Towards User-level Differential Privacy at Scale

Krishna Pillutla Google Research -> IIT Madras

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

Models leak information about their training data

Carlini et al. (USENIX Security 2021)

Models leak information about their training data *reliably*

Carlini et al. (USENIX Security 2021)

Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models

Gowthami Somepalli 🌦 , Vasu Singla 🐜 , Micah Goldblum 🎍 , Jonas Geiping 🐜 , Tom Goldstein 🐜

Diversity of Maryland, College Park

{gowthami, vsingla, jgeiping, tomg}@cs.umd.edu

^b New York University

goldblum@nyu.edu

Differential privacy (DP)

Dwork, McSherry, Nissim, Smith. Calibrating noise to sensitivity in private data analysis. TCC 2006

Differential privacy (DP)

Example-level Differential privacy (DP)

Differential privacy eliminates memorization

Carlini, Liu, Erlingsson, Kos, Song. **The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks.** USENIX Security 2019.

Which data do we use to train/finetune/align these models?

Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023

Which data do we use to train/finetune/align these models?

Yuan et al. Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLM Evaluations. NeurIPS D&B 2023

Gemini Google Workspace

For many applications, in-domain data = **user data**

For many applications, in-domain data = **user data**

Each **user** can contribute *multiple* examples

Example-level Differential privacy (DP)

User Example - Ievel Differential privacy (DP)

Why do we need user-level DP?

Why do we need user-level DP?

Standard LLM finetuning pipelines are susceptible to **user inference attacks**!

Nikhil Kandpal, *KP*, Alina Oprea, Peter Kairouz, Chris Choquette-Choo, Zheng Xu. **Submitted (2024)**

Model finetuned on user data

User Inference Attack

Attacker Has:

Attacker Wants to Infer:

User inference is effective when #users is small and data per user is large

More fine-tuning samples per user

More users

Short common phrases can exacerbate user inference

Example-level DP offers limited mitigation

AUROC:

- non-private: 88%
- ε = 32: 70%

Utility:

• DP model reaches what the private model achieves in 1/3 epoch

ROC Curves for Enron Emails

Example-level DP does not help here

User Example - Ievel Differential privacy (DP)

How do we realize user-level DP?

Outline: how do we realize user-level DP?

Learning algorithms:

(Anti-) correlated noise provably beats independent noise

For linear regression, dimension d improves to problem-dependent effective dimension d_{eff}

Independent noise $\Theta(d)$ Correlated noise $\tilde{O}(d_{eff})$ $\Omega(d_{eff})$ $\Omega(d_{eff})$

Outline: how do we realize user-level DP?

 $\Theta(d)$

 $ilde{O}(d_{
m eff})$

 $\Omega(d_{eff})$

Learning algorithms:

(Anti-) correlated noise provably beats independent noise

For linear regression, dimension d improves to problem-dependent effective dimension d_{eff}

Independent noise

Correlated noise

I ower bound

Auditing:

Randomness makes the audit more computationally efficient

Part 1: How do we learn with user-level DP?

(Anti-)correlated noise **provably** beats independent noise

ICLR 2024

Chris **Choquette-Choo***

Dj **Dvijotham***

Krishna Pillutla*

Abhradeep Thakurta

*Equal contribution, $\alpha\beta$ -order

DP-SGD: How do we train models with **example**-level DP?

Google Research

Song et al. (2013), Bassily et al. (FOCS 2014), Abadi et al. (CCS 2016)

DP-FedAvg: How do we train models with **user**-level DP?

Google Research

McMahan, Ramage, Talwar, Zhang. Learning differentially private recurrent language models. ICLR 2018

DP-SGD: DP Training with **Independent** Noise

For ρ -zCDP, take noise variance = $\frac{G^2}{2\rho}$ (G = gradient clip norm)

Google Research

Bun & Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. TCC 2016

DP-FTRL: DP Training with **Correlated** Noise

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. **Practical and Private (Deep) Learning without Sampling or Shuffling**. ICML 2021. Denisov, McMahan, Rush, Smith, Thakurta. **Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams**. NeurIPS 2022.

