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Models leak information 
about their training data

Carlini et al. (USENIX Security 2021)



Models leak information about their training data reliably

Carlini et al. (USENIX Security 2021)
Carlini et al. (ICLR 2023)





Differential privacy (DP)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006



Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one unit of data does not alter its output distribution by more than 𝜀



Example-level Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one example does not alter its output distribution by more than 𝜀

    Unit of data 
= example



Differential privacy eliminates memorization

High privacy Low privacy Low privacyHigh privacy

Nearly 
non-private 
loss

Huge 
improvement 
in 
memorization

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural 
Networks. USENIX Security 2019.



Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023

Test on training distribution 
(in-domain / ID)

Test on shifted distribution 
(out-of-domain / OOD)

Robustness 
Gap

 y 
= x

o  

Which data do we use to train/finetune/align these models?
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Test on training distribution 
(in-domain / ID)

Test on shifted distribution 
(out-of-domain / OOD)

Robustness 
Gap

 y 
= x

o  

Which data do we use to train/finetune/align these models?

Best training data = in-domain data



https://workspace.google.com/blog/product-announcements/duet-ai-in-workspace-now-availablehttps://blog.google/products/gmail/gmail-ai-features/

https://workspace.google.com/blog/product-announcements/duet-ai-in-workspace-now-available
https://blog.google/products/gmail/gmail-ai-features/
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For many applications, in-domain data = user data



https://workspace.google.com/blog/product-announcements/duet-ai-in-workspace-now-availablehttps://blog.google/products/gmail/gmail-ai-features/

For many applications, in-domain data = user data

Each user can contribute multiple examples



Example-level Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one example does not alter its output distribution by more than 𝜀

    Unit of data 
= example



Example-level Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one user’s data does not alter its output distribution by more than 𝜀

    Unit of data 
= user

User



Why do we need user-level DP?



Why do we need user-level DP?

Standard LLM finetuning pipelines are susceptible to 
user inference attacks!

Nikhil Kandpal, KP, Alina Oprea, Peter 
Kairouz, Chris Choquette-Choo, Zheng Xu.
Submitted (2024)



and

fresh i.i.d. samples from
 a user distribution

Attacker Wants to Infer:

Did samples

come from one of

Attacker Has:

User Inference
Attack

Model finetuned on user data

?



User inference is effective when 
#users is small and data per user is large

More fine-tuning samples per user

More users



Short common phrases can exacerbate user inference



Example-level DP offers limited mitigation

AUROC: 
● non-private: 88% 
● 𝜺 = 32: 70%

Utility:
● DP model reaches what the private 

model achieves in 1/3 epoch

Example-level DP does not help here

ROC Curves for Enron Emails



Example-level Differential privacy (DP)

A randomized algorithm is 𝜀-differentially private if the addition of 

one user’s data does not alter its output distribution by more than 𝜀

    Unit of data 
= user

User



How do we realize user-level DP?



Outline: how do we realize user-level DP?

Learning algorithms:

(Anti-) correlated noise provably 
beats independent noise

For linear regression, dimension d 
improves to problem-dependent 
effective dimension deff 

Independent noise

Correlated noise 

Lower bound 



Outline: how do we realize user-level DP?

Auditing:

Randomness makes the audit 
more computationally efficient

Learning algorithms:

(Anti-) correlated noise provably 
beats independent noise

For linear regression, dimension d 
improves to problem-dependent 
effective dimension deff 

Independent noise

Correlated noise 

Lower bound 

Baseline

Ours
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Part 1: How do we learn with user-level DP?

(Anti-)correlated noise provably beats independent noise

Krishna 
Pillutla*

Chris 
Choquette-Choo*

Dj 
Dvijotham*

Arun 
Ganesh

Thomas 
Steinke

Abhradeep 
Thakurta

ICLR 2024

*Equal contribution, 𝛼𝛽-order



DP-SGD: How do we train models with example-level DP?

Learning 
rate

Stochastic gradient 
clipped to ǁgǁ ≤ G 

per-example

Independent 
Gaussian noise

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)



DP-FedAvg: How do we train models with user-level DP?

