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Models leak information
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Models leak information about their training data reliably
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Differential privacy nearly eliminates memorization
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does not alter its output distribution by more than &

Dwork, McSherry, Nissim, Smith. Calibrating Noise to Sensitivity in Private Data Analysis. 7TCC 2006.



Differential privacy nearly eliminates memorization
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DA 5001 / DA 6400: Privacy in Al

N N
P re re q ' I I S I t e S Jul-Nov 2024 @ IIT Madras in CRC 205 in Slot J (weekly schedule)

Instructor: Krishna Pillutla

Announcements Pilazza Gradescope

e PrivAl Course is required: https://krishnap25.github.io/privAI course 20240/

e Exception: You can take this course if:
e You score >/75% on a HW to make sure you have enough background
e You can use course material from the previous course
e Academic integrity policies of both courses will apply
e Your research project (MS/PhD/DDP/BTP/etc.) is based directly on this topic

e HW with >60% score necessary

12


https://krishnap25.github.io/privAI_course_2024o/

Seminar Course

e One student presents a paper in a lecture (slides or board)
e Practical motivation
e Mathematical details (including proofs)
e Real world impact and significance

e Everybody participates in a discussion
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Seminar Course: Work required

e Each person presents 3 or so times in the semester
e Detailed preparation - takes 2 weeks or so each time

e Others: skim through the reading material to contribute to the discussion

e Presentation + participation: 50% of the grade
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Class Timings: Slot L

e Thursday: 2 to 3:15 pm

e Friday: 3:30 to 4:45 pm

e Extra lectures on two Saturdays: Feb. 8 and March 8th.

e Pre-emptive make-up for classes to be canceled in March/April
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Communication

e Course Webpage: hitps://krishnap25.github.io/privAI course 20240/

e Plazza: link to be announced on the course webpage
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https://krishnap25.github.io/privAI_course_2024o/

e Presentation: 40%
e Participation: 10%

e Course Project: 50%

Grading
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Course Project: 50% of the grade

e Most of your learning will be through the course project
e Individual or groups of 2
e Options:

e Research project

e Implementation: benchmarking and open-sourcing

e In-depth paper analysis
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Course Project: Research

e Original research: can be theory, applied, or mix or both
e Commensurate to a workshop paper at NeurIPS/ICML/ICLR conferences
® Strongly encouraged to continue last semester’s privAl course project

® Favourable outcomes likely for many course projects from last
semester

® Not mandatory — discuss with me to decide
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Course Project: Research

e YOU Can propose your own course project related to your research
e Must be related to the course contents

e E.g. You work in computer vision for healthcare:
Implement private training or privacy attacks etc. on your model/dataset

e We will also provide some project suggestions
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Course Project: Implementation

® Implement existing algorithms with a goal of:
® Benchmarking methods (e.g. compare to various baselines)

® Creating or contributing to open-source packages

("

Opacus

JAX-Privacy: Algorithms for Privacy-Preserving Machine

Learning in JAX

Train PyTorch models with Differential Privacy



Course Project (50%): Logistics

e Proposal (10%, 2-4 pages): Due mid-Feb.
® Midpoint report (10%, 4-6 pages): Due around mid-March
® Presentation (15%): Last 2 weeks of class

® Final report (15%, 8 pages): Due around May 9th (End sem week)
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Late Days

® NO late days (for project or presentation)
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Honour Code

® Project:

® You have to do the work yourself (cannot use somebody else’s work as yours
for a course project)

® The project cannot be used “as is” for other courses

® Ok to reuse course project for BTP/DDP/MTP/MS/PhD other research projects

® Academic violations will be handled by the IITM Senate Discipline and Welfare
(DISCO) Committee.
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Honour Code

e We expect and believe that you will conduct yourself with integrity

e We will follow the institute policies but it is ultimately up to you to conduct
yourself with academic and personal integrity for several compelling reasons
(that go beyond your studies)

® Respect diversity: There is a place for everyone who is curious and passionate
about exploring knowledge

® Let us all be mindful of creating welcoming and inclusive spaces

® As the next generation, you have the power to shape the future:
aim to make the world a better place!
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Office Hours

e We will be available one hour per week to answer queries about the course
material

e Thursday 3:30 to 4:30 PM at my office (after class)
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Auditing the course

® Not allowed

® Seminar courses require "buy in” from all participants
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Attendance

e \We will not take attendance



Recap: Differential Privacy (DP)

A mathematically rigorous notion of “privacy”
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Dwork, McSherry, Nissim, Smith. Calibrating Noise to Sensitivity in Private Data Analysis. 7TCC 2006.
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Adding noise for DP

No Differential Privacy (¢ = o0)




Key properties of DP

Composition over multiple steps Post-processing
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Why is composition necessary?

Robust De-anonymization of Large Datasets
(How to Break Anonymity of the Netflix Prize Dataset)

2006 - 2009

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

February 35, 2008

RYAN SINGEL SECURITY MAR 12, 2818 2:48 PM

NetFlix Gancels Recommendation Contest After
Privacy Lawsuit

Netflix is canceling its second $1 million Netflix Prize to settle a legal challenge that it

$1M to beat Netflix’s breached customer privacy as part of the first contest’s race for a better movie-

recommendation algorithm by 10% recommendation engine. Friday’s announcement came five months after Netflix had
announced a successor to its algorithm-improvement contest. The company at the

time said it intended to [...]
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Composition prevents such leakage!