DP-FTRL: DP Training with **Correlated** Noise

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. **Practical and Private (Deep) Learning without Sampling or Shuffling**. ICML 2021. Denisov, McMahan, Rush, Smith, Thakurta. **Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams**. NeurIPS 2022.

Production Training

"the first production neural network trained directly on user data announced with a formal DP guarantee."

- Google AI Blog post, Feb 2022

Google Al Blog

The latest from Google Research

Federated Learning with Formal Differential Privacy Guarantees

Monday, February 28, 2022

Posted by Brendan McMahan and Abhradeep Thakurta, Research Scientists, Google Research

In 2017, Google introduced federated learning (FL), an approach that enables mobile devices to collaboratively train machine learning (ML) models while keeping the raw training data on each user's device, decoupling the ability to do ML from the need to store the data in the cloud. Since its introduction, Google has continued to actively engage in FL research and deployed FL to power many features in Gboard, including next word prediction, emoji suggestion and out-of-vocabulary word discovery. Federated learning is improving the "Hey Google" detection models in Assistant, suggesting replies in Google Messages, predicting text selections, and more.

While FL allows ML without raw data collection, differential privacy (DP) provides a quantifiable measure of data anonymization, and when applied to ML can address concerns about models memorizing sensitive user data. This too has been a top research priority, and has yielded one of the first production uses of DP for analytics with RAPPOR in 2014, our open-source DP library, Pipeline DP, and TensorFlow Privacy.

Data Minimization and Anonymization in Federated Learning

Along with fundamentals like transparency and consent, the privacy principles of data minimization and anonymization are important in ML applications that involve sensitive data.

Google Research

Choquette-Choo, Ganesh, McKenna, McMahan, Rush, Thakurta, Xu. (Amplified) Banded Matrix Factorization: A unified approach to private training. NeurIPS 2023

Our goal: a *provable* gap between DP-SGD & DP-FTRL

DP-FTRL vs. DP-SGD: Previous Theory

For convex & G-Lipschitz losses

 ϱ : privacy level (zCDP) d: dimension T: #iterations

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. **Practical and Private (Deep) Learning without Sampling or Shuffling**. ICML 2021.

Setting and Simplifications

Streaming setting: Suppose we draw a fresh data point $x_t \sim P$ in each iteration t (i.e. only 1 epoch)

Toeplitz noise correlations: $\beta_{t,\tau} = \beta_{\tau}$

$$heta_{t+1} \;=\; heta_t \;-\; \eta \; \left(\;g_t \;+\; \sum_{ au=0}^t eta_ au z_{t- au} \;
ight)$$

Computationally: store O(T) coefficients instead of $O(T^2)$

Asymptotics: Iterates converge to a stationary distribution as $t \rightarrow \infty$

Image credit: <u>Abdul Fatir Ansari</u>

Asymptotics: Iterates converge to a stationary distribution as $t \rightarrow \infty$

Asymptotics at a fixed learning rate $\eta > 0$

Noisy-SGD/Noisy-FTRL: DP-SGD/DP-FTRL without clipping

Lets us study the noise dynamics of the algorithms (do not satisfy DP guarantees)

Mean estimation in 1 dimension

Solve with stochastic optimization problem with DP-SGD/DP-FTRL

Mean estimation in 1 dimension

Informal Theorem: The asymptotic error of a ρ -zCDP sequence is

 η : learning rate (constant and non-zero) ϱ : privacy level

Closed form correlations for mean estimation

Proposition: The correlations $\beta_0^{\star} = 1$, $\beta_t^{\star} = -t^{-3/2}(1-\eta)^t$ attain the optimal error

$$\inf_{\beta} F_{\infty}(\beta) = F_{\infty}(\beta^{\star}) = \rho^{-1} \eta^2 \log^2 \frac{1}{\eta}$$

