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Abstract

Distributed convex optimization techniques try to augment the objective
function minimized at each machine by adding a linear or a quadratic cor-
rection. Different theoretical treatments lead to different methods such as
functional approximation and Iterative Parameter Mixing (IPM), Lagrange
duality leads to an application of Alternating Direction Method of Multi-
pliers (ADMM), Fenchel duality leads to yet another algorithm. All these
algorithms are similar in that every global iteration requires communication
of at least a vector of size equal to the number of features. We explore an
ADMM derivative that tries to reduce the communication further. Experi-
ments show that such a method, is indeed, promising. Further, we evaluate,
theoretically and experimentally, IPM and its rate of convergence.

i



Acknowledgements

I would like to thank my advisor, Prof Saketha Nath J, for his patient guid-
ance, encouragement and useful reviews of my work. His enthusiastic partici-
pation has been very much appreciated. My grateful thanks are also extended
to Sundararajan Sellamanickam and Dhruv Mahajan of Microsoft Research,
my guides during the summer internship there, in the summer of 2013. The
project was originally their idea. Further, I would like to thank them for their
guidance and all the fruitful discussions we had in the summer and during
the course of the semester. Special thanks to Prof Soumen Chakrabarti for
granting me access to the cluster and Research Assistant Shashank Gupta for
all the help in running code and hadoop and his infinite patience in helping
me. I would like to thank Pratik Jawanpuria for the discussions and with
setting me up on a server.

ii



Honor Code

I certify that we have properly cited any material taken from other sources
and have obtained permission for any copyrighted material included in this
report. I take full responsibility for any code submitted as part of this project
and the contents of this report.

Author: Venkata Krishna Koundinya Pillutla

iii



Certificate

It is certified that the B. Tech. project Iterative Parameter Mixing has been
done by: Venkata Krishna Koundinya Pillutla under my supervision. This
report has been submitted towards partial fulfillment of B. Tech. degree
requirements.

Saketha Nath J
Advisor

Assistant Professor, Computer Science and Engineering
Indian Institute of Technology Bombay

Mumabi-400076, Maharashtra, India

iv



Contents

Abstract i

Acknowledgements ii

Honor Code iii

Certificate iv

Notation vii

1 Introduction 1
1.1 Iterative Parameter Mixing . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 ADMM variant with reduced communication . . . . . . . . . . 2
1.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization of the Report . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review and Previous Work 3
2.1 Parameter Mixing . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Iterative Parameter Mixing(IPM) . . . . . . . . . . . . . . . . 3
2.3 Alternating Direction Method of Multiplers (ADMM) . . . . . 4
2.4 A general framework for distributed optimization . . . . . . . 5

3 Algorithm 6
3.1 General Algorithm for Distributed Optimization . . . . . . . . 6
3.2 Algorithm for IPM . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Reducing Communication Cost in ADMM . . . . . . . . . . . 8

3.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 8

v



3.3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Theoretical Results 11
4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Order of Convergence . . . . . . . . . . . . . . . . . . . . . . . 12

5 Experimental Results 18
5.1 IPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 ADMM with reduced communication . . . . . . . . . . . . . . 24

5.2.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Real-life Datasets . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion 31

Bibliography i

vi



Notation

• f is the objective function, f(w) =
∑N

i=1 l(yiw
Txi) + γR(w) where l is

the loss function and R(w) is the regularizer. Here, we only use the `-2
regularizer, i.e R(w) = 1

2
wTw. Here, we have N training instances.

IPM

• w(k,r)
i or w

(k)(r)
i both represents the model at node i, in the rth inner

iteration of the kth outer iteration.

• w(k)
i represents the final model at node i, in the kth outer iteration.

• w(k) refers to the global model at the beginning of the kth outer iter-
ation.

• We have, for convex f ,

f(y) ≤ f̂w(y) = f(w) +∇f(w)T (y − w) +
L

2
‖y − w‖2

where L is the Lipschitz Constant of ∇f

• f−i(w) =
∑

j 6=i fj(w).

• The objective function for inner iterations of gradient descent at node
i in outer iteration k is

f̃i,k(w) = fi(w) + f̂wk
−i (w)

• c is the fixed number of times the inner iterations are performed, p is
the number of nodes.
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ADMM

• x[i] repesents component i of vector x.

• wt
i (or w

(t)
i ) represents the model at node i in the outer iteration number

t.

• λi is the (Lagrange) dual variable corresponding to the constraint be-
tween wi and wi+1. If it enforces k equalities, we have, λi ∈ Rk.

• We define coefficient matrices (denoted by S) as follows: To relax a
dimension-wise equality constraint x = y, x, y ∈ Rn to a set of k ≤ n
constrains of the form xI1 = yI1 , . . . , xIk = yIk where xI =

∑
j∈I x[j].