Learning 
rate

Stochastic gradient 
clipped to ǁgǁ ≤ G 

per-user

Independent 
Gaussian noise

McMahan, Ramage, Talwar, Zhang. Learning differentially private recurrent language models. ICLR 2018



DP-SGD: DP Training with Independent Noise

Independent 
Gaussian noise

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016

For 𝜌-zCDP, take
noise variance = 

     (G = gradient clip norm)



DP-FTRL: DP Training with Correlated Noise

Correlated 
Gaussian noise 

(zt i.i.d. Gaussian)

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.



DP-FTRL: DP Training with Correlated Noise

Correlated 
Gaussian noise 

(zt i.i.d. Gaussian)
For 𝜌-zCDP, take
noise variance = 

sensitivity

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. Practical and Private (Deep) Learning without Sampling or Shuffling. ICML 2021.
Denisov, McMahan, Rush, Smith, Thakurta. Improved Differential Privacy for SGD via Optimal Private Linear Operators on 
Adaptive Streams. NeurIPS 2022.



Production Training

“the first production neural 
network trained directly on 
user data announced with a 

formal DP guarantee.”

- Google AI Blog post, Feb 2022

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html


Do we use independent or correlated noise?
 

DP-SGD DP-FTRL



Prior work: (Empirically) correlated noise 
outperforms independent noise

DP-SGD + Amplification
DP-FTRL (no amplification)
DP-FTRL + Amplification

DP-FTRL (+ amplification) 
uniformly beats DP-SGD

Experiment:
User-level DP with 
StackOverflow

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu.
(Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023



Our goal: a provable gap between DP-SGD & DP-FTRL



DP-FTRL vs. DP-SGD: Previous Theory

DP-SGD

DP-FTRL

𝜌: privacy level (zCDP)
d: dimension
T: #iterations

For convex & G-Lipschitz losses

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. 
Practical and Private (Deep) Learning without 
Sampling or Shuffling. ICML 2021.



Streaming setting: Suppose we draw a fresh data 
point xt~P in each iteration t (i.e. only 1 epoch)

Model 
parameters

Loss 
function

Data

Setting and Simplifications



Toeplitz noise correlations: 𝛽t,𝜏= 𝛽𝜏

Computationally: store O(T) coefficients instead of O(T2)



Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Asymptotics: Iterates converge to a stationary distribution as t → ∞

Image credit: 
Abdul Fatir Ansari

Asymptotic 
error

Asymptotics at a fixed learning rate 𝜂 > 0

https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/


Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

Lets us study the noise dynamics of the algorithms
(do not satisfy DP guarantees)

ǁgǁ 
G

G

ǁc
lip

(g
,G

)ǁ
 



Mean estimation in 1 dimension

Data distribution 
s.t. |x| ≤ 1

Solve with stochastic optimization problem 
with DP-SGD/DP-FTRL



Independent noise (DP-SGD)

Correlated noise  (DP-FTRL)

𝜂: learning rate (constant and non-zero)
𝜌: privacy level

Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a 𝜌-zCDP sequence is 



DP-FTRL is always 
better than DP-SGD

DP-FTRL is 
significantly better at 

𝜂 → 0 or 𝜂 → 1



Closed form correlations for mean estimation

Proposition: The correlations
attain the optimal error



Closed form correlations for mean estimation

For general problems, use

and tune the parameter 𝜈

Proposition: The correlations
attain the optimal error

𝜈-DP-FTRL



Linear regression

H is also the 
Hessian of the 

objective



Linear regression

Well-specified 
linear model



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error is 

Improve dimension d to 
problem-dependent 

effective dimension deff 



Effective dimension

Low effective dimension High effective dimension

Closely connected to numerical/stable rank



[Rudelson & Vershynin (J. ACM 2007)]



The stable rank appears in:

● Numerical linear algebra (e.g. randomized matrix 

multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]

● Matrix concentration [Hsu-Kakade-Zhang (2012), Minsker (2017)] 