Closed form correlations for mean estimation

Proposition: The correlations $\beta_0^{\star} = 1$, $\beta_t^{\star} = -t^{-3/2}(1-\eta)^t$ attain the optimal error

$$\inf_{\beta} F_{\infty}(\beta) = F_{\infty}(\beta^{\star}) = \rho^{-1} \eta^2 \log^2 \frac{1}{\eta}$$

v-DP-FTRL

For general problems, use $\beta_0 = 1$, $\beta_t = -t^{-3/2}(1-\nu)^t$

and tune the parameter v

Linear regression

$$\min_{ heta} \left[F(heta) = \mathbb{E}ig(y - \langle heta, x
angle ig)^2
ight].$$

where
$$x \sim \mathcal{N}(0, H) < egin{array}{c} H ext{ is also the Hessian of the objective} \end{array}$$

Linear regression

$$\min_{ heta} ig[F(heta) = \mathbb{E}ig(y - \langle heta, x
angle ig)^2 ig]$$

$$ext{where} \qquad x \sim \mathcal{N}(0,H)$$

Well-specified
$$y|x \sim \mathcal{N}(x^ op heta_\star, \sigma^2)$$

Informal Theorem: The asymptotic error is

Improve dimension d to problem-dependent effective dimension d_{eff}

Effective dimension

$d_{ ext{eff}} = \mathrm{Tr}(H) / \|H\|_2 \leq d$

Low effective dimension $\lambda_1=1,\lambda_2=\dots=\lambda_d=1/d$

High effective dimension $\lambda_1 = \lambda_2 = \cdots = \lambda_d = 1$

Closely connected to numerical/stable rank

SAMPLING FROM LARGE MATRICES: AN APPROACH THROUGH GEOMETRIC FUNCTIONAL ANALYSIS

MARK RUDELSON AND ROMAN VERSHYNIN

Remark 1.3 (Numerical rank). The numerical rank $r = r(A) = ||A||_F^2 / ||A||_2^2$ in Theorem 1.1 is a relaxation of the exact notion of rank. Indeed, one always has $r(A) \leq \operatorname{rank}(A)$. But as opposed to the exact rank, the numerical rank is stable under small perturbations of the matrix A. In particular, the numerical rank of A tends to be low when A is close to a low rank matrix, or when A is sufficiently sparse.

$$d_{
m eff} = {
m srank}(H^{1/2})$$

Google Research

[Rudelson & Vershynin (J. ACM 2007)]

The stable rank appears in:

- Numerical linear algebra (e.g. randomized matrix multiplications) [Tropp (2014), Cohen-Nelson-Woodruff (2015)]
- Matrix concentration [Hsu-Kakade-Zhang (2012), Minsker (2017)]

• ...

Informal Theorem: The asymptotic error is

Improve dimension d to problem-dependent effective dimension d_{eff}

Linear regression: theory predicts simulations

Informal Theorem: The asymptotic error for $0 < \eta < 1$ is

Improved dependence on the learning rate η

Noisy-FTRL Noisy-SGD at small η

Finite-time rates with DP: Linear Regression

Privacy error

Google Research

 T: number of iterations

 ρ: privacy level
 η: learning rate is optimized

Proof sketch for Mean Estimation

Updates are not Markovian (key for all stochastic gradient proofs)

Our approach: Analysis the Fourier domain

Letting $\delta_t = \theta_t - \theta_*$, the DP-FTRL update can be written as

Fourier analysis can give the stationary variance of δ_t in terms of the **discrete-time Fourier transform** $B(\omega) = \sum_{t=0}^{\infty} \beta_t e^{i\omega t}$ of the convolution weights β Frequency

Letting $\delta_t = \theta_t - \theta_*$, the DP-FTRL update can be written as

Linear
Time-Invariant
(LTI) system
$$\delta_{t+1} = (1-\eta)\delta_t - \eta \sum_{ au=0}^t eta_ au z_{t- au}$$
Convolution of the noise

