributed
ML

Krishna
Pillutla

= IPM adds 7% (w)
m ADMM, based on Lagrangian Duality adds
Cw) = clw|?+ wTd?
(®) _ (O _\® (t) wtwid
where d; = (A} = N — (w7 + 7))
m When Fenchel duality is used, we have a linear term

([HMSO08], equation (2)) used to tie together solutions
from various nodes.

63 /104

A general framework for distributed optimization

Distributed
ML

m Observation: Each of the above three methods involves a
communication of O(n) where n is the number of features.

A general
framework for
distributed
optimization

64 /104

A general framework for distributed optimization

Distributed
ML

Krishna
Pillutla

m Observation: Each of the above three methods involves a
communication of O(n) where n is the number of features.

m Can we reduce this further?
P for

dist»rib}ute_d

optimization

65 /104

A general framework for distributed optimization

Distributed
ML

. Algorithm to capture all variants described above

Pillutla

Algorithm 3 General Algorithm

1: Initialise w(9) and other quantities required arbitrarily

2: for t = 1,2, .. (outer iterations) do

3: Compute C,-(t)(w), the correction

4 w't) = argmin(fi(w) + Ci(t)(w)) by some method
w

A general
framework for
distributed

]

optimization 5: Communication: communicate the required vectors (such
as dual vectors, or gradients)
6: end for

7. return w(Y) = ParameterMixing(w})

66 /104

Approach

Distributed
ML

m To reduce communication costs further.

Approach

67 /104

Approach

Distributed
ML

m To reduce communication costs further.

m Original Problem:

m
min Z fi(w;)
Wise.osWm i—1

subject to w; =wjq;i=1,...,m—1.

Approach

68 /104

Approach

Distributed
ML

Krishna
Pillutla

m To reduce communication costs further.

m Original Problem:

m
min Z fi(w;)
WiyeeoysWm P

subject to w;=wjq;i=1,...,m—1.

Approach

m Relax Constraints w; = w1

69 /104

Approach

Distributed
ML

m Constraint w; = wjy1 enforces component-wise equality

wilj] = wisa [l

Approach

70 /104

Approach

Distributed
ML

m Constraint w; = w;y1 enforces component-wise equality
wilj] = wita[j].

m Relax to sum of elements over a set of indices being equal.

Approach

71 /104

Approach

Distributed
ML

Krishna
Pillutla

m Constraint w; = w;y1 enforces component-wise equality
wilj] = wit1[j].
m Relax to sum of elements over a set of indices being equal.

m Divide features into sets I, b, ..., Iy (not necessarily
disjoint).

Approach

72 /104

Approach

Distributed
ML

Krishna
Pillutla

m Constraint w; = w;y1 enforces component-wise equality
wilj] = wis1[].

m Relax to sum of elements over a set of indices being equal.

m Divide features into sets 1, b, ..., Iy (not necessarily

disjoint).

m Enforce: > w;[j] = > wji1]j] for each set I,.
Jel Jel

Approach

73 /104

Approach

Distributed
ML

m Represent all k scalar equations as a vector equation
STW,' = STW,'_H 2.

Approach

2S € R™* is a matrix of Os and 1s such that Sy =1 < i €
74 /104

Approach

Distributed
ML

Krishna

Pillutla m Represent all k scalar equations as a vector equation
STW,' = STW,'+1 2.
m New problem:

m
min Z fi(w;)
Wi,...,Wm 1

subject to STw; = STW,-+1; i=1...,m—1.

Approach

2S € R™* is a matrix of Os and 1s such that Sy =1 < i €
75 /104

Approach

Distributed
ML

Krishna

Pillutla m Represent all k scalar equations as a vector equation
STW,' = STW,'+1 2.

m New problem:

m
min Z fi(w;)
Wis-.r;Wm i—1

subjectto STw; = STW,-+1; i=1...,m—1.

Approach

m Approximation of original problem: need not be solved by
ADMM.

2S € R™* is a matrix of Os and 1s such that Sy =1 < i €
76 /104

Approach

Distributed

ML m Apply equation (4.75) of [BT97] to get:

WI.(HI) = argmin{fi(w) + cw ™ (SST)w + WTd,-(t)} (3)

77 /104

Approach

> m Apply equation (4.75) of [BT97] to get:

Krishna
Pillutla

w(tD) — argmin{fi(w) + cw ™ (SST)w + WTd’.(t)} (3)

]

STWi(i)l + STW()

t
4 — S(Agt) _)‘('?1 _ C(STW,-(t) n i i+1y)

78 /104

Approach

> m Apply equation (4.75) of [BT97] to get:

Krishna
Pillutla

w1 — argmin{fi(w) + cw " (SST)w + WTd’-(t)} (3)

]

m where

To®) 4 gT ()
g0 = SO AD, — (5Tl 4 2t ; > Y1)

m Dual Update:

)\I(,t+1) _)\Et) + %(STWi(f+1) o STWI(—:'_‘{]-)) (4‘)

79 /104

Approach

> m Apply equation (4.75) of [BT97] to get:

Krishna
Pillutla

wt) = argmin{fi(w) + cw ™ (SST)w + WTd,-(t)} (3)

]

m where

To®) 4 gT ()
g0 = SO AD, — (5Tl 4 2t ; > Y1)

m Dual Update:

)\I(,t+1) _)\St) + %(STWi(t+1) o STWI(—:{]-)) (4)

m Communication Cost

80 /104

Algorithm

Distributed
ML

Krishna

Pillutla

Algorithm 4 ADMM with reduced communication

. Initialise W(o), WI-(O), Ai=0=X_1

1

2. fort=0,1,2,.. do
3: Solve for w
4

(t+1) .
; as per equation 3 X
Communicate models with neighbours and obtain w,-(flr)
(t+1)
and w; |,
P 5: Update A\; and \;_; by equation 4
6: end for
(t+1) t+1

7: return w

: or ParameterMixing(w; ™)

81/104

Approach

Distributed
ML

m Key Observation: Parameter Mixing step in the end can
be skipped

Approach

82 /104

Approach

Distributed
ML

m Key Observation: Parameter Mixing step in the end can
be skipped

m Can reduce communication cost to be smaller than Simple
Parameter Mixing

Approach

83 /104

Distributed
ML

Krishna
Pillutla

Experiments
and Results

Experiments and Results

84 /104

Results: Synthetic Datasets

Distributed
ML

Krishna
Pillutla

Synthetic datasets with 4-10 features
200-4000 training and testing examples
ScR™3

Solved with cvx as black-box solver

Stopping based on duality gap

Experiments
and Results

85/104

Results: Synthetic Datasets

Distributed
ML

Krishna

Pillutla

Table : Performance with Synthetic Dataset TestFinal4.mat with 4
nodes

Method Objective value Test Accuracy
Full problem 0.4891 0.8000
PM 0.6009 0.7350
Our method 0.5128 0.7900

Experiments
and Results

86 /104

Results: low k values work

Distributed
ML

Objective function vs Fraction of features for a9a and 2 nodes (hloss)
Krishna 0.355 T

Pillut! Ful ‘D_a(a‘
Hllutla Parameter Mixing -~
ADMM -~
03545
0.354
c
S
g
2
® 03535
2
g
-3
2
[§]
0.353
036525
Experiments " * % Koy
0352
and Results 0 0.1 0.2 03 04 05 06 07 08 0.9 1

Fraction of features

Figure : Dataset a9a split into two nodes: objective function value

87 /104

Results: low k values work

Distributed
ML

Accuracy vs Fraction of features for a9a and 2 nodes (hloss)
Krishna 0.851 T T
Data

T

Pillutl v
Hllutla Parameter Mixing -~
ADMM ---

.

0.8505 N X

0.8495

Accuracy

0.849

0.8485

Experiments
and Results

0.848
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1

Fraction of features

Figure : Dataset a9a split into two nodes: test accuracy

88 /104

Results: Larger kK means a better approximation

Distributed
ML

Objective function vs Fraction of features for usps36(hloss)

Krishna 0.06 T T T T T T T T
, Full Data
Pillutla Parameter M\xmg 2 nodes
ADMM, 4 nodes -
0.055 [ADMM 2nodes & |
Parameter Mixing, 4 nodes
. Parameter ang 8 nodes
L% ADMM, 8 nodes - -e- - |
0.05 .
o
5 0045 R
B
g
3
o 004 . 1
£ x. - e
8 ¥ .’ . oo ®
kS x* . . .
O 0035 e g
. .
o o
a
0.03 - B Koo]
“ BB * oK *omep ™
0.025 [eref., e .]
. 5T gn g g gt BB
Experiments
0.02
and Results 0 0.1 02 03 04 05 06 07 08 09 1

Fraction of features

Figure : Dataset usps36: 2,4 and 8 nodes

89 /104

Results: 25-100 Nodes

Distributed
ML

Objective function vs Fraction of features for cov1(lloss)
K na 0.58 T T T

, "Full Data’
Pillutla Parameter Mixing, 25 nodes
057 | ADMM, 50 nodes ---%-- |
: ADMM, 25 nodes
Parameter Mixing, 50 nodes
Parameter Mixing, 100 nodes
0.56 - ADMM,; 100 nodes - -~ - 7
0.55 |- 4
c
S
g o054 4
2
)
2
g ossp
by
[¢]
0.52 4
0.51 | 4
05 | 4
Experiments
0.49
and Results 0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

Fraction of features

Figure : Dataset cov: 25, 50 and 100 nodes: objective value

90 /104

Results: 25-100 Nodes

Distributed
ML

Accuracy vs Fraction of features for cov1(lloss)
K na 0.645 T T T T T T T T T
Pillutla

0.635 |

xw

0.63 -

0.625 4

Accuracy

0.62 4

0.615 4

061 | 4

0.605 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of features

Experiments R v Full Dda(a PParameterMMixmg, 50 noges
arameter Mixing, 25 nodes arameter Mixing, 100 nodes

and Results ADMM, 50 nodes - ADMM, 100 nodes e -

ADMM, 25 nodes

Figure : Dataset cov: 25, 50 and 100 nodes: Test Accuracy

91/

104

Results: Do we need a PM step in the end?