● …



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error is 

Improve dimension d to 
problem-dependent 

effective dimension deff 



Linear regression: theory predicts simulations



Independent noise (Noisy-SGD)

Correlated noise  (𝜈-Noisy-FTRL)

Lower bound for any algorithm 

Informal Theorem: The asymptotic error for 0 < 𝜂 < 1 is 

Improved dependence on 
the learning rate 𝜂



Noisy-SGD scales as 𝜂

𝜈-Noisy-FTRL 
scales as 𝜂2

Noisy-FTRL ≫ Noisy-SGD at small 𝜂



Finite-time rates with DP: Linear Regression

Independent noise (DP-SGD)

Correlated noise  (𝜈-DP-FTRL)

Privacy error

T: number of iterations
𝜌: privacy level

𝜂: learning rate is optimized



Proof sketch for Mean Estimation

Updates are not Markovian (key for all stochastic gradient proofs)

Our approach: Analysis the Fourier domain 



Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



Fourier analysis can give the stationary variance of 𝛅t in terms of 
the discrete-time Fourier transform 
of the convolution weights 𝛽

Frequency

Time-domain 
description

Frequency-domain 
description

Image: 3blue1brown.com/lessons/fourier-transforms 



The stationary variance of 𝛅t can be given as

Letting 𝛅t=𝜃t– 𝜃*, the DP-FTRL update can be written as 

Convolution of the 
noise

Linear 
Time-Invariant 
(LTI) system



For 𝜌-zCDP, take

sensitivity



For 𝜌-zCDP, take

sensitivity
Requires |B(𝜔)| 

small

Requires |B(𝜔)| 
large



For 𝜌-zCDP, take

Requires |B(𝜔)| 
small

Requires |B(𝜔)| 
large

Optimizing for |B(𝜔)| gives the theorem

sensitivity



Language modeling with Stack Overflow | User-level DP



Image classification with CIFAR-10 | Example-level DP



Image classification with CIFAR-10 | Example-level DP



Computational cost

● SoTA: cubic complexity to generate the 𝛽’s  

● Ours: linear complexity (closed form)
○ nearly matches SoTA empirically



Summary

● Correlated noise is provably better

● Depends on effective dimension instead of dimension

● Matches lower bounds



Part 2: How audit user-level DP?

Unleashing the power of randomness in auditing DP

Peter Kairouz Brendan McMahan Alina OpreaGalen Andrew Sewoong Oh

NeurIPS 2023

Krishna Pillutla



Empirical privacy auditing

Privacy 
Loss

Provable analytic DP 𝜀 (often loose)

Real privacy leakage

𝜀 empirical lower bound 

DP 𝜀

Our focus



Why empirical privacy auditing?
To verify that we actually provide the guarantee we claim 
(no bugs in proofs/implementation)

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022



Gap between DP guarantees and empirical behavior: Memorization

High privacy Low privacy Low privacyHigh privacy

Nearly 
non-private 
loss

Huge 
improvement 
in 
memorization

Privacy guarantee is vacuous 
at this 𝜀! 

Carlini, Liu, Erlingsson, Kos, Song. The Secret Sharer: Evaluating 
and Testing Unintended Memorization in Neural Networks. 
USENIX Security 2019



Empirical Privacy Auditing requires many samples

● Trained w/ (0.21,10-5)-DP 
but empirically 𝜀>2.79 
with confidence 1-10-8 ⇒ 
bug in implementation

● This required training 
𝑛=200,000 models

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022



Our goal: make empirical privacy auditing 
more sample-efficient



E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020 

𝐷0

𝐷1
𝐷0 or 𝐷1

Train model 
with a 

mechanism 
in question

canary

Training data 

Privacy barrier 

Standard approaches for auditing privacy: binary hypothesis testing



𝐷0

𝐷1
𝐷0 or 𝐷1

Train model 
with a 

mechanism 
in question

𝐷0 (Null Hypothesis) 
or 

𝐷1  (Alternative Hypothesis) ?