These constraints can be succintly represented as STx = STy where
n × k matrix S is constructed by the rule Sij = 1 ⇔ i ∈ Ij. For
instance, if the constraints are not relaxed, S is the identity matrix.
On the other hand, under full relaxation (k = 1, I1 = {1, 2, . . . , n}),
S1×n = [1, 1, ..., 1]T .
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Chapter 1

Introduction

We consider learning problems of the form

minw

N∑
i=1

l(yiw
Txi) + γR(w)

where l is the loss function, xi a training example and yi is its label (+1 or
−1 for binary classification), and w is the model, but in a distributed setting,
where data is distributed across the nodes. R is the regularizer. For instance,
R(w) = wTw/2.

1.1 Iterative Parameter Mixing

1.1.1 Problem Statement

The effort is to augment the objective function at a node with a linear or
quadratic approximating the objectives at every other node. The local mod-
els so obtained are combined into a global model. The approximations are
updated, models evaluated and the process is continued iteratively.

1.1.2 Approach

Our approach was to initially use gradient descent on hinge loss (sub-gradient
descent, actually) and logistic loss. Later, experiments we also conducted
with a Trust Region Newton Method Parallelism was simulated. Theoretical
results were also developed.
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1.2 ADMM variant with reduced communi-

cation

1.2.1 Problem Statement

General algorithms in the distributed optimization framework require com-
munication of a vector of length equal to the feature dimension. We try to
reduce this, and ADMM is best suited method for this purpose. The original
distributed objective can be recast as a constrained optimization problem,
with constraints enforcing models on different machines to be equal. To re-
duce communication costs, the constraints are relaxed slightly- we enforce
sums over arbitrary sets of features to be equal, but every feature need not
be equal across nodes. Theoretical results have also been presented.

1.2.2 Approach

Experiments were run with (sub-) gradient descent as the inner optimization
algorithm with hinge and logistic loss functions. Paralleslism was simulated
and experiments were conducted with different datasets for different number
of iterations.

1.3 Organization of the Report

The rest of the report is organized as follows: In Chapter 2, we review
literature in the field. In Chapter 3, we propose the algorithm. In Chapter
4, we analyze convergence and rate of convergence theoretically. In Chapter
5, we explore explore experimental results. In Chapter 6, we discuss possible
improvements and conclude the report.
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Chapter 2

Literature Review and
Previous Work

2.1 Parameter Mixing

The most popular way to solve such a problem in a distributed manner is to
independently learn a model on each machine in a cluster using a partition of
the dataset [1]. The global model is then computed as a convex combination
of the local models, usually, a simple average [2]. It does not have strong
performance guarantees but works well in practice.

In [3], the authors try to incorporate some gradient information in ob-
taining coefficients of the above mentioned convex combination. This weight
matrix also appears in the update rule in the stochastic gradient descent that
each machine locally runs (in algorithm 1 of [3]). It appears similar to the
Hessian matrix in a second order optimization, suggesting that the Hessian
could be used to obtain weights for the convex combination.

It was precisely this that I worked on during my summer internship, and
we obtained an expression for mixing that did better than simple averaging.
This method worked the quadratic approximation (Taylor series expansion)
of the individual objective functions about their local minima and solving
the resulting quadratic in closed form for the global solution. What if the
quadratic approximation was not good enough at the point of mimimum?
We look to Iterative Parameter Mixing.

2.2 Iterative Parameter Mixing(IPM)

The first literature on Iterative Parameter Mixing so far is [4]: The authors
opine that parameter mixing is empirically powerful with no strong theoret-
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ical guarantees. Further, it does not perform well for distributed perceptron
training, the subject of that paper. They explore an iterative approach to pa-
rameter mixing, where the inner optimization is repeated several times with
the previous global result as a new initial guess. It works well in practice
and provides theoretical guarantees for the case of the perceptron. IPM is
the logical solution to cover for the inadequacies of parameter mixing in our
case too.

[5] is the most recent work on IPM (published in January 2014, after
Stage-1 of this project). [5] proposes a fairly general scheme using functional
approximations and also provides strong theoretical guarantees. A big draw-
back, however, is that [5] requires a global line search step, which could prove
to be very costly. We try to produce some results without the line search, at
the cost of some generality.

2.3 Alternating Direction Method of Multi-

plers (ADMM)

A separable problem of the form minwf(w) + g(w) is recast as minx,yf(x) +
g(y) subject to x = y. Because of the separable nature, x is updated keeping
y fixed and then, y is updated keeping x fixed (similar in spirit to the Ja-
cobi method or the Gauss Seidel method used to solve diagonally dominant
systems of linear equations). Dual variables are updated and the process is
repeated. This method can be trivially parallelized: see [6].

The same idea can be generalized to minw

∑m
i=1 fi(w) ([7]). We rewrite

the problem either as

min
wi,...,wm

m∑
i=1

fi(wi)

subject to wi = wi+1; i = 1, . . . ,m− 1.

or as

min
z,wi,...,wm

m∑
i=1

fi(wi)

subject to wi = z; i = 1, . . . ,m.