Distributed
ML 0,43158

ADIH with P ——
ADH without PH ——
Krishna 0,49156 |- R ..

Pillutla
049154
0.49152
0.4318 |-
0.49188 |-
0,43186
0,43184

0.49182 |-

0.,4918

Experiments
and Results

0.43178

0,1 0.2 0.3 0.4 0,5 0,6 0.7 0.8 0.3 1

Figure : cov: 4 nodes: Comparision of objective function values
ADMM with PM and ADMM without PM

92 /104

Distributed
ML

Krishna
Pillutla

Experiments
and Results

Results: Do we need a PM step in the end?

ADHH with PH ——
ADMH without PH —e—
0,61
0.605
0.6
0,535
o 0.2 0.4 0.6 0.8

1

Figure : cov: 4 nodes: Comparision of test accuracy values ADMM

with PM and ADMM without PM

93 /104

Conclusion

Distributed
ML

m There is some merit in this method

Experiments
and Results

94 /104

Conclusion

Distributed
ML

m There is some merit in this method
m TODO: Theoretical Treatment

Experiments
and Results

95 /104

Conclusion

Distributed
ML

m There is some merit in this method
m TODO: Theoretical Treatment
m TODO: Run experiments on Hadoop with larger datasets

Experiments
and Results

96 /104

Conclusion

Distributed
ML

Krishna
Pillutla

m There is some merit in this method
m TODO: Theoretical Treatment

m TODO: Run experiments on Hadoop with larger datasets
m TODO: Grouping of features

Experiments
and Results

97 /104

Conclusion

Distributed
ML

Krishna
Pillutla

m There is some merit in this method
m TODO: Theoretical Treatment
m TODO: Run experiments on Hadoop with larger datasets

m TODO: Grouping of features
m Group similar features together

Experiments
and Results

98 /104

Conclusion

Distributed
ML

Krishna
Pillutla

m There is some merit in this method
m TODO: Theoretical Treatment
m TODO: Run experiments on Hadoop with larger datasets

m TODO: Grouping of features

m Group similar features together
m Clustering of features

Experiments
and Results

99 /104

Conclusion

Distributed
ML

Krishna
Pillutla

m There is some merit in this method
m TODO: Theoretical Treatment

m TODO: Run experiments on Hadoop with larger datasets
m TODO: Grouping of features

m Group similar features together
m Clustering of features
m Sampling of data

Experiments
and Results

100 /104

References |

Distributed
ML

[ACDL11] Alekh Agarwal, Olivier Chapelle, Miroslav Dudik,
and John Langford, A reliable effective terascale
linear learning system, CoRR abs/1110.4198

(2011).

[BPC*11] CS. Boyd, N. Parikh, E. Chu, B. Peleato,
J. Eckstein, Stephen Boyd, Neal Parikh, Eric Chu,
Borja Peleato, and Jonathan Eckstein, Distributed
optimization and statistical learning via the
alternating direction method of multipliers, 2011.

Experiments

and Results [BT97] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and
distributed computation: Numerical methods,
Athena scientific optimization and computation
series, Athena Scientific, 1997.

101 /104

References |l

Distributed
ML

[HMS08] Tamir Hazan, Amit Man, and Amnon Shashua, A
parallel decomposition solver for sym: Distributed
dual ascend using fenchel duality.

[Man] O. L. Mangasarian, Parallel gradient distribution.

[MHM] Ryan Mcdonald, Keith Hall, and Gideon Mann,
Distributed training strategies for the structured

perceptron.
Eeperiments [MKSB13] Dhruv Mahajan, S. Sathiya Keerthi,
and Results S. Sundararajan, and Léon Bottou, A functional

approximation based distributed learning
algorithm, CoRR abs/1310.8418 (2013).

102 /104

References Il|

Distributed
ML

[MMM™09] Gideon Mann, Ryan Mcdonald, Mehryar Mohri,
Nathan Silberman, and Daniel D. Walker, Efficient
large-scale distributed training of conditional
maximum entropy models, In Advances in Neural
Information Processing Systems, 2009.

Experiments

and Results

103 /104

Distributed

ML

K 1a
Pillutla

The End. Thank You!

Experiments
and Results

104 /104

	Introduction
	IPM
	Literature Review
	Algorithm

	ADMM
	Literature Review
	A general framework for distributed optimization
	Approach

	Experiments and Results