The stationary variance of δ_t can be given as

$$\lim_{t o\infty} \mathbb{E}[\delta_t^2] = rac{\eta^2}{2\pi} iggl(\int_{-\pi}^{\pi} rac{|B(\omega)|^2}{|1-\eta-e^{i\omega}|^2} \mathrm{d}\omega iggr) \quad \mathbb{E}[z_t^2]$$

$$\lim_{t o\infty} \mathbb{E}[\delta_t^2] = rac{\eta^2}{2\pi} igg(\int_{-\pi}^{\pi} rac{|B(\omega)|^2}{|1-\eta-e^{i\omega}|^2} \mathrm{d} \omega igg) \quad \mathbb{E}[z_t^2]$$

sensitivity

For
$$\rho$$
-zCDP, take $\mathbb{E}[z_t^2] = \frac{1}{2\rho} \max_t \left\| [B^{-1}]_{:,t} \right\|_2^2$
$$= \frac{1}{2\rho} \int_{-\pi}^{\pi} \frac{\mathrm{d}\omega}{2\pi |B(\omega)|^2} \qquad B = \begin{pmatrix} \beta_0 & & \\ \beta_1 & \beta_0 & & \\ \beta_2 & \beta_1 & \beta_0 & \cdots \\ \vdots & & \end{pmatrix}$$

Optimizing for $|B(\omega)|$ gives the theorem

Language modeling with Stack Overflow | User-level DP

Image classification with CIFAR-10 | Example-level DP

SoTA (requires $O(T^3)$ for the SDP)

Image classification with CIFAR-10 | Example-level DP

SoTA (requires $O(T^3)$ for the SDP)

Computational cost

- **SoTA**: cubic complexity to generate the β 's
- Ours: linear complexity (closed form)
 nearly matches SoTA empirically

Summary

- Correlated noise is **provably** better
- Depends on effective dimension instead of dimension
- Matches lower bounds

Part 2: How audit user-level DP?

Unleashing the power of randomness in auditing DP

NeurIPS 2023

Alina Oprea

Krishna Pillutla

Galen Andrew

Peter Kairouz Brendan McMahan

Sewoong Oh

Empirical privacy auditing

Our focus
Why empirical privacy auditing?

To verify that we actually provide the guarantee we claim (no bugs in proofs/implementation)

✓ ♣ 2 ■■■■■ mnist_experiment.py □		
		@@ -71,7 +71,7 @@ def forward(self, x):
71	71	rho_i,
72	72	epochs,
73	73	inp_clip,
74		- grad_clip
	74	+ grad_clip/BATCH_SIZE
75)
76		tl, correct, set_len = uc.test(model, test_loader)
77	77	print(f'MNIST_{BATCH_SIZE}_{epochs}_{grad_clip}_{inp_clip}_{rho_i}', correct/set_len)
·		
✓ ‡ 2 ■■■■■ upstream_clipping.py □		
		@@ -110,7 +110,7 @@ def run_experiment(model, train_loader, rho_i, epochs, input_bound, grad_bound):
110	110	
111	111	model.train()
112	112	<pre># sensitivity for everything with weights is just:</pre>
113		– sensitivity = input_bound * grad_bound / train_loader.batch_size
	113	+ sensitivity = input_bound * grad_bound
114	114	sigma = np.sqrt(sensitivity**2 / (2*rho_i))
115	115	<pre>print('sensitivity:', sensitivity)</pre>
116	116	

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022

Gap between DP guarantees and empirical behavior: Memorization

Empirical Privacy Auditing requires many samples

- Trained w/ (0.21,10⁻⁵)-DP but empirically ε>2.79 with confidence 1-10⁻⁸ ⇒
 bug in implementation
- This required training n=200,000 models

Tramèr et al. Debugging Differential Privacy: A Case Study for Privacy Auditing. Preprint 2022