If λj represents the Lagrangian dual variable correspoing to the jth con-
straint and c is the augmented lagrangian parameter, the first formulation
can be solved by the iterations (obtained by appropriate application of equa-
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tion (4.75) of [7]):

w
(t+1)
i = argmin

w
{fi(w) + c‖w‖2 + wT (λ

(t)
i − λ

(t)
i−1 − c(w

(t)
i +

w
(t)
i−1 + w

(t)
i+1

2
))}

(2.3.1)

λ
(t+1)
i = λ

(t)
i +

c

2
(w

(t+1)
i − w(t+1)

i+1 ) (2.3.2)

On the other hand, if we use the second formulation (equations (4.72-4.74)
of [7]), we have,

z(t+1) =

∑m
i=1w

(t)
i

m
−

∑m
i=1 λ

(t)
i

mc
(2.3.3)

w
(t+1)
i = argmin

w
{fi(w) +

c

2
‖w‖2 − wT (λ

(t)
i + cz(t+1))} (2.3.4)

λ
(t+1)
i = λ

(t)
i + c(z(t+1) − w(t+1)

i ) (2.3.5)

2.4 A general framework for distributed op-

timization

Most distributed optimization algorithms add a linear or a quadratic correc-
tion C(w) to the objective function minimised at each node: the correction
is iteratively improved along with the solution ([5], [6], [8]).

In the functional approximations in [5], at node i in iteration t, a func-
tional approximation (or an upper bound) to the objective function at ev-
ery other node is chosen: as examples, we have C(t)(w) = (f̂wt

−i (w)), or
C(t)(w) = f(wt) + ∇f(wt)

Tw + 1
2
wT∇2f(wt)w (the quadratic Taylor ap-

proximation) where ∇2f(wt) is the Hessian matrix evaluated at w = wt.
In each global iteration of the Alternating Direction Method of Multipli-

ers, node i optimizes fi(w) +Ci(w) where Ci(w) = c‖w‖2 +wT (λ
(t)
i − λ

(t)
i−1−

c(w
(t)
i +

w
(t)
i−1+w

(t)
i+1

2
)) depends on the augmented lagragian parameter c, the

values of the dual variables λ(t) and the current solutions in neighbouring
nodes w

(t)
i . Similarly, when Fenchel duality is used, we have a linear term

([8], equation (2)) used to tie together solutions from various nodes. Also, it
is updated iteratively, along with the solutions from other nodes.

Convergence is shown, under suitable conditions, to be log(1/ε) in all
three method in their respective papers.
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Chapter 3

Algorithm

3.1 General Algorithm for Distributed Opti-

mization

This is the pseudo-code of the algorithm to be run on node i. As we can see,
this is fairly general and can capture all the variants described earlier.

Algorithm 1 General Algorithm

1: Initialise w(0) and other quantities required arbitrarily
2: for t = 1, 2, .. (outer iterations) do

3: Compute C
(t)
i (w), the correction

4: w
(t)
i = argmin

w
(fi(w) + C

(t)
i (w)) by some method

5: Communication: communicate the required vectors (such as dual vec-
tor, or gradients)

6: end for
7: return w(t) = ParameterMixing(wt

i)

Here, the function ParameterMixing is the convex combination

w(t+1) =
NumNodes∑

i=1

αiw
(t)
i

.

3.2 Algorithm for IPM

The algorithm presented can use any inner optimization technique and in
particular, we try out Gradient Descent and a Trust Region Newton Method.
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Algorithm 2 Our Algorithm for IPM

1: Initialise w(0)

2: for t = 1, 2, .. (outer iterations) do

3: f̃
(t)
i (w) = fi(w) + f−i(w

(t)) +∇f−i(w(t))T (w − w(t)) + L−i

2
‖w − w(t)‖2

4: w
(t)
i = argmin

w
(f̃i,t(w)) by some method with initial estimate w(t)

5: w(t+1) = ParameterMixing(w
(t)
i )

6: Obtain f(w(t+1)) and ∇f(w(t+1)) by communication
7: end for
8: return w(t)

Algorithm 3 IPM Algorithm proposed in [5]

1: Initialise w(0)

2: for t = 1, 2, .. (outer iterations) do

3: Choose a descent direction d(t), for instance, ParameterMixing(w
(t)
i )−

w(t) where w
(t)
i is as defined in step 4 of of algorithm 3.2.

4: w(t+1) = w(t) + τd(t) where τ is a step length satisfying Armijo-Wolfe
conditions.

