Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism

Krishna Pillutla*, Yassine Laguel*, Jérôme Malick, Zaid Harchaoui

Federated quantiles

Each client i has a scalar s_i

Goal: Compute the $(1 - \theta)$ -quantile $Q_{\theta}(s_1, ..., s_n)$ with **distributed differential privacy**

- Emulate trusted server with crypto
- Primitive: Secure summation

Algorithms

Flat histograms + distributed discrete Gaussian

Hierarchical histograms | Tree aggregation

Main results

Theorem: For $(1/2)e^2$ -zcDP quantiles, w.p. $\geq 1-\alpha$ **Flat Hierarchical**

Asymptotics: Flat is suboptimal: \sqrt{b} **Finite sample**: Flat is better for $n \lesssim 2.5 \times 10^6$

Distributionally robust FL

Setting: Client objectives $F_i(w) = \mathbb{E}_{z \sim p_i} [f(w; z)]$

Goal: Minimize the tail error [Laguel, Pillutla et al. (2021)]

Distributional robustness: for a new client with distribution $p_{\pi} = \sum_{i=1}^{n} \pi_{i} p_{i}$, the objective is equivalent to

$$F_{\theta}(w) = \max_{\pi: \pi_i \le (\theta n)^{-1}} \mathbb{E}_{z \sim p_{\pi}} [f(w; z)]$$

End-to-end DP Optimization

Subgradient expression: if θn is an integer then

$$\partial F_{\theta}(w) \ni \sum_{i=1}^{n} \pi_{i}^{\star} \nabla F_{i}(w) \quad \text{where} \quad \begin{aligned} \pi_{i}^{\star} &\propto \mathbb{I}(F_{i}(w) > q) \\ q &= Q_{\theta} \big(F_{1}(w), \dots, F_{n}(w) \big) \end{aligned}$$

Algorithm: Like FedAvg but in each round

Tail =
$$\{i : F_i(w) > Q_\theta(F_1(w), ..., F_n(w))\}$$

- Estimate $q \approx Q_{\theta} \big(F_1(w), ..., F_n(w) \big)$ distributed discrete Gaussian mechanism
- Aggregate updates from the tail with the Gaussian mechanism (similar to DP-FedAvg)

Hyperparameters: Number of bins b, Fraction of privacy budget spent on the quantile, Loss upper bound (clip losses to [0,B]),

Experiments

Synthetic 10-class classification

Pillutla*, Laguel*, Malick, Harchaoui.

Federated Learning with Superquantile

Aggregation for Heterogenous Data.

Mach. Learn. (To appear, 2022)

Code