Adaptive Composition
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Adaptive Composition

Algorithm 1

81+82

Algorithm 2

*We can do better than ¢, + ¢,, details to follow
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Key properties of DP

Composition over multiple steps Post-processing
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Post-processing

Example: How many people at IITM have a certain medical condition?

Dataset Output Distribution Processed Distribution
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“Information cannot be created”
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LLM Example:

Dataset
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Post-processing

Stage 1 - Private Training / Stage 2 - alighment
Output Distribution Processed Distribution
+“—E—>

“Information cannot be created”
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Our main motivation: Deep Learning with DP
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Review: Stochastic gradient descent (without DP)
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DP-SGD: Stochastic gradient descent with DP

Gradient is differentially private

Sample batch
of data
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Gaussian mechanism Update model
parameters
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Compute and clip per-
example gradients

49



DP-SGD: Stochastic gradient descent with DP

Post-processing
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DP-SGD: Stochastic gradient descent with
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Caveat: Multiple facets of the word “privacy”

What does the word “"privacy” mean to an end user of an Al product?

Transparency, Control, Minimize data sharing Data Anonymization
Verifiability

> Differential Privacy

Bonawitz, Kairouz, McMahan, Ramage (2022). Federated Learning and Privacy.
Communications of the ACM,
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Tentative Course Outline



Part 1: Weeks 2-4

e Correlated noise mechanisms:
e Multiple epochs

e Amplification
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Recall: DP Training with Correlated Noise

Update model
parameters

6t+1 — et o ﬂ(gt T Zt)
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I.i.d. Gaussian

noise

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on
Adaptive Streams. NeurIPS 2022.

55



Correlated noise uniformly beats independent noise
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Production Training

"the first production neural

network trained directly on

user data announced with a
formal DP guarantee.”

- Google Al Blog post, Feb 2022

Have a good @ B

° night day weekend ¥

: Google Al Blog

The latest from Google Research

Federated Learning with Formal Differential Privacy

Guarantees
Monday, February 28, 2022

Posted by Brendan McMahan and Abhradeep Thakurta, Research Scientists, Google Research

In 2017, Google introduced federated learning (FL), an approach that enables mobile devices to
collaboratively train machine learning (ML) models while keeping the raw training data on each
user’s device, decoupling the ability to do ML from the need to store the data in the cloud. Since its
introduction, Google has continued to actively engage in FL research and deployed FL to power

many features in Gboard, including next word prediction, emoji suggestion and out-of-vocabulary
word discovery. Federated learning is improving the “Hey Google” detection models in Assistant,
suggesting replies in Google Messages, predicting text selections, and more.

While FL allows ML without raw data collection, differential privacy (DP) provides a quantifiable
measure of data anonymization, and when applied to ML can address concerns about models
memorizing sensitive user data. This too has been a top research priority, and has yielded one of
the first production uses of DP for analytics with RAPPOR in 2014, our open-source DP library,
Pipeline DP, and TensorFlow Privacy.
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Arrows represent model updates in parameter space.

Data Minimization and Anonymization in Federated Learning
Along with fundamentals like transparency and consent, the privacy principles of data minimization
and anonymization are important in ML applications that involve sensitive data.




Part 1: Weeks 2-4

e Correlated noise mechanisms:
e Multiple epochs

e Amplification
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Part 2: Weeks 4-5

DP-SGD noise
multiplier is
independent
of the data

e Data-adaptive differential privacy

e Why can’t it be used for model training?

def get_optimal_noise_multiplier_dpsgd(

n: int,

batch_size: int,

steps: 1int,

target_epsilon: float,

target_delta: float,
-> float:

"""Find the best noise multiplier for given DP-SGD parameters.""™

q = batch_size / n the sampli
assert gq <=1

def objective(noise_multiplier):
accountant = dp_accounting.rdp.RdpAccountant (RDP_ORDERS)
event = dp_accounting.SelfComposedDpEvent (
dp_accounting.PoissonSampledDpEvent
q, dp_accounting.GaussianDpEvent(noise_multiplier
) »
steps,
)
accountant.compose(event)
eps, _ = accountant.get_epsilon_and_optimal_order(target_delta)
return eps - target_epsilon

return scipy.optimize.brentq(objective, le-6, 1000)
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Part 3: Weeks 6-8:
Protecting Against Data Reconstruction Attacks
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Part 3: Weeks 6-8

e Other alternatives to DP: based on info theory
e Fisher information (last semester)

e Mutual information
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Part 4: Weeks 8-12
GenAI/LLM/Agentic applications

Model interrogation, privacy risks & solutions for RAG
Reconstructing data from attention weights
Diffusion models & implicit privacy in generative models

Detailed copyright guarantees

[your suggestions here]
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Weeks 13-15: Course Projects



Thank you! Questions?