5: Communicate the required quantities.
6: end for
7: return w(t)

7



3.2.1 Discussion

Clearly, algorithm 3.2 is a special case of the algorithm ?? proposed in [5]
with a specific form for the descent direction d(t) and no line search. The
distributed step length computations across various machines could poten-
tially be slow and very expensive. But, line search is needed in the proof for
linear convergence presented in [5]. We try to prove, in the next chapter,
linear convergence without line search, that is for Algorithm 2.

3.3 Reducing Communication Cost in ADMM

3.3.1 Discussion

Each iteration of ADMM requires node to communicate dual vectors λ
(t)
i and

model vectors, w
(t)
i to neighbours i − 1, i + 1 (if they exist) in approach 1

(equations 2.3.1 and 2.3.2). Approach 2 (equations 2.3.3, 2.3.4 and 2.3.5)
requires sum of these vectors over all nodes. If λ is the dual variable corre-
sponding to the vector equality x = y, we have a scalar λ[i] for the scalar
inequality x[i] = y[i]. Hence, we communicate vectors of O(f) where f is
the number of features. This much communication is also required for IPM
and the Fenchel duality related approach discussed in [8]. Can we reduce the
communication cost further?

3.3.2 Approach

Relaxing the vector equalities of the form wi = wi+1 reduces the communica-
tion cost. In particular, if we group elements in to k ≤ n sets (not necessarily
disjoint) and enforce equalities of the form

∑
j∈I wi[j] =

∑
j∈I w(i+1)[j] for

each set I. Using the coefficient matrix notation introduced earlier, with
S ∈ Rn×k, we can succintly represent these k equalities as a vector single
equality: STwi = STwi+1. That is, we solve the following optimization prob-
lem:

min
wi,...,wm

m∑
i=1

fi(wi)

subject to STwi = STwi+1; i = 1, . . . ,m− 1.

(3.3.1)

The corresponding update rules change as follows (obtained by appropri-
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ate application of equation (4.75) of [7]):

w
(t+1)
i = argmin

w
{fi(w)+c‖STw‖2+wTS(λ

(t)
i −λ

(t)
i−1−c(STw

(t)
i +

STw
(t)
i−1 + STw

(t)
i+1

2
))}

(3.3.2)

λ
(t+1)
i = λ

(t)
i +

c

2
(STw

(t+1)
i − STw

(t+1)
i+1 ) (3.3.3)

Communication required is STw with neighbours, each of which is a k-
dimensional vector. Each node maintains λi and λi−1 and hence communi-
cation is not necessary.

On the other hand, if we use approach 2, we have,

z(t+1) =

∑m
i=1 S

Tw
(t)
i

m
−

∑m
i=1 λ

(t)
i

mc
(3.3.4)

w
(t+1)
i = argmin

w
{fi(w) +

c

2
‖w‖2 − wTS(λ

(t)
i + cz(t+1))} (3.3.5)

λ
(t+1)
i = λ

(t)
i + c(z(t+1) − STw

(t+1)
i ) (3.3.6)

In approach 2, communication required is sum of STw and λ, both k-
dimensional vectors across all nodes. By controlling the value of k, we can
control the amount of communication.

Both approaches are similar computationally, but the way the communi-
cation is done is different. In approach 1, we used a protocol where all each
node first passes messages to the node on the left, accepts messages from
the node on the right, passes messages to the node on the right and accepts
messages from the node on the left. To efficiently communicate in approach
two, the AllReduce method, described in [3] could be used: a rooted tree
structure is induced on the nodes. Messages are passed leaf upwards. Each
intermediate node sums up (or performs any aggregation operation as neces-
sary) the messages recieved with its own quantity and passes this aggregate
as the message to its parent. The root then broadcasts the global aggre-
gate to every node in the tree. Approach 1 requires synchronization between
pairs of neighbouring nodes alone, while approach two requires global syn-
chronization, and hence, a larger overhead. Throughout the experiments, we
use approach 1.

It must noted that the approximation presented in the equation 3.3.1 can
be solved by a variety of techniques. ADMM is just one such a technique an
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d is the technique that led to the conceptualization of this approximation.
We have solved problem from equation 3.3.1 using cvx as a blackbox solver
to compare results as well. However, this was done with synthetic datasets
alone as cvx is a general purpose solver and does not scale even for small
real-life datasets.

3.3.3 Algorithm

Another huge saving in communication cost can be obtained by skipping the
final parameter mixing step described in Algorithm 1. The final model in any
one of the nodes can be used. Experiments show this is close to the values
obtained from parameter mixing in the final step of the process.

Algorithm 4 ADMM with reduced communication

1: Initialise w(0), w
(0)
i , λi = 0k = λi−1

2: for t = 0, 1, 2, .. do
3: Solve for w

(t+1)
i as per equation 3.3.2

4: Communicate models with neighbours and obtain w
(t+1)
i−1 and w

(t+1)
i+1

5: Update λi and λi−1 by equation 3.3.3
6: end for
7: return w

(t+1)
i or ParameterMixing(wt+1

i )

10



Chapter 4

Theoretical Results

4.1 Convergence

Theorem 1. If f is convex and differentiable, ∇f is Lipschitz continuous with
constant L, a strict decrease in global objective function f can be guaranteed in
every outer iteration, that is, f(w(k+1)) < f(w(k)). provided the optimization
algorithm used in step 4 of algorithm3.2 guarantees a strict decrease in the
objective function solved by it and under some additional conditions.