Our goal: make empirical privacy auditing more *sample-efficient*

Standard approaches for auditing privacy: binary hypothesis testing

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021 Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020

Standard approaches for auditing privacy: binary hypothesis testing

E.g., Nasr, Song, Thakurta, Papernot, Carlini. Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. IEEE S&P 2021 Jagielski, Ullman, Oprea. Auditing differentially private machine learning: How private is private SGD? NeurIPS 2020

Bottleneck: Bernoulli confidence intervals

Our approach: leverage randomness

- Lifted DP: Equivalent notion of DP with randomized datasets
- Multiple randomized hypothesis tests
- Adaptive confidence intervals capitalizing on low correlations

Multiple hypothesis tests for auditing Lifted DP

• Leave-One Out construction with i.i.d. random canaries

Multiple hypothesis tests for auditing Lifted DP

If the statistics are independent \Rightarrow better confidence intervals

Unfortunately, they are **dependent** (but highly uncorrelated)

canaries c1,c2,c3 ca

canaries

Is c_3 in D_1 ? Is c'_3 in D_0 ? Average test statistics

Novel higher-order confidence interval

• 2nd-order confidence interval using empirical correlations between two tests

$$\operatorname{TPR} - \widehat{\operatorname{TPR}}_{n,k} | \lesssim \sqrt{\frac{1}{n} \left(\operatorname{Correlation} + \frac{1}{k} + \sqrt{\frac{4\operatorname{th moment}}{n}}\right)}$$

• Ideally, when **correlation=O(1/k)**, the confidence interval improves as

$$|\mathrm{TPR} - \widehat{\mathrm{TPR}}_{n,k}| \lesssim \sqrt{\frac{1}{nk}} + \frac{1}{n^{3/4}}$$

Takeaway: Reduces variance from randomness in trials

Standard approach: $\varepsilon \geq l$

$$\log \left(rac{\widehat{ ext{TPR}}_n - rac{c}{\sqrt{n}} - \delta}{\widehat{ ext{FPR}}_n + rac{c}{\sqrt{n}}}
ight)$$

- *c* Universal constant
- c' Data-dependent constant

Lower variance => Tighter confidence intervals

Our approach:

$$arepsilon \geq \log \left(rac{\widehat{ ext{TPR}}_{n,k} - rac{c}{\sqrt{nk}} - rac{c'}{n^{3/4}} - \delta}{\widehat{ ext{FPR}}_{n,k} + rac{c}{\sqrt{nk}} + rac{c'}{n^{3/4}}}
ight)$$

Proof of concept with Gaussian mechanisms

- Sum query with sensitivity 1
- Gaussian mechanism
- *k* canaries uniformly random on the sphere
- Test statistic is inner product

Dwork, Smith, Steinke, Ullman, Vadhan. Robust traceability from trace amounts. FOCS 2015

Privacy Auditing with One (1) Training Run

Thomas Steinke* Google DeepMind steinke@google.com Milad Nasr* Google DeepMind srxzr@google.com Matthew Jagielski* Google DeepMind jagielski@google.com

Bias-variance tradeoff in the number of canaries k

Summary

 Auditing Lifted DP (equivalent to usual DP) using multiple i.i.d. random canaries to improve sample dependence of the confidence intervals

• Can integrate with existing recipes for designing canaries

Other highlights: large-scale group-stratified datasets

Dataset Grouper

Library for creating group-structured datasets.

- Scalable: can handle millions of clients 🔽
- **Flexible:** any custom partition function on any TFDS/HuggingFace dataset
- **Platform-agnostic:** works with TF, PyTorch, JAX, NumPy, ... **V**

Zach Charles*, Nicole Mitchell*, **KP***, Michael Reneer, Zach Garrett. **NeurIPS D&B 2023**

New federated LLM datasets: longer sequences

New federated LLM datasets: more words & groups

Thank you!