canary

Training data

Privacy barrier 

Repeat many 
times and 

measure privacy 
leakage

Standard approaches for auditing privacy: binary hypothesis testing

True Positive Rate False Positive Rate

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021
Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020



● Confidence intervals based on n trials

Bottleneck: Bernoulli confidence intervals

Empirical 
TPR/FPR

Actual 
TPR/FPR

Empirical 
TPR/FPR

Actual 
TPR/FPR

Sample size n needs to be large 
for good estimates



Our approach: leverage randomness

● Lifted DP: Equivalent notion of DP with randomized datasets

● Multiple randomized hypothesis tests

● Adaptive confidence intervals capitalizing on low correlations



● Leave-One Out construction with i.i.d. random canaries

Random
𝐷0

Is 𝑐1 in 𝐷1?  
Is 𝑐’1 in 𝐷0?

Is 𝑐3 in 𝐷1?
Is 𝑐’3 in 𝐷0?

𝐷1 or 𝐷0
Train 
Model

Is 𝑐2 𝐷1?   
Is 𝑐’2 𝐷0?

Average 
test statistics

𝑘 Random 
canaries 𝑐1,𝑐2,𝑐3

Random
𝐷1

𝑘-1 Random 
canaries

Multiple hypothesis tests for auditing Lifted DP



● Leave-One Out construction with i.i.d. random canaries

Random
𝐷0

Is 𝑐1 in 𝐷1?  
Is 𝑐’1 in 𝐷0?

Is 𝑐3 in 𝐷1?
Is 𝑐’3 in 𝐷0?

𝐷1 or 𝐷0
Train 
Model

Is 𝑐2 𝐷1?   
Is 𝑐’2 𝐷0?

Average 
test statistics

𝑘 Random 
canaries 𝑐1,𝑐2,𝑐3

Random
𝐷1

𝑘-1 Random 
canaries

Multiple hypothesis tests for auditing Lifted DP

If the statistics are independent ⇒ better confidence 
intervals

Unfortunately, they are dependent 
(but highly uncorrelated)



Novel higher-order confidence interval

● 2nd-order confidence interval using empirical correlations between two tests

● Ideally, when correlation=O(1/𝑘), the confidence interval improves as



Takeaway: Reduces variance from randomness in trials

Standard approach:

Our approach: 

Lower variance => 
Tighter confidence intervals

c -  Universal constant

c’ - Data-dependent constant



Proof of concept with Gaussian mechanisms

● Sum query with sensitivity 1 
● Gaussian mechanism
● 𝑘 canaries uniformly random 

on the sphere
● Test statistic is inner product

 

Dwork, Smith, Steinke, Ullman, Vadhan. Robust traceability from trace amounts. FOCS 2015

1 canary

𝑘 canaries
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Suffices to train 200 models 
instead of 1000 models

Data poison

Gradient poison

Eq
u

al

LiDP is better 
Baseline
is better 





Bias-variance tradeoff in the number of canaries 𝑘 

Variance gain

Net gain

Bias gain
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Summary

● Auditing Lifted DP (equivalent to usual DP) using multiple i.i.d. 
random canaries to improve sample dependence of the confidence 
intervals

● Can integrate with existing recipes for designing canaries



Other highlights: large-scale group-stratified datasets

Dataset Grouper

Library for creating group-structured datasets.

● Scalable: can handle millions of clients ✅
● Flexible: any custom partition function on 

any TFDS/HuggingFace dataset ✅
● Platform-agnostic: works with TF, 

PyTorch, JAX, NumPy, … ✅

Zach Charles*, Nicole Mitchell*, KP*, 
Michael Reneer, Zach Garrett.
NeurIPS D&B 2023



New federated LLM datasets: longer sequences

Stack Overflow

Reddit
FedC4

FedBookCO

Typical 
sequence 

length of LLMs

Largest previous datasets:
Reddit, Stack Overflow

Our datasets:
FedC4, FedBookCO



New federated LLM datasets: more words & groups

Largest previous 
datasets Our datasets Our datasets

10x larger
30x larger

Largest previous 
datasets



Thank you!