In particular, for gradient descent with a constant step size, the condition
is that the step size h satisfies

0 < h ≤ 1/L

Proof. The inner optimization algorithm should guarantee a strict decrease
in the objective functions. This is true, since we have a convex objective.
Let ci be the inner iteration number for the ith node.

That is,

f̃i,k(w
(k,ci)
i ) < f̃i,k(wci−1

i,k ) < · · · < f̃i,k(w(k)) = f(w(k))

11



Now,

f(wk+1) = f(

p∑
i=1

αiw
(k,ci)
i ) by definition

≤
p∑

i=1

αif(w
(k,ci)
i ) Jensen’s inequality

≤
p∑

i=1

αif̃i,k(w
(k,ci)
i ) since f̃i,k(w) ≥ f(w)

<

p∑
i=1

αi(f̃i,k(wk)) strict decrease

≤
p∑

i=1

αi(f(wk)) f̃i,k(w(k)) = f(w(k))

= f(wk) since
∑
i

αi = 1

Since the objective is convex, it has a unique global minimiser and the
algorithm converges.

4.2 Order of Convergence

The order of convergence results hold for Gradient Descent. For a convex
objective function whose gradient is Lipschitz continous, with a constant
number of inner iterations, when sufficiently close to the global optimum, the
convergence is locally O(1/k). For a strongly convex objective, convergence
is linear. We have almost proved stronger versions of the above result for
global convergence.

Local Convergence

Theorem 2. If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimisation is solved with gradient descent i.e.
w

(k,j+1)
i = w

(k,j)
i −h∇f̃i,k(w

(k,j)
i ) with a fixed number of steps c and fixed step

size h = 1/L(c2 + 2c− 2) and the initial guess w(0) is sufficiently close to the
global optimum w∗ then algorithm 3.2 converges as

f(w(k))− f(w∗) ≤ 2L‖w(0) − w∗‖2

k + 4
β2 (4.2.1)

12



where β > 0 is a constant i.e., convergence is O(1/k), for k outer iterations.
If f is strongly convex with constant µ, convergence is linear as

‖w(k) − w∗‖ ≤ (
L− µ
L+ µ

)k‖w(0) − w∗‖ (4.2.2)

Proof.
w

(k,j+1)
i = w

(k,j)
i − h∇f̃i,k(w

(k,j)
i )

Claim1:

∇f̃i,k(w
(k,r)
i )T∇f̃i,k(w

(k,r−1)
i ) ≤ ‖∇f̃i,k(w

(k,r−1)
i )‖2 (4.2.3)

This follows from (∇f̃i,k(w
(k,r)
i )−∇f̃i,k(w

(k,r−1)
i ))T (w

(k,r)
i − w(k,r−1)

i ) ≥ 0, for
convex f̃i,k.

Claim2:

‖∇f̃i,k(w
(k,c)
i )‖ ≤ ‖∇f̃i,k(w

(k,c−1)
i )‖ ≤ ... ≤ ‖∇f̃i,k(w

(k,0)
i )‖ = ‖∇f(wk)‖

(4.2.4)
Proof: Using,

(∇f̃i,k(w
(k,r)
i )−∇f̃i,k(w

(k,r−1)
i ))T (w

(k,r)
i −w(k,r−1)

i ) ≥ 1

L
‖∇f̃i,k(w

(k,r)
i )−∇f̃i,k(w

(k,r−1)
i )‖2

We have,

1

L
‖∇f̃i,k(w

(k,r)
i )‖2 ≤ (

2

L
−h)(∇f̃i,k(w

(k,r)
i )T∇f̃i,k(w

(k,r−1)
i ))+(h− 1

L
)‖∇f̃i,k(w

(k,2−1)
i )‖2

For h ≤ 2
L

, using Claim1, we get the required result, that seems very intuitive
for the inner gradient descent.

Now, consider ‖w(k,c)
i − w∗‖2:

‖w(k,c)
i − w∗‖2 =‖w(k) − w∗ − h

c−1∑
r=0

‖∇f̃i,k(w
(k,r)
i )‖2

=‖w(k) − w∗‖2 − 2h∇f(w(k))T (w(k) − w∗)

− 2h(w(k) − w∗)T (
c−1∑
r=1

∇f̃i,k(w
(k,r)
i )) + h2‖

c−1∑
r=0

∇f̃i,k(w
(k,r)
i )‖2

We reduce each of the above terms as follows.

