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Each client  has a scalar i si

Distributionally robust FL

Goal: Minimize the tail error

min
w [Fθ(w) := 𝕊θ( (F1(w), ⋯, Fn(w)) )] Superquantile | 
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Distributional robustness: for a new client with 

distribution , the objective is equivalent to pπ =
n

∑
i=1

πipi

Fθ(w) = max
π : πi≤(θn)−1

𝔼z∼pπ [f(w; z)]

 = tail fraction 

-quantile of  

-superquantile

θ

Qθ(Z) = (1 − θ) Z

𝕊θ(Z) = (1 − θ)

End-to-end DP Optimization

Aggregate updates 
from tail clients only

Server

Subgradient expression: if  is an integer thenθn

∂Fθ(w) ∋
n

∑
i=1

π⋆
i ∇Fi(w) where

π⋆
i ∝ 𝕀(Fi(w) > q)

q = Qθ(F1(w), …, Fn(w))
Algorithm: Like FedAvg but in each round

Tail = {i : Fi(w) > Qθ(F1(w), …, Fn(w))}
• Estimate  

distributed discrete Gaussian 
mechanism 

• Aggregate updates from the tail 
with the Gaussian mechanism 
(similar to DP-FedAvg)

q ≈ Qθ(F1(w), …, Fn(w))

[Laguel, Pillutla et al. (2021)]

Goal: Compute the -quantile (1 − θ)

Setting: Client objectives Fi ( w ) = 𝔼z∼pi [f(w; z)]

with distributed differential privacy

• Emulate trusted server with crypto 

• Primitive: Secure summation

Algorithms
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Hay et al. (2010), 
Dwork et al. (2010),  
Chan et al. (2011), 
Smith et al. (2017), 

Cormode et al. (2019)

Flat Hierarchical
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Theorem: For -zcDP quantiles, w.p. (1/2)ϵ2 ≥ 1 − α
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Asymptotics: Flat is suboptimal: b
Finite sample: Flat is better for n ≲ 2.5 × 106

Synthetic 10-class classification

Hyperparameters: Number of bins ,  
Fraction of privacy budget spent on the quantile, 
Loss upper bound (clip losses to ), 
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