• Following [9], using (∇f(w(k))−∇f(w∗))T (w(k)−w∗) ≥ 1
L
‖∇f(w(k))−

∇f(w∗)‖2 and ∇f(w∗) = 0, we get,

−∇f(w(k))T (w(k) − w∗) ≤ − 1

L
‖∇f(w(k))‖2
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• To reduce−(w(k)−w∗)T (∇f̃i,k(w
(k,r)
i )): Using f(y)−f(w) ≥ ∇f(w)T (y−

w), we get:

f̃i,k(w∗)− f̃i,k(w
(k,r)
i ) ≥ ∇f̃i,k(w

(k,r)
i )T (w∗ − w(k,r)

i )

∇f̃i,k(w
(k,r)
i )T (w

(k,r)
i − w∗) ≥ f̃i,k(w

(k,r)
i )− f̃i,k(w∗)

−∇f̃i,k(w
(k,r)
i )T (w

(k,r)
i − w∗) ≤ f̃i,k(w∗)− f̃i,k(w

(k,r)
i )

If w(k), w
(k,r)
i and w∗ are sufficiently close to each other, we have

f̃i,k(w) ≈ f(w). Using the fact that w∗ is the global minimum of
f , we get,

−∇f̃i,k(w
(k,r)
i )T (w

(k,r)
i − w∗) ≤ 0

.

• The third term reduces using Cauchy-Schwartz Inequality and claim2:

‖
c−1∑
r=0

∇f̃i,k(w
(k,r)
i )‖2 =

c−1∑
r=0

‖∇f̃i,k(w
(k,r)
i )‖2 + 2

c−1∑
r=1

r∑
j=0

∇f̃i,k(w
(k,r)
i )T∇f̃i,k(w

(k,j)
i )

≤ ‖∇f(w(k))‖2(c+ 2(
c2 + c

2
− 1))

= (c2 + 2c− 2)‖∇f(w(k))‖2

So we have,

‖w(k,c)
i −w∗‖2 ≤ (1+2(c−1)L)‖w(k)−w∗‖2−h(

2

L
−(c2+2c−2)h)‖∇f(w(k))‖2

That is,
‖w(k,c)

i − w∗‖ ≤ β‖w(k) − w∗‖ (4.2.5)

where β2 = (1+2(c−1)L) when h ≤ 2
L(c2+2c−2) The best step-size is obtained

by maximising the quadratic q(h) = h( 2
L
− (c2 + 2c− 2)h). That is when,

h∗ =
1

(c2 + 2c− 2)
.
1

L
(4.2.6)
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Finally,

‖wk+1 − w∗‖ = ‖
p∑

i=0

αi(w
(k,c)
i − w∗)‖ by definition

≤
p∑

i=0

αi‖w(k,c)
i − w∗‖ triangle inequality

≤
p∑

i=0

αiβ‖w(k) − w∗‖ from equation 4.2.5

Since the αi add up to one, we have,

‖w(k+1)
i − w∗‖ ≤ β‖w(k) − w∗‖ (4.2.7)

f̃i,k(w
(k,j)
i ) ≤ f̃i,k(wk,j−1

i )+∇f̃i,k(wk,j−1
i )T (w

(k,j)
i −wk,j−1

i )+L
2
‖(w(k,j)

i −wk,j−1
i )‖2

= f̃i,k(wk,j−1
i )− 1

2L
‖∇f̃i,k(wk,j−1

i )‖2

since h = 1/L. Using the above inequality repeatedly gives,

f̃i,k(wk,c
i ) ≤ f̃i,k(wk)− 1

2L

c∑
r=1

‖∇f̃i,k(wr−1
i,k )‖2 (4.2.8)

Now,

f(w(k+1)) = f(

p∑
i=1

αiw
(k,c)
i ) by definition

≤
p∑

i=1

αif(w
(k,c)
i ) Jensen’s inequality

≤
p∑

i=1

αif̃i,k(w
(k,c)
i ) since f̃i,k(w) ≤ f(w)

≤
p∑

i=1

αi(f̃i,k(w(k))− 1

2L

c∑
r=1

‖∇f̃i,k(wr−1
i,k )‖2) shown above

≤
p∑

i=1

αi(f̃i,k(w(k))− 1

2L
‖∇f̃i,k(w(k))‖2) first term from each inner sum

= f̃i,k(w(k))− 1

2L
‖∇f̃i,k(w(k))‖2 since

∑
i

αi = 1

= f(w(k))− 1

2L
‖∇f(w(k))‖2
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The last step is because f̃i,k(w(k)) = f(w(k)) and ∇f̃i,k(w(k)) = ∇f(w(k)).

f(w(k+1)) ≤ f(w(k))− 1

2L
‖∇f(w(k))‖2 (4.2.9)

Using equations 4.2.7 and 4.2.9 the rest of the proof is a direct application
of Theorem 2.1.14, 2.1.15 and Corollary 2.1.2 of [9]

Global Convergence

In [5], global convergence was proved for IPM, but a global linear seach
step was required (alogrithm 3.3). We tried to prove a similar result for our
algorithm but were unable to prove the following theorem:

Theorem 3. If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimisation is solved with gradient descent i.e.
w

(k,j+1)
i = w

(k,j)
i −h∇f̃i,k(w

(k,j)
i ) with a fixed number of steps c and fixed step

size h = 1/L(c2 + 2c− 2) , then algorithm 3.2 converges as

f(w(k))− f(w∗) ≤ 2L‖w(0) − w∗‖2

k + 4
β2

where β > 0 is a constant i.e., convergence is O(1/k), for k outer iterations.
If f is strongly convex with constant µ, convergence is linear as

‖w(k) − w∗‖ ≤ (
L− µ
L+ µ

)k‖w(0) − w∗‖

We were only able to prove a weaker version global rate of convergence:

Theorem 4. If f if convex and differentiable, ∇f is Lipschitz continuous
with constant L, the inner optimization is solved with gradient descent i.e.
w

(k,j+1)
i = w

(k,j)
i − h∇f̃i,k(w

(k,j)
i ) with a fixed number of steps c, and a fixed

step size of h = 1/L, we have,

‖∇f(w(k)‖ ≤

√
2L(f(w(0) − f(w∗))

k + 1
(4.2.10)

In other words, convergence is O(1/
√
k), for k outer iterations.

Proof. Equations 4.2.3, 4.2.4, 4.2.9 can be proved as above. 4.2.7 does not
hold globally and hence we have to settle for a poorer rate of convergence.
Equation (4.2.9) states that:
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f(w(k+1)) ≤ f(w(k))− 1

2L
‖∇f(w(k)‖2

This is a special case of equation (1.2.13) of [9] with ω = 1/2. It follows from
equation (1.2.15) of [9] that

‖∇f(w(k)‖ ≤ 1√
k + 1

(2L(f(w(0) − f(w∗)))1/2

Further, this theorem can also be extended to cover the case of line search.
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Chapter 5

Experimental Results

5.1 IPM

Experiments were run using gradient descent and tron as inner optimisation
techniques. Distributed system of 2, 4 and 8 nodes were simulated on a single
machine- we intend to run similar experiments on a hadoop cluster scaling
up to much larger numbers soon. Experiments were run primarily on two
datasets obtained from libsvm data (http://www.csie.ntu.edu.tw/ cjlin/

libsvmtools/datasets/). a9a- a binary classification problem, and usps,
a multilabel classification problem was transformed into a 3 vs 6 binary clas-
sification problem (called usps36 henceforth) and used for the experiments.

The objective optimsed at each node was:

f̃i,k(w) = fi(w) + tf̂−i,k(w)

where t is a scalar between 0 and 1.
The parameters under control were number of inner iterations, outer it-

erations and the scalar t above. Every update passed was a linear update,
i.e. we took L = 0 for the sake of experiments.

Inner optimisation was done with Gradient Descent (GD) and with a
trust region Newton Method (TRON), implemented from [10].

5.1.1 Results

Figures 5.1.1, 5.1.1 contains four curves: red to represent the accuracy ob-
tained on the entire dataset, green to represent the accuracy obtained by
one node, and blue to obtain the accuracy obtained by IPM- one for gradi-
ent descent, and one for TRON. The black line represents accuracy achieved
by PM (equivalent to single iteration of IPM). The results shown are for
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Figure 5.1: IPM with TRON
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Figure 5.2: IPM with Gradient Descent

Note that larger the number of nodes, the better IPM does.
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Figure 5.4: Relative Gradient Norm

Gradient approaching zero is a sign of convergence
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10 inner iterations (GD or TRON), 1000 outer iterations for GD, 10 outer
iterations for TRON. Also t = 1 for GD. For TRON, with 2, 4, and 8 nodes,
t was taken to be 0.1, 0.01, 0.01 respectively for a9a and 0.08, 2e-03, 2e-03
for usps36. This was necessary because the linear terms add a constant to
the gradient which causes trouble with the stopping criterion for the inner
conjugate gradient iterations in TRON.

The next set of plots, figure 5.4 is the relative gradient norm, g =
‖∇f(wk)‖/‖∇f(w0)‖. Since∇f(w∗) = 0, g = ‖∇f(wk)−∇f(w∗)‖/‖∇f(w0)−
∇f(w∗)‖ gives a measure of the rate of convergence, here, for the hinge-loss
function with sub-gradient descent (since the hinge-loss function is not dif-
ferentiable). The curve does look like O(1/k) where k is the number of
iterations.

As can be seen from the graphs attached, GD does a poor job with a
small number of outer iterations- the larger the number of outer iterations,
the better it does. TRON, on the other hand, does reasonably well with as
small 2-3 outer iterations. It does as good as running TRON on the entire
dataset with around 10 outer iterations. To compare, the original datasets
take around 20 iterations for TRON to converge to the optimum.

Figure 5.3 suggests that there is no clear winner amongst PM and IPM.
It also seems to be dependent on the inherent qualities of the data whether
one iteration will suffice (PM), or whether multiple iterations are required
(IPM). The dataset usps36 is a linear dataset. A single iteration (PM) is
sufficient for convergence, and hence, PM does as good as IPM.
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Table 5.1: Performance with Synthetic Dataset TestFinal4.mat with 4 nodes
Method Objective function

value
Accuracy on test set

Full problem 0.4891 0.8000
Parameter Mixing 0.6009 0.7350
Our method 0.5128 0.7900

5.2 ADMM with reduced communication

5.2.1 Synthetic Datasets

We generated synthetic datasets to work with cvx. Four to ten dimensional
datasets were created with 400- 4000 examples and were randomly divided
in to two parts- for training and testing. Problem 3.3.1 was solved directly
with cvx as a black box solver, with duality gap, d < ε being the stopping
criterion. k = 3 was taken. That is, S ∈ Rn×3 was taken. In some cases,
our method achieved as much as 6% more accuracy than simple parameter
mixing, and very close to the maximum possible accuracy on that dataset.
Our method did a great job in minimising the loss function as well, something
that parameter mixing failed at. Table 5.1 presents one such an instance:

5.2.2 Real-life Datasets

Experiments were run on datasets a9a, usps36 and covtype (also know as
cov), a difficult dataset (that is, non-linear) using gradient descent as the
inner optimization method. Experiments were run and results compared
against the fraction k

n
for various values of k. We fixed the augmented

lagrangian parameter (c in equations 3.3.2 and 3.3.3) to be 1 × 10−3. In
particular, we look at the objective function value and accuracy on the test
set with special interest. Experiments were run simulating 2, 4 and 8 nodes.
cov is a large dataset and hence, with it, experiments with 25, 50, 75 and
100 nodes have been performed as well. The values obtained are compared
against various baseline measures: values for optimising the entire dataset on
a single machine and values for parameter mixing.Termination was based on
number of iterations- it is easier to compare communication costs this way.
Suppose we have Tinner iterations of gradient descent in each outer iteration
and Touter outer iterations in our ADMM variant, Parameter Mixing was run
with Tinner iterations of gradient descent on each machine.
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Figure 5.5: a9a split into two nodes: objective function value and accuracy

For some datasets, performance is roughly same for all values of k. For such

datasets, we can save a lot on communication cost without greatly affecting

performance
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Figure 5.6: usps36: 2, 4 and 8 nodes respectively

For most datasets, however, we get better solutions on increasing k. We still do

better than parameter mixing
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Figure 5.7: cov: 25, 50 and 100 nodes respectively: objective function value
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Figure 5.8: cov: 25, 50 and 100 nodes respectively: accuracy

Note the poor accuracy of the red line despite achieving best minimization of the

function value. This depends on the dataset
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Figure 5.9: cov: 4 and 8 nodes respectively: Comparision of objective func-
tion values ADMM with PM and ADMM without PM

Notice that the difference is very small (same up to second decimal place). This

means that we can skip the last parameter mixing step to have a smaller

communication cost than simple parameter mixing too
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Figure 5.10: cov: 4 and 8 nodes respectively: Comparision of test accuracy
values ADMM with PM and ADMM without PM

Notice that the difference is, again, very small.

30



Chapter 6

Conclusion

IPM is promising. Since it is compatible with Hadoop, it can be scaled. Part
of the future work to be done is to run experiments on hadoop with bigger
datasets. Work has to be done to tune some of the parameters of the inner
optimization. We were unable to prove linear convergence for our version of
IPM. We wish to explore some other means to see if linear convergence can
be guaranteed without line search.

Our variant of ADMM can compete with simple parameter mixing and
beat it too, in certain circumstances, in both accuracy and communication
overhead. While it lacks (at the moment) formal theoretical guarantees,
it does a good job empirically. A hadoop implementation is necessary to
work with huge datasets that are otherwise intractable on a single machine.
Further, we wish to come up with a theoretical basis for this method. It
is driven by the intuition that, for data sampled from the same distribution,
the models that fit different samples should be close in expectation.

Another aspect we wish to work upon is grouping of features into sets
Ij as a pre-processing step on the data. For synthetic datasets, elements were
grouped into sets by hand. For the real-world datasets, grouping was arbi-
trary (based on order in which they appeared). Intuition says that grouping
similar features will give a better approximation than arbitrarily grouping
features. Two methods of grouping similar features comes to mind: using
clustering algortihms or optimizing on a small, random sample of the data
and group features based on the value of the model obtained. We wish to
theoretically and experimentally validate these observations.
